Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En la entrada anterior platicamos acerca de eigenvectores, eigenvalores y eigenespacios de matrices y transformaciones lineales. Vimos algunos ejemplos básicos. En esta entrada profundizaremos en el estudio de estos objetos y exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

Primeras observaciones

A partir de la proposición de la entrada anterior que nos dice cómo calcular eigenvalores se desprenden algunas consecuencias sencillas pero útiles.

Por ejemplo, recuerda que el determinante de una matriz y su transpuesta es igual. En particular, si $A\in M_n(F)$ entonces

\begin{align*}
\det(\lambda I_n -\ ^{t}A)= \det(\ ^{t}(\lambda I_n- A))= \det(\lambda I_n-A).
\end{align*}

Luego $\det (\lambda I_n-A)=0$ si y sólo si $\det(\lambda I_n-\ ^{t}A)=0$. Recordando que las raíces de estos polinomios son precisamente los eigenvalores, se sigue que los eigenvalores de $A$ y $^{t}A$ son iguales.

Por otro lado, como los eigenvalores son las raíces de un polinomio de grado $n$, sabemos que hay a lo más $n$ soluciones. Entonces toda matriz tiene a lo más $n$ eigenvalores.

Esto también ocurre para transformaciones lineales en espacios de dimensión finita y lo podemos enunciar como sigue:

Corolario. Sea $V$ un espacio de dimensión finita sobre $F$ y $T:V\to V$ lineal. Entonces $T$ tiene a lo más $\dim V$ eigenvalores distintos.

Sin embargo, si el espacio no es de dimensión finita no podemos hacer tal afirmación. Si $V$ es el espacio de todas las funciones suaves (es decir con derivadas de todos los órdenes) de $\mathbb{R}$ en $\mathbb{R}$ y $T:V\to V$ es la función lineal que a cada función la manda en su derivada, entonces tenemos «muchos» eigenvalores. Haciendo esto más preciso, para cada real $r$ la función $e^{rx}$ es un eigenvector con eigenvalor $r$ puesto que

\begin{align*}
T(e^{rx})= \left(e^{rx}\right)’= re^{rx}.
\end{align*}

Así, tenemos al menos tantos eigenvalores como números reales. De hecho, estos son exactamente los eigenvalores de $T$, lo cual puede demostrarse mediante el teorema de existencia y unicidad de soluciones de ecuaciones diferenciales, que estudiarás en otro momento de tu formación matemática.

Matrices triangulares superiores

Parte del interés de «triangular» matrices (es decir, encontrar una matriz similar que sea triangular superior) está dada por la facilidad de calcular sus eigenvalores. Exploramos esto mediante los siguientes dos problemas.

Problema 1. Sea $A=[a_{ij}]$ una matriz triangular superior en $M_n(F)$. Demuestra que los eigenvalores de $A$ son precisamente los elementos en la diagonal.

Solución. Ya establecimos que encontrar los valores propios se reduce a encontrar las raíces del polinomio $\det(\lambda I_n-A)$. Notamos que si $A$ es triangular superior, entonces $\lambda I_n-A$ también es triangular superior. Más aún, las entradas de la diagonal son simplemente $\lambda-a_{ii}$. Pero sabemos que el determinante de una matriz triangular superior es el producto de sus entradas diagonales. Así

\begin{align*}
\det(\lambda I_n -A)= (\lambda-a_{11})(\lambda-a_{22})\cdots (\lambda -a_{nn})
\end{align*}

cuyas raíces son exactamente los elementos $a_{ii}$.

$\square$

Podemos combinar el resultado anterior con otras propiedades de matrices triangulares superiores para resolver a mano algunos problemas que de entrada parecen complicados.

Problema 2. Encuentra los eigenvalores de $A^{3}$ donde

\begin{align*}
A=\begin{pmatrix} 1 & 2 &3 &4 \\ 0 & 5 & 6 & 7\\ 0 & 0 & 8 & 9\\ 0 &0 &0 & 10\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. En realidad no hace falta hacer el producto de matrices para encontrar la matriz $A^3$. Sabemos que el producto de dos matrices triangulares superiores es triangular superior y que de hecho las entradas de la diagonal son solo el producto de las entradas correspondientes. Es decir, si $[a_{ij}]$ y $[b_{ij}]$ son dos matrices triangulares superiores, las entradas de la diagonal son $a_{ii}b_{ii}$. En nuestro caso, las entradas de la diagonal son $1^3, 5^3, 8^3$ y $10^3$, y por el problema anterior, estos son precisamente los eigenvalores de $A^3$.

$\triangle$

Relaciones con independencia lineal y combinaciones polinomiales

El resultado principal de esta entrada es el siguiente teorema, que en particular afirma que si dos eigenvalores son distintos, sus eigenvectores son linealmente independientes. En realidad, el resultado es un poco más general y lo enunciamos a continuación

Teorema. Sean $\lambda_1,\dots, \lambda_k$ eigenvalores distintos dos a dos de una transformación lineal $T:V\to V$. Entonces los $\lambda_i$-eigenespacios están en posición de suma directa.

Demostración. Por definición, tenemos que demostrar que si tenemos una colección $\{v_i\}$ de vectores con $T(v_i)=\lambda_i v_i$ y $v_1+\dots+v_k=0$ entonces $v_1=\dots=v_k=0$. Procedemos por inducción sobre $k$.

Nuestro caso base es una tautología, pues si $k=1$ entonces tenemos que mostrar que si $v_1=0$ entonces $v_1=0$.

Asumamos que el resultado se cumple para $k-1$ y verifiquemos que se cumple para $k$. Supongamos que $v_1+\dots+v_k=0$. Aplicando $T$ de ambos lados de esta igualdad llegamos a

\begin{align*}
T(v_1+\dots+v_k)&= T(v_1)+\dots+T(v_k)\\
&=\lambda_1 v_1+\dots +\lambda _k v_k=0.
\end{align*}

Por otro lado, si multiplicamos a la igualdad $v_1+\dots+v_k=0$ por $\lambda_k$ de ambos lados llegamos a

\begin{align*}
\lambda_k v_1+\dots +\lambda _k v_k=0.
\end{align*}

Sustrayendo y factorizando estas dos igualdades se sigue que

\begin{align*}
(\lambda_k -\lambda_1)v_1+\dots +(\lambda_k-\lambda_{k-1})v_{k-1}=0.
\end{align*}

Esto es una combinación lineal de los primeros $k-1$ vectores $v_i$ igualada a cero. Luego, la hipótesis inductiva nos dice que $(\lambda_k-\lambda_i)v_i=0$ para todo $i=1,\dots, k-1$. Como $\lambda_k\neq \lambda_i$ entonces $\lambda_k-\lambda_i\neq 0$ y entonces $v_i=0$. Sustituyendo en la igualdad original, esto implica que $v_k=0$ inmediatamente.

$\square$

Enseguida veremos que si formamos un polinomio $P(T)$, entonces $P(\lambda)$ es un eigenvalor de $P(T)$ para cualquier eigenvalor $\lambda$ de $T$. Esto lo veremos en el siguiente problema.

Problema. Sea $\lambda$ un eigenvalor de $T:V\to V$ y sea $P$ un polinomio en una variable con coeficientes en $F$. Demuestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

Solución. Como $\lambda$ es un eigenvalor de $T$, existe $v$ un vector no cero tal que $T(v)=\lambda v$. Inductivamente, se cumple que $T^{k}(v)=\lambda^{k} v$. En efecto

\begin{align*}
T^{k+1}(v)&=T(T^{k}(v))\\
&= T(\lambda^{k} v)\\
&= \lambda^{k}T(v)\\
&=\lambda^{k+1}v.
\end{align*}

Usando esto, si $P(X)=a_n X^{n}+\dots+a_1 X+a_0$ se tiene que

\begin{align*}
P(T)(v)&= a_nT^{n}(v)+\dots +a_1 T(v)+ a_0 v\\
&= a_n\lambda^{n}v+\dots +a_1\lambda v+a_0v\\
&= (a_n\lambda^{n}+\dots +a_1\lambda +a_0)v\\
&= P(\lambda) v.
\end{align*}

Esto muestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

$\square$

Relación con el polinomio mínimo

Una consecuencia del problema previo es la siguiente proposición.

Proposición. Sea $A\in M_n(\mathbb{C})$ una matriz y $P\in \mathbb{C}[X]$ un polinomio tal que $P(A)=O_n$. Entonces cualquier eigenvalor $\lambda$ de $A$ satisface $P(\lambda)=0$.

Solución. Por el problema anterior, $P(\lambda)$ es un eigenvalor de $P(A)$, pero $P(A)=O_n$ y el único eigenvalor de la matriz cero es $0$. Luego $P(\lambda)=0$.

$\square$

De esto, podemos por fin establecer una conexión con el polinomio mínimo, que enunciamos en forma de teorema.

Teorema. Sea $T:V\to V$ una transformación lineal sobre un espacio de dimensión finita sobre un campo $F$. Los eigenvalores de $T$ son precisamente las raíces en $F$ del polinomio mínimo $\mu_T$.

Demostración. Dado que $\mu_T(T)=0$, el problema que acabamos de resolver nos dice que todos los eigenvalores de $T$ son raíces de $\mu_T$.

Conversamente, supongamos que existe $\lambda$ una raíz de $\mu_T$ que no es eigenvalor. Entonces la transformación $T-\lambda \operatorname{Id}$ es invertible. Como $\mu_T(\lambda)=0$, podemos factorizar la raíz y escribir $\mu_T(X)=(X-\lambda)Q(X)$ para algún $Q\in F[X]$. Dado que $\mu_T(T)=0$ deducimos que

\begin{align*}
(T-\lambda \operatorname{Id})\circ Q(T)=0.
\end{align*}

Recordando una vez más que $T-\lambda \operatorname{Id}$ es invertible, esta ecuación implica que $Q(T)=0$. Ya que $\mu_T$ es el polinomio mínimo, por una propiedad que mostramos anteriormente obtendríamos que $\mu_T$ divide a $Q$. Pero esto se contradice con la igualdad $\mu_T(X)=(X-\lambda)Q(X)$, que nos dice que $\mu_T$ tiene grado mayor. Esto concluye la demostración.

$\square$

Ejercicios

Terminamos con un par de ejercicios para repasar el material de estas secciones. El primero de entre ellos toma prestados nombres de la probabilidad (lo lo cuál puede sugerirte en qué tipo de texto te podrías encontrar con estas matrices).

Problema 1. Una matriz $A\in M_n(\mathbb{R})$ se dice estocástica si $a_{ij}\geq 0$ para todo $i,j\in \{1,\dots, n\}$ y $\sum_{j=1}^{n} a_{ij}=1$ para todo $i\in \{1,\dots, n\}$.

Demuestra que $1$ es un eigenvalor de cualquier matriz estocástica.

Solución. Consideremos el vector $v=(1,\dots, 1)$. Nota que

\begin{align*}
A\cdot v&= \begin{pmatrix}
a_{11} & a_{12} &\dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots & \dots\\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
1\\
1\\
\vdots\\
1
\end{pmatrix}\\
&= \begin{pmatrix}
a_{11}+a_{12}+\dots+a_{1n}\\
a_{21}+a_{22}+\dots+a_{2n}\\
\vdots\\
a_{n1}+a_{n2}+\dots+a_{nn}
\end{pmatrix}\\
&=\begin{pmatrix}
1\\
1\\
\vdots\\
1\end{pmatrix}.
\end{align*}

Es decir $A\cdot v=v$, por lo que $v$ es un eigenvector de $A$ con eigenvalor asociado $1$.

$\square$

Problema 2. Sea $V$ el espacio de todos los polinomios con coeficientes reales. Sea $T:V\to V$ la transformación lineal dada por $P(X)\mapsto P(1-X)$. ¿Cuáles son los eigenvalores de $T$?

Solución. Observa que
\begin{align*}T^2(P)&=T\circ T(P)\\&= T(P(1-X))\\&= P(1-(1-X))\\&= P(X).\end{align*} Así $T^2=\operatorname{Id}$, o bien $T^2-\text{Id}=0$. Luego, el polinomio mínimo $\mu_T$ tiene que dividir al polinomio $X^2-1$. Sin embargo, los únicos factores de este polinomio son $X-1$ y $X+1$. Dado que $T\neq \pm \operatorname{Id}$ se tiene que $\mu_T(X)=X^2-1$. Por el último teorema que vimos, los eigenvalores de $T$ son precisamente las raíces de $\mu_T$ en $\mathbb{R}$, es decir $\pm 1$.

$\triangle$

Más adelante…

En las entradas subsecuentes iremos más a fondo en el concepto de polinomio característico, para eventualmente llegar al teorema de Cayley-Hamilton. Para eso tendremos que equiparnos de bastante teoría y repasar varias propiedades de dicho polinomio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $V$ el espacio de polinomios con coeficientes reales de grado a lo más $n$. Encuentra los eigenvalores de la transformación $T:P(X)\mapsto P(X)-(1+X)P'(X)$.
  • Si $V$ es el espacio de polinomios con coeficientes reales, encuentra los eigenvalores de $T:P(X)\mapsto P(3X)$.
  • Sean $A,B$ matrices en $M_n(\mathbb{C})$ tales que $AB-BA=B$. Demuestra que para todo $k\geq 1$ se cumple que $AB^{k}-B^{k}A=kB^{k}$ y de esto deduce que $B$ es nilpotente: existe $m$ tal que $B^{m}=0$. Sugerencia: ¿Cuántos eigenvalores puede tener $T:X\mapsto AX-XA$?
  • ¿Puedes generalizar el último problema de la sección de matrices triangulares superiores?
  • Sea $A$ una matriz cuadrada con entradas reales. Supón que $\lambda$ es un real positivo que es eigenvalor de $A^2$. Demuestra que $\sqrt{\lambda}$ o $-\sqrt{\lambda}$ es un eigenvalor de $A$. ¿Sucederá a veces que sólo una de estas es eigenvalor?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: La construcción de los naturales

Por Roberto Manríquez Castillo

Introducción

En la entrada pasada presentamos los axiomas de Peano como una formalización de por qué los naturales se comportan como nuestra intuición nos indica. Sin embargo, también vimos que, por si mismos, los axiomas de Peano no nos dicen cómo hacer una construcción de los naturales a partir de conceptos previos. Para intentar lograr esto, introdujimos la definición del sucesor de un conjunto arbitrario y empezamos a iterarla en el conjunto vacío para generar una lista de conjuntos, que relacionamos con los números naturales que conocemos.

Por último, notamos que ocupar esta idea, al menos de forma directa, tiene el problema de dar «pasitos muy chicos», que no nos permitirían acabar nunca de definir a todos los números naturales y, en consecuencia, que no nos dejaría definir en sí el conjunto de los naturales.  Es por eso que en esta entrada acabaremos, de una vez por todas, con el problema de definir con precisión el conjunto de números naturales. Veremos que, en efecto, esta construcción que haremos se apega no sólo a nuestra intuición, sino también a los axiomas de Peano.

Conjuntos inductivos

Antes de empezar con la tarea de definir a los números naturales, recordamos la definición del sucesor de un conjunto.

Definición. Si $A$ es un conjunto, definimos el sucesor de $A$, como $\sigma(A):=A\cup \{A\}$.

El conjunto que queremos definir es el conjunto $\mathbb{N}$ de números naturales. Como mencionamos en las entrada pasada, buscamos de manera formal lograr que \[\mathbb{N}=\{\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…\},\] por lo que $\mathbb{N}$ satisfaría dos propiedades que englobamos en la siguiente definición.

Definición. Diremos que un conjunto $S$ es inductivo si cumple que:

  1. $\emptyset\in S$ y
  2. si $X\in S$, entonces $\sigma(X)\in S$.

Notemos que estas dos propiedades son muy similares a los dos primeros axiomas de Peano.

Hay que remarcar que aunque no sabemos que exista un conjunto tal que sus elementos son $\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…$, en caso de que sí existiera, sería un hecho que tal conjunto sería inductivo.

Otro posible ejemplo de un conjunto inductivo podría verse como \[\{…\sigma(\sigma(\{\{\emptyset\}\})), \sigma(\{\{\emptyset\}\}), \{\{\emptyset\}\},\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…\}.\]

Intuitivamente podemos notar que si $S$ es un conjunto inductivo, entonces, $\mathbb{N}\subset S$, por lo que uno podría aventurarse y definir a los naturales como $$\{x:  x \text{ está en todo conjunto inductivo}\}.$$

Sin embargo, los axiomas que de teoría de conjuntos que tenemos hasta ahora no nos permiten saber si se puede construir un conjunto así.

¿Qué es lo que sí nos permiten hacer los axiomas de teoría de conjuntos? Si tenemos una colección de conjuntos, podemos hacer la intersección de todos ellos. Esto motiva la siguiente proposición acerca de la intersección de conjuntos inductivos.

Proposición. Si $B\neq\emptyset$ es un conjunto tal que todos sus elementos son conjuntos inductivos, entonces $\bigcap {B}$ es también un conjunto inductivo.

Demostración. Como $B\neq\emptyset$, sabemos que la intersección sí es un conjunto. Veamos que este conjunto es inductivo. Antes de hacer esto recordemos que, por definición, los elementos de $\bigcap{B}$ son precisamente, todos los $x$ tales que $x\in Y$ para todo $Y\in B$.

Para ver que $\bigcap B$ es inductivo, necesitamos verificar que cumpla las dos características de la definición:

  1. Veamos primero que $\emptyset\in\bigcap B$.
    Sea $Y\in B$ arbitrario. Como los elementos de $B$ son inductivos, $\emptyset\in Y$, y como $Y$ es arbitrario, podemos concluir que $\emptyset$ está en todos los elementos de $B$. Esta es justo la definición de que $\emptyset\in \bigcap B$.
  2. Veamos ahora que $x\in \bigcap B \Rightarrow \sigma(x)\in \bigcap B$.
    Sea $x\in \bigcap B$ y sea $Y\in B$. Como $x\in\bigcap B$, entonces $x\in Y$ y como $Y$ es inductivo, $\sigma(x)\in Y$. De nuevo, como $Y$ fue arbitrario, se sigue que $\sigma(x)$ está en todos los elementos de B, por lo que $\sigma(x)\in\bigcap B$.

Con esto demostramos que $\bigcap B$ es inductivo.

$\square$

En otras palabras, «la intersección arbitraria de conjuntos inductivos es un conjunto inductivo».

El axioma del infinito y la construcción de los naturales

Por todo lo escrito anteriormente, y meditando el hecho de que si partimos de los primeros axiomas de la teoría de conjuntos, sólo podemos crear conjuntos con una cantidad finita de elementos, parece ser que la existencia de un conjunto como los naturales no puede ser deducida con las herramientas que tenemos. Esto en efecto es así. Por ello, debemos introducir un nuevo axioma de la teoría de conjuntos.

Axioma (del infinito). Existe un conjunto inductivo.

El axioma del infinito no nos garantiza inmediatamente la existencia de $\mathbb{N}$, ya que como se vio en un ejemplo más arriba, $\mathbb{N}$ no es el único conjunto inductivo. Sin embargo, esta es la última pieza que necesitamos para poder dar la construcción de los naturales. Hacemos esto a continuación.

Sea $A$ algún conjunto inductivo (que nos garantiza el axioma del infinito), y consideremos $B=\{X\subset A \mid X \text{ es inductivo}\}$ (¿por qué $B$ es un conjunto?). Notemos que $A\in B$ por lo que $B$ es no vacío, por lo tanto, podemos pensar en su intersección, $\bigcap B$. Como los elementos de $B$ son conjuntos inductivos, por la proposición anterior concluimos que $\bigcap B$ es inductivo. A esta intersección la denotaremos como $\mathbb{N}_{A}$. ¡Ya apareció por primera vez el símbolo de números naturales! Pero tiene algo adicional: usamos un subíndice $A$ ya que, a primera vista, su construcción depende del conjunto inductivo $A$ con el que empezamos. Sin embargo, justamente, el paso siguiente será ver que $\mathbb{N}_{A}$ no depende de $A$.

Para ello, primero hacemos la observación de que si $Y\subset A$ es inductivo, entonces $\mathbb{N}_{A}\subset Y$, la cual te dejamos corroborar usando las propiedades de la intersección. Dicho esto, probamos lo siguiente.

Proposición. Si $C$ es otro conjunto inductivo, entonces $\mathbb{N}_{A}= \mathbb{N}_{C} $.

Demostración. Consideremos $\mathbb{N}_{A} \cap \mathbb{N}_{C} $, el cual sabemos que es un conjunto inductivo. Como $\mathbb{N}_{A} \cap \mathbb{N}_{C} \subset A$, por la observación anterior, concluimos que $\mathbb{N}_{A} \subset \mathbb{N}_{A} \cap \mathbb{N}_{C} $. Como la intersección está contenida en cada intersecando, $\mathbb{N}_{A} \subset \mathbb{N}_{A} \cap \mathbb{N}_{C}\subset\mathbb{N}_{A} $, por lo que $\mathbb{N}_{A} = \mathbb{N}_{A} \cap \mathbb{N}_{C} $. Haciendo las mismas observaciones para $\mathbb{N}_{C}$, concluimos que $\mathbb{N}_{A} = \mathbb{N}_{A} \cap \mathbb{N}_{C}= \mathbb{N}_{C} $, con lo que concluimos la prueba.

$\square$

Como sabemos ahora que el conjunto $\mathbb{N}_{A}$ no depende del conjunto $A$ inductivo con el que empecemos, finalmente podemos definir al conjunto de números naturales.

Definición. Si $A$ es algún conjunto inductivo, definimos al conjunto de los números naturales $\mathbb{N}$ como $\mathbb{N}:=\mathbb{N}_{A}$. Definimos al cero como $0:=\emptyset$ y la función sucesor para los naturales como $\sigma:\mathbb{N}\to \mathbb{N}$ tal que $\sigma(n)=n\cup \{n\}$.

Nuestra construcción de los naturales cumple los axiomas de Peano

Para concluir esta entrada veremos que la construcción de los naturales que dimos en efecto da un modelo para los axiomas de Peano. En realidad, la construcción de la función sucesor, la noción de conjunto inductivo y la forma en la que creamos $\mathbb{N}$ fueron todas ellas siempre motivadas por estas ideas, por lo que no deberá ser difícil probar que en verdad todo funciona como queremos.

Teorema. El conjunto $\mathbb{N}$ junto con el $0$ y la función $\sigma$ que definimos satisfacen los cinco axiomas de Peano.

Demostración. Veamos que se verifican los cinco axiomas de Peano.

Axioma 1. $0\in\mathbb{N}$.

Como $\mathbb{N}$ es inductivo, $0=\emptyset\in\mathbb{N}$.

Axioma 2. Si $n\in \mathbb{N}$, entonces $\sigma(n)\in\mathbb{N}$.

Si $n\in\mathbb{N}$, como $\mathbb{N}$ es inductivo, se sigue que $\sigma(n)\in\mathbb{N}$.

Axioma 3. Para toda $n\in\mathbb{N}$ se tiene que $\sigma(n)\neq 0$.

Como $\sigma(n)=n\cup\{n\}$, tenemos que $n\in\sigma(n)$ por lo que $\sigma(n)\neq\emptyset=0$.

Axioma 4. Si $\sigma(n)=\sigma(m)$, entonces $n=m$.

Como $\sigma(n)=\sigma(m)$ y $n\in\sigma(n)$, entonces $n\in\sigma(m)= m\cup\{m\}$. Como $n$ está en una unión, hay dos opciones: $n\in\{m\}$ o $n\in m$. Si $n\in \{m\}$, entonces $n=m$ y concluimos.

En otro caso, $n\in m$. Veamos que podemos decir de $m$. Procediendo análogamente, podemos notar que $m=n$ o $m\in n$. En el primer caso, llegamos a lo que queremos. El segundo caso es imposible, pues tendríamos $n\in m\in n$ lo cual contradice el axioma de regularidad de teoría de conjuntos.

Axioma 5. Si $S\subset\mathbb{N}$ tal que $0\in S$ y $n\in S \Rightarrow \sigma(n)\in S$, entonces $S=\mathbb{N}$.

Notemos que las hipótesis de $S$ implican que éste es un conjunto inductivo. Por ello, $\mathbb{N}=\mathbb{N}_{S}\subset S\subset \mathbb{N}$. Esta cadena de contenciones implica la igualdad $\mathbb{N}=S$.

$\square$

Notemos que todos los axiomas salieron de forma casi inmediata de la definición de $\mathbb{N}$ o de la definición de $\sigma$, justo como esperábamos.

Más adelante…

Ya dimos la construcción de los naturales. También vimos que en verdad funcionan como esperábamos. nuestro siguiente objetivo será definir una suma, un producto y un orden en $\mathbb{N}$. Así como lo hicimos con los axiomas de Peano, veremos que nuestras definiciones coincidirán con las propiedades que conocemos.

Para hacer esto seguiremos pensando simultáneamente tanto en la definición conjuntista que hemos dado de los naturales, como en los axiomas de Peano. Especialemente usaremos el quinto axioma de manera repetida. Veremos cómo este axioma es básicamente el principio de inducción que conocimos en Álgebra Superior I. También veremos cómo nos ayuda a demostrar el teorema de recursión, el cual a su vez la herramienta que necesitaremos para definir con toda formalidad la suma y producto en los naturales.

Tarea moral

  1. Completa los detalles faltantes de la construcción de los naturales. En particular, sobre por qué el conjunto $B$, de los conjuntos inductivos de $A$, sí existe. Necesitarás usar un axioma muy específico de la teoría de conjuntos.
  2. Demuestra que si $x\subset y\subset\sigma(x) $, entonces $y=x$ o $y=\sigma(x)$.
  3. Si aún no estás tan acostumbrado a las intersecciones arbitrarias, considera un conjunto inductivo $A$ y la siguiente definición: $$\mathbb{N}’:=\{x\in A:  x \text{ está en todo conjunto inductivo}\}.$$ ¿Cómo se relaciona el axioma del infinito, con el hecho de que esto sí sea un conjunto?
  4. Esboza una demostración de que $\mathbb{N}’=\mathbb{N}$.
  5. Usa el quinto axioma de Peano para demostrar que para cualquier natural $n$ se cumple que $$\sigma(n)=\{0, 1, 2, …, n\}.$$
    Sugerencia. Considera el conjunto $S\subseteq \mathbb{N}$ de enteros $n$ para los cuales la afirmación anterior es cierta. Demuestra que $S$ es inductivo y usa el quinto axioma para concluir que $S=\mathbb{N}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Introducción al curso y a los números naturales

Por Roberto Manríquez Castillo

Introducción

El curso de Álgebra Superior I tuvo como principal objetivo darte las herramientas necesarias para poder entender, a grandes rasgos, la teoría que sustenta las primeras asignaturas con las que te encuentras a nivel universitario en tu trayectoria matemática. Por esta razón, en el temario se incluyeron los temas de lógica, demostraciones, teoría de conjuntos, números naturales, inducción matemática, conteo y espacios vectoriales.

Sin embargo, quedaron abiertas algunas preguntas. Por ejemplo: ¿cómo sabemos que los conjuntos con los que trabajamos existen?, ¿qué es en el fondo el conjunto de números reales que usamos en los espacios vectoriales? o ¿por qué funciona el principio de inducción?

En este sentido, el curso de Álgebra Superior II es la continuación de Álgebra Superior I. El objetivo de este curso será responder estas preguntas que en el curso anterior quedaron sin responder. Con esto en mente, usaremos las herramientas de la teoría de conjuntos que desarrollamos con anterioridad para estudiar qué son los números naturales, los enteros y hasta los complejos. Haremos una escala en cada tema para poder entender a profundidad las propiedades con las que hemos estado familiarizados desde educación básicas y para conocer otras propiedades que te servirán a lo largo de tu formación matemática.

En la parte final del curso, introduciremos otra estructura con la que seguramente ya estarás familiarizado gracias al curso de Cálculo Diferencial e Integral I: el anillo de polinomios con coeficientes reales (o complejos). Como en el caso de los temas anteriores, nos detendremos a estudiar las propiedades que caracterizan a este conjunto y las similitudes que podemos encontrar con algunos de los sistemas numéricos, como los números enteros.

La intuición detrás de formalizar a los números naturales

Desde la educación básica se aprende a contar. Con el pasar del tiempo, la idea de los números naturales y las características que se necesitan para contar “de uno en uno” seguramente se han hecho muy familiares en tu mente. A grandes rasgos, cuando contamos tenemos mente a los números $$0,1,2,3,4,5,6,7,\ldots.$$ De hecho, las propiedades de estos números probablemente son tan familiares que ya no reparas en ello a la hora de contar. Al cero le sigue el uno. Al uno le sigue el dos. Y así sucesivamente. Esto resulta práctico a la hora de contar, pero algo impráctico a la hora de establecer los fundamentos matemáticos de los números naturales. Por esta razón, tomémonos un momento para pensar en las propiedades que satisface este sistema numérico.

La primera característica en la que podemos pensar es que los números naturales cuentan con un elemento especial de entre todos los demás números, el primero de todos ellos. Dependiendo del contexto, el $0$ (y no el $1$) es considerado como el primer número natural y coincide con la intuición de que podemos «tener cero cosas», es decir, ninguna. Es importante que sepas que en cierto contextos (por ejemplo, otros cursos o áreas de las matemáticas) podría no serlo. La recomendación es que siempre uses la convención del área o comunidad con la que estés trabajando. En este curso el número $0$ siempre será un número natural.

Otra característica con la que seguramente estamos muy familiarizados es que si bien los números naturales tienen un comienzo (en nuestro caso, el $0$), por otra parte nunca terminan. No importa hasta qué número podamos haber contado, siempre podemos dar un paso más y avanzar al siguiente número. Cuando tenemos un natural, decimos entonces que siempre tiene un sucesor. Sabemos que sólo hay un sucesor para cada número.

Otra característica clave de los números naturales es que, a la hora de contar, nunca regresamos a un número por el cual ya pasamos; es decir, bajo ninguna circunstancia contamos $107, 108, 109, 37, ‘ldots$. Para enunciar esto formalmente, lo diremos en dos partes. Primero, el $0$ no es el sucesor de ningún número y segundo, en ninguna circunstancia, un mismo número es el sucesor de dos números diferentes.

Existe una quinta propiedad, tal vez más sutil que las anteriores, y es que si empezamos a contar desde el cero y vamos contando de uno en uno, entonces podremos alcanzar cualquier número natural, siempre que el tiempo lo permita.

Resulta que estas propiedades intuitivas son suficientes para definir muchas otras operaciones en los números naturales y para obtener una gran cantidad de propiedades. Es por esta razón que conviene incluirlas en nuestra formalización de los naturales, como discutimos a continuación.

Los axiomas de Peano para los números naturales

A finales del siglo XIX, los matemáticos empezaron a notar que a partir de algunas propiedades tan elementales como las que discutimos arriba, se podían probar las leyes de la aritmética que conocemos. En 1889, Giuseppe Peano, basado en las propiedades que acabamos de enunciar, dio un conjunto de axiomas que usó para estudiar sistemáticamente a los números naturales. Estos axiomas son:

  1. $0$ es un número natural.
  2. Si $n$ es un número natural, entonces existe un único natural, denotado $\sigma(n)$ al que llamamos su sucesor.
  3. Para todo número natural, $\sigma(n)\neq0$.
  4. Si $n,m$ son números naturales, tales que $\sigma(n)=\sigma(m)$, entonces $n=m$.
  5. Si $S$ es un subconjunto de números naturales tal que: $0$ está en $S$, y para todo $n$ en $S$, se cumple que $\sigma(n)$ está también en $S$, entonces $S$ es el conjunto de todos los naturales.

Nota que cada una de las cinco propiedades coinciden con una de las propiedades intuitivas que mencionamos antes.

Encontrando los primeros números naturales

El logro de Peano fue muy importante, ya que permitió reducir la teoría de los números naturales a solo cinco axiomas; sin embargo, aún quedan abiertas las preguntas ¿qué son los números naturales? y ¿cómo sabemos que existen? Aunque se hayan mencionado las propiedades de un objeto, no necesariamente tiene que existir tal objeto. Este fue el gran problema al que se enfrentaron los matemáticos cuando intentaron definir a un conjunto al que pertenecen todos los conjuntos.

Es por esta razón que debemos fundamentar la construcción de los números naturales en teoría que ya tengamos desarrollada. Por esta razón, a partir de este punto se aparece la teoría de los conjuntos, la cual nos permitirá definir formalmente lo que significan los símbolos que diariamente ocupamos (como el $0$), para después ver que en efecto estos conjuntos satisfacen los axiomas de Peano.

Definición: Definimos al cero como $0:=\emptyset$.

Cuando ponemos $:=$, quiere decir que estamos definiendo algo, típicamente un símbolo. Cuando veas algo así aparecer, puedes pensar que significa «esta es la primera vez que usamos el símbolo $0$, y lo que querrá decir es el conjunto vacío». Podemos pensar en esta definición como una simple ocurrencia de notación; sin embargo, es curioso notar que, pensando intuitivamente, $\emptyset$ tiene en efecto cero elementos. Más adelante veremos que los demás números naturales también satisfacen esta intuitiva coincidencia.

Definición: Dado un conjunto $A$ arbitrario, definimos el sucesor de $A$ como $\sigma(A):=A\cup\{A\}$.

Notemos que en realidad $\sigma$ no es en el sentido estricto una función ¿por qué? Más bien, lo que estamos haciendo es explicar a qué nos referimos con el símbolo $\sigma(A)$.

Considerando que hemos construido el primer número natural (el $0$) y hemos dado una forma de construir sucesores, parece una buena idea considerar \[\sigma(0)=\sigma(\emptyset)=\emptyset\cup\{\emptyset\}=\{\emptyset\}.\]

Y definir $1:= \{\emptyset\}$. Análogamente podemos pensar que \[2:=\sigma(1)=\sigma(\{\emptyset\})=\{\emptyset\}\cup\{\{\emptyset\}\}=\{\emptyset,\{\emptyset\}\}.\]

Podríamos continuar así sucesivamente. Observa que, efectivamente, los conjuntos $1$ y $2$ coinciden con la intuición de tener respectivamente $1$ y $2$ elementos.

Los «disfraces» de los números naturales

Actualmente usamos el sistema de numeración arábigo y sabemos exactamente qué quieren decir los «dibujos» $1$, $2$, $3$, $4$, etc. Si fueramos romanos, estaríamos usando los «dibujos» $I$, $II$, $III$, $IV$, etc. De manera estricta, los «dibujos» no son lo mismo que «el concepto que representan». Es decir, en el fondo, $2$ y $II$ son «disfraces distintos para el mismo concepto». Pero ninguno de esos «dibujos» es el concepto mismo, ni vive de manera formal en la teoría que estamos construyendo.

Lo que sí vive en la teoría que construimos es el $\{\emptyset,\{\emptyset\}\}$, pues a partir de los axiomas se puede garantizar su existencia. Por supuesto, en el curso usaremos los «disfraces» habituales de estos conceptos, de modo que casi siempre escribiremos $2$, $7$, $51$, etc. Sin embargo, es crucial que en todo momento tengas en cuenta que cuando escribimos esos «dibujos», en el fondo están las construcciones formales que realizaremos.

Más adelante

Hemos empezado a definir a los números naturales a partir del $0$ (el conjunto vacío) y la función sucesor $\sigma$; sin embargo, la realidad es que el proceso que hemos descrito debe ser refinado, ya que si continuamos así, jamás acabaremos de definir la infinidad de números naturales que queremos que existan.

Incluso asumiendo que los podemos definir a todos, un segundo problema que se origina es el intentar unirlos en un solo «conjunto de los números naturales». Uno podría intentar ocupar el principio de inducción para resolver el problema. Sin embargo, recordemos que por el momento sólo contamos con los axiomas de la teoría de conjuntos, y aún no sabemos que el principio de inducción (visto como en el curso de Álgebra Superior I, o a partir de los axiomas de Peano) sea válido. Entonces, necesitaremos pensar cómo resolver el problema desde otra perspectiva.

Además, queda el problema de ver que los números naturales que definamos sí satisfagan los axiomas de Peano. También haremos esto pronto, para que a partir de ello podamos comenzar a introducir otras propiedades aritméticas y de orden.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba a partir de sólo los axiomas de Peano, que $n\neq \sigma (n) $ para todo $n\in\mathbb{N}$.
  2. ¿Qué axiomas de Peano satisface el conjunto $\sigma(\mathbb{N})$, es decir, el conjunto de los números a partir del $1$?
  3. ¿Cómo será un conjunto y una función que satisfagan los axiomas 1), 2), 4) y 5) de Peano, pero que no satisfaga el 3)? ¿Puedes construir formalmente un conjunto y una función así?
  4. A partir de la definición de $\sigma(n)$ que dimos, demuestra que para todo número natural $n$ se satisface que $n\in\sigma(n)$ y que $n\subset\sigma(n)$.
  5. Demuestra que si $A$ es un conjunto, entonces $\sigma(A)$ es un conjunto. Para ello, tendrás que recordar los axiomas de teoría de conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Estos son esenciales para entender a las transformaciones lineales, y tienen un rango de aplicabilidad impresionante: aparecen en la física, las ecuaciones diferenciales parciales, la ciencia de datos, la topología algebraica y la probabilidad.

Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.

Eigen-definiciones

Comenzamos con $V$ un espacio vectorial sobre $F$ y $T:V\to V$ una transformación lineal.

Definición. Un eigenvalor (también conocido como valor propio) de $T$ es un escalar $\lambda \in F$ tal que $\lambda \cdot \operatorname{Id}-T$ no es invertible. Un eigenvector (también conocido como vector propio o $\lambda$-eigenvector) correspondiente a $\lambda$ es un vector no-cero de $\ker (\lambda \cdot \operatorname{Id}-T)$. A este kernel se le conoce como el eigenespacio correspondiente a $\lambda$ (o $\lambda$-eigenespacio).

Entonces un $\lambda$-eigenvector es por definición distinto de cero y satisface

\begin{align*}
T(v)=\lambda v.
\end{align*}

Hay que tener cuidado. se permite que $\lambda=0$ sea eigenvalor, pero no se permite que $v=0$ sea eigenvector.

La colección de todos los eigenvectores, junto con el vector cero, es el eigenespacio asociado a $\lambda$. Podemos enunciar definiciones análogas con matrices.

Definición. Sea $A\in M_n(F)$ una matriz cuadrada. Un escalar $\lambda \in F$ es un eigenvalor de $A$ si existe un vector $X\in F^n$ distinto de cero (un eigenvector) tal que $AX=\lambda X$. En este caso el subespacio

\begin{align*}
\ker(\lambda I_n-A):=\lbrace X\in F^n\mid AX=\lambda X\rbrace
\end{align*}

es el $\lambda$-eigenespacio de $A$.

Puedes verificar que ambas definiciones se corresponden en el siguiente sentido:

Si $V$ es un espacio de dimensión finita y $T:V\to V$ es una transformación lineal, podemos escoger cualquier base de $V$ y asociarle a $T$ su forma matricial, digamos $A$, en esta base. Los eigenvalores de $T$ son precisamente los eigenvalores de $A$. ¡Pero cuidado! Los eigenvectores de $A$ dependerán de la base elegida.

Un primer ejemplo

Seguimos con un sencillo pero importante ejemplo.

Ejemplo 1. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Busquemos los eigenvectores y eigenvalores de $A$, pensando a $A$ como una matriz con entradas complejas. Sea $\lambda\in \mathbb{C}$ un eigenvalor y $X$ un eigenvector asociado. Entonces se cumple la relación $AX=\lambda X$. Si $X=(x_1,x_2)$ entonces la condición mencionada es equivalente al par de ecuaciones

\begin{align*}
-x_2=\lambda x_1, \hspace{5mm} x_1=\lambda x_2.
\end{align*}

Sustituyendo una en la otra obtenemos

\begin{align*}
-x_2=\lambda^2 x_2.
\end{align*}

Si $x_2=0$ entonces $x_1=0$ y así $X$ es un vector nulo, lo que es imposible por definición (recuerda que pedimos que los eigenvectores sean distintos de cero). Entonces $x_2\neq 0$ y podemos dividir por $x_2$ a la ecuación previa, de manera que $\lambda^2=-1$, o sea $\lambda=\pm i$. Conversamente, $i$ y $-i$ son eigenvalores. En efecto, podemos tomar $x_2=1$ y $x_1=\lambda$ como soluciones del problema anterior y obtener un vector propio asociado. De hecho, el eigenespacio está dado por

\begin{align*}
\ker (\lambda I_2-A)=\lbrace (\lambda x_2, x_2)\mid x_2\in \mathbb{C}\rbrace
\end{align*}

y esto no es más que la recta generada por el vector $v=(\lambda,1)\in \mathbb{C}^2$. Por lo tanto, vista como una matriz compleja, $A$ tiene dos eigenvalores distintos $\pm i$ y dos eigenespacios, los generados por $(i,1)$ y $(-i,1)$.

Por otro lado, veamos qué pasa si pensamos a $A$ como una matriz con entradas reales. Haciendo las mismas cuentas llegamos a la misma ecuación, $-x_2=\lambda^2 x_2$. Podemos reescribirla factorizando el término $x_2$:

\begin{align*}
(\lambda^2+1)x_2=0.
\end{align*}

Como $\lambda$ esta vez es un número real, $\lambda^2+1$ siempre es distinto de cero. Entonces para que el producto sea cero, tiene que ocurrir que $x_2=0$, ¡pero entonces $x_1=0$ y así $X=0$! En conclusión: vista como una matriz con entradas reales, $A$ no tiene eigenvalores, y por tanto no tiene eigenespacios. La moraleja es que los eigenvalores y eigenvectores dependen mucho del campo en el que trabajemos.

¿Cómo calcularlos?

Si bien el ejemplo anterior resultó simple, no es difícil imaginar que matrices más complicadas y más grandes pueden resultar en procedimientos menos claros. En general:

  • ¿Cómo podemos calcular los eigenvalores?
  • ¿Cómo podemos calcular los eigenespacios de manera eficiente?
  • ¿Cómo podemos calcular los eigenvectores?

Una vez calculados los eigenvalores, calcular los eigenespacios se reduce a resolver el sistema de ecuaciones homogéneo $(A-\lambda I_n)X=0$, lo cual ya hemos hecho muchas veces mediante reducción gaussiana. Luego, calcular los eigenvectores simplemente es tomar los elementos no cero del eigenespacio. Sin embargo, el cálculo de eigenvalores involucra encontrar raíces de polinomios lo cual de entrada no es obvio. Un primer paso es la siguiente observación que enunciamos como proposición.

Proposición. Un escalar $\lambda \in F$ es un eigenvalor de $A\in M_n(F)$ si y sólo si

\begin{align*}
\det(\lambda I_n-A)=0.
\end{align*}

Demostración. El sistema $(\lambda I_n-A)X=0$ tiene soluciones no triviales si y sólo si la matriz $\lambda I_n-A$ no es invertible. A su vez, la matriz $\lambda I_n-A$ no es invertible si y sólo si su determinante es nulo. El resultado se sigue.

$\square$

Regresemos a nuestra pregunta. Si

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots& \dots\\
a_{n1} & a_{n2}& \dots & a_{nn}
\end{pmatrix}
\end{align*}

entonces la proposición nos dice que podemos calcular los valores propios de $A$ resolviendo la ecuación polinomial

\begin{align*}
\begin{vmatrix}
\lambda- a_{11} & -a_{12} & \dots & -a_{1n}\\
-a_{21} & \lambda -a_{22} & \dots & -a_{2n}\\
\dots & \dots & \dots & \dots \\
-a_{n1} & -a_{n2} & \dots & \lambda-a_{nn}
\end{vmatrix}
=0
\end{align*}

en $F$. Esta es una ecuación polinomial de grado $n$, y si el grado es mayor a $4$ en general no existe una fórmula para resolverla en términos de radicales (aunque claro que hay casos particulares que si podemos resolver sin mucho problema).

Problema 2. Queremos calcular los eigenvalores de $A$, donde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 &-1\\
0 & 1 & 0
\end{pmatrix}.
\end{align*}

Solución. Como vimos en la proposición, esto se reduce a calcular las raíces del polinomio

\begin{align*}
\begin{vmatrix}
\lambda -1 & 0 & 0\\
0 & \lambda & 1\\
0 &-1 & \lambda
\end{vmatrix}=0.
\end{align*}

Calculando el determinante vemos que esto es de hecho

\begin{align*}
(\lambda-1)(\lambda^2+1)=0.
\end{align*}

Sin embargo tenemos que recordar que las raíces dependen de nuestro campo de elección. Como no comentamos nada sobre el campo en el cual trabajamos, consideraremos dos casos. Si el campo es $\mathbb{C}$ entonces los eigenvalores son $1$ y $\pm i$. Si trabajamos sobre $\mathbb{R}$ entonces tenemos un único eigenvalor: $1$.

$\triangle$

Ejercicios

Acabamos esta entrada con unos ejercicios para reforzar lo que vimos.

Problema 1. Encuentra todos los números reales $x$ tales que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & x\\
2 & 1
\end{pmatrix}
\end{align*}

tiene exactamente dos eigenvalores distintos. La misma pregunta para ningún eigenvalor.

Solución. El número de eigenvalores va a estar dado por el número de raíces del polinomio $\det(\lambda I_2-A)$. Es decir, tenemos que trabajar la ecuación

\begin{align*}
\det(\lambda I_2-A)=\begin{vmatrix} \lambda -1 & -x\\ -2 & \lambda-1\end{vmatrix}=0.
\end{align*}

Que a su vez se reduce a

\begin{align*}
(\lambda-1)^2-2x=0.
\end{align*}

Y para que tenga dos soluciones basta con que $2x$ sea un número positivo. En efecto, en ese caso podemos despejar y resolver

\begin{align*}
\lambda = 1 \pm \sqrt{2x}.
\end{align*}

Como $2x$ es positivo solo si $x$ lo es, podemos concluir que la condición necesaria y suficiente es que $x$ sea un real positivo. Similarmente, si $x$ es un número negativo no tendremos ningún eigenvalor.

$\triangle$

Problema 2. Sea $V$ el conjunto de todas las matrices $A\in M_2(\mathbb{C})$ tales que $v=\begin{pmatrix} 1\\ 2 \end{pmatrix}$ es un eigenvector de $A$. Demuestra que $V$ es un subespacio de $M_2(\mathbb{C})$ y da una base.

Solución. Supongamos que $v$ es un eigenvector de $A$, con eigenvalor $\lambda$, y que es eigenvector de $B$, con eigenvalor $\mu$. Entonces

\begin{align*}
(A+c B)(v)= Av+c Bv= \lambda v+c\mu v= (\lambda+c\mu)v
\end{align*}

por lo que $v$ es eigenvector de $A+cB$ con eigenvalor $\lambda +c\mu$. Esto demuestra que $V$ es un subespacio. Para darnos una idea de cómo podría ser una base para $V$, comencemos con una matriz genérica $A=\begin{pmatrix} a & b\\ c & d\end{pmatrix}$ tal que $A\in V$. Entonces $A$ tiene que satisfacer $Av=\lambda v$ para algún $\lambda$. Escribamos esto más explícitamente

\begin{align*}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2\end{pmatrix}= \begin{pmatrix}
a+2b\\
c+2d
\end{pmatrix}=\begin{pmatrix} \lambda \\ 2\lambda\end{pmatrix}.
\end{align*}

Así se desprenden dos ecuaciones

\begin{align*}
\begin{cases}
a+2b=\lambda \\
c+2d=2\lambda
\end{cases}.
\end{align*}

Sabemos que $\lambda$ es un parámetro libre, pues puede ser cualquier eigenvalor. Si conocemos a $\lambda$ entonces necesitamos alguna de las variables, $a$ o $b$ para determinar a la otra y lo mismo con $c$ y $d$. Entonces escojamos $b$ y $d$ como variables libres. Enseguida nuestra matriz es de la forma (reemplazando a $a$ y $c$ por sus valores en $b$ y $d$):

\begin{align*}
A&= \begin{pmatrix}
\lambda -2b & b\\
2\lambda -2d & d
\end{pmatrix}\\
&= b\begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}+ d \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix}+\lambda \begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}.
\end{align*}

Entonces proponemos como base

\begin{align*}
\beta = \bigg\lbrace \begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix},\begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}\bigg\rbrace.
\end{align*}

Ya vimos que $\beta$ genera a $V$, y dejamos la independencia lineal como ejercicio.

$\square$

Más adelante…

En las próximas entradas desarrollaremos las propiedades relevantes de los eigenvalores y eigenvectores para eventualmente llegar al polinomio característico y establecer el puente con el polinomio mínimo.

Tarea moral

Aquí unos ejercicios para que repases el material de esta entrada.

  1. Encuentra todos los eigenvalores de la matriz $A=\begin{pmatrix} 1 & 1 &0 \\ 0 & 2 &1\\ 0 & 0 & 1\end{pmatrix}\in M_3(\mathbb{C})$.
  2. Completa la demostración del último ejercicio de la sección de ejercicios, verificando que las soluciones encontradas son matrices linealmente independientes. ¿Puedes generalizar este ejercicio de alguna manera?
  3. Encuentra los eigenvalores de la matriz $A\in M_n(\mathbb{R})$ cuyas entradas son puros $2$.
  4. Da contraejemplos para cada una de las siguientes afirmaciones:
    1. Si $u$ y $v$ son eigenvectores de $A$, entonces $u+v$ es eigenvector de $A$.
    2. Si $\lambda$ es eigenvalor de $A$ y $\mu$ es eigenvalor de $B$, entonces $\lambda \mu$ es eigenvalor de $AB$.
    3. Si $A$ y $B$ son formas matriciales de una misma transformación $T$ y $v$ es eigenvector de $A$, entonces $v$ es eigenvector de $B$.
  5. Considera la transformación derivada en $\mathbb{R}[x]$. ¿Quienes son sus eigenvectores y eigenvalores? Como sugerencia, estudia el coeficiente de mayor grado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Polinomio mínimo de transformaciones lineales y matrices

Por Julio Sampietro

Introducción

Anteriormente definimos qué quiere decir evaluar un polinomio en una matriz o en una transformación lineal. En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Si bien al principio nos va a costar un poco calcularlo, esto se compensa por la cantidad de propiedades teóricas que cumple. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar.

El concepto de polinomio mínimo podría resultarle familiar a los más algebraicos de mente: ¡todo se debe a que trabajamos con dominios de ideales principales, o incluso euclidianos! Si has trabajado anteriormente con conceptos como el mínimo común múltiplo en enteros, puede que varios de los argumentos de esta entrada te suenen conocidos.

Existencia y unicidad

Comenzamos con un espacio vectorial $V$ de dimensión $n$ sobre un campo $F$. Fijando una transformación lineal $T:V\to V$, queremos entender para qué polinomios se cumple que $P(T)=0$. Nota como podríamos haber cambiado la pregunta: si fijamos un polinomio $P$, podríamos buscar todas las transformaciones $T$ tales que $P(T)=0$. Ésta pregunta la estudiaremos más adelante.

Definimos el conjunto

\begin{align*}
I(T)=\lbrace P\in F[X]\mid P(T)=0\rbrace.
\end{align*}

El polinomio cero pertenece a $I(T)$ de manera trivial. Una cosa importante es que este conjunto $I(T)$ que vamos a estudiar en verdad es «interesante», en el sentido de que debemos ver que hay más polinomios adentro y no es únicamente el conjunto $\lbrace 0\rbrace$. Una manera de ver esto es sabiendo que el espacio de transformaciones lineales de $V$ en $V$ tiene dimensión $n^2$ (lo puedes pensar como el espacio de matrices). Entonces, las $n^2+1$ transformaciones $\operatorname{Id}, T, T^2, \dots, T^{n^2}$ no pueden ser todas linealmente independientes: uno de los corolarios del lema de Steinitz es que en un espacio de dimensión $n$ a lo más se pueden tener $n$ vectores linealmente independientes. Entonces existe una combinación lineal no trivial y nula

\begin{align*}
a_0 \operatorname{Id}+a_1 T+\dots + a_{n^2} T^{n^2}=0.
\end{align*}

Luego $a_0+a_1X+\dots+a_{n^2}X^{n^2}$ es un polinomio no cero tal que $P(T)=0$, es decir $P\in I(T)$.

Con el argumento de arriba vimos que $I(T)$ es «interesante» en el sentido de que tiene polinomios no cero. El siguiente teorema se puede entender como que $I(T)$ se puede describir muy fácilmente.

Teorema. Existe un único polinomio mónico, distinto de cero $\mu_T$ tal que $I(T)$ es precisamente el conjunto de múltiplos de $\mu_T$. Es decir

\begin{align*}
I(T)=\mu_T \cdot F[X]=\lbrace \mu_T \cdot P(X)\mid P(X)\in F[X]\rbrace.
\end{align*}

La demostración hará uso del algoritmo de la división para polinomios. Te lo compartimos aquí, sin demostración, por si no lo conoces o no lo recuerdas.

Teorema (algoritmo de la división en $\mathbb{F}[x]$). Sean $M(x)$ y $N(x)$ polinomios en $F[x]$, donde $N(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $Q(x)$ y $R(x)$ en $F[x]$ tales que $$M(x)=Q(x)N(x)+R(x),$$ en donde $R(x)$ es el polinomio cero, o $\deg(R(x))<\deg(G(x))$.

Si te interesa saber cómo se demuestra, puedes seguir la teoría de polinomios disponible en la Unidad 4 del curso de Álgebra Superior II.

Demostración. Veamos primero que $I(T)$ es un subespacio de $F[X]$. Para ello, tomemos polinomios $P(x)$, $Q(x)$ en $I(T)$, y un escalar $\alpha\in F$. Una de las proposiciones de la entrada pasada nos permite abrir la expresión $(P+\alpha Q)(T)$ como $P(T)+\alpha Q(T)=0+\alpha\cdot 0 = 0$, de modo que $P+\alpha Q$ está en $I(T)$ y por lo tanto $I(T)$ es un subespacio de $F[X]$.

Por otro lado si $P\in I(T)$ y $Q\in F[X]$ entonces

\begin{align*}
(PQ)(T)= P(T)\circ Q(T)=0\circ Q(T)=0.
\end{align*}

Lo que discutimos antes de enunciar el teorema nos dice que $I(T)\neq\{0\}$. Tomemos entonces $P\in I(T)$ un polinomio no cero de grado mínimo. Podemos suponer sin perdida de generalidad que $P$ es mónico, de no serlo, podemos dividir a $P$ por su coeficiente principal sin cambiar el grado.

La ecuación previa nos indica que todos los múltiplos polinomiales de $P$ también están en $I(T)$. Veamos que todo elemento de $I(T)$ es de hecho un múltiplo de $P$. Si $S\in I(T)$, usamos el algoritmo de la división polinomial para escribir $S=QP+R$ con $Q,R\in F[X]$. Aquí hay dos casos: que $R$ sea el polinomio cero, o bien que no lo sea y entonces $\deg R <\deg P$. Nota que $R=S-QP\in I(T)$ dado que $I(T)$ es un subespacio de $F[X]$ y $S,QP\in I(T)$. Si $R\neq 0$, entonces como $\deg R<\deg P$ llegamos a una contradicción de la minimalidad del grado de $P$. Luego $R=0$ y por tanto $S=QP$. Entonces $I(T)$ es precisamente el conjunto de todos los múltiplos de $P$ y así podemos tomar $\mu_T=P$.

Para verificar la unicidad de $\mu_T$, si otro polinomio $S$ tuviera las mismas propiedades, entonces $S$ dividiría a $\mu_T$ y $\mu_T$ dividiría a $S$. Sin embargo, como ambos son mónicos se sigue que deben ser iguales: en efecto, si $\mu_T=S\cdot Q$ y $S=\mu_T \cdot R$ entonces $\deg Q=\deg R=0$, porlo tanto son constantes, y como el coeficiente principal de ambos es $1$, se sigue que ambos son la constante $1$ y así $\mu_T=S$. Esto completa la demostración.

$\square$

Definición. Al polinomio $\mu_T$ se le conoce como el polinomio mínimo de $T$.

Primeras propiedades y ejemplos

Debido a su importancia, recalcamos las propiedades esenciales del polinomio mínimo $\mu_T$:

  • Es mónico.
  • Cumple $\mu_T(T)=0$.
  • Para cualquier otro polinomio $P\in F[X]$, sucede que $P(T)=0$ si y sólo si $\mu_T$ divide a $P$.

Toda la teoría que hemos trabajado hasta ahora se traduce directamente a matrices usando exactamente los mismos argumentos. Lo enunciamos de todas maneras: si $A\in M_n(F)$ es una matriz cuadrada, entonces existe un único polinomio $\mu_A\in F[X]$ con las siguientes propiedades:

  • Es mónico.
  • Cumple $\mu_A(A)=O_n$.
  • Si $P\in F[X]$, entonces $P(A)=O_n$ si y sólo si $\mu_A$ divide a $P$.

Como jerga, a veces diremos que un polinomio «anula $T$» si $P(T)=0$. En este sentido los polinomios que anulan a $T$ son precisamente los múltiplos de $\mu_T$.

Vimos antes de enunciar el teorema que podemos encontrar un polinomio $P$ no cero de grado menor o igual a $n^2$ tal que $P(T)=0$. Como $\mu_T$ divide a $P$ se sigue que $\deg \mu_T\leq n^2$. Esta cota resulta ser débil, y de hecho un objeto que hemos estudiado previamente nos ayudará a mejorarla: el polinomio característico. Este también va a anular a $T$ y con ello obtendremos una mejor cota: $\deg \mu_T\leq n$.

Ejemplo 1. Si $A=O_n$, entonces $\mu_A=X$. En efecto, $\mu_A(A)=0$ y además es el polinomio de menor grado que cumple esto, pues ningún polinomio constante y no cero anula a $O_n$ (¿por qué?). Nota como además $I(A)$ es precisamente el conjunto de polinomios sin término constante.

$\triangle$

Ejemplo 2. Considera la matriz $A\in M_2(\mathbb{R})$ dada por

\begin{align*}
A= \begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Nos proponemos calcular $\mu_A$. Nota que $A$ satisface $A^2=-I_2$. Por tanto el polinomio $P(X)=X^2+1$ cumple $P(A)=0$. Así, $\mu_A$ tiene que dividir a este polinomio ¡pero este es irreducible sobre los números reales! En efecto, si existiese un factor propio de $P$ sobre $\mathbb{R}$, tendríamos que la ecuación $X^2=-1$ tiene solución, y sabemos que este no es el caso. Entonces $\mu_A$ tiene que ser $X^2+1$.

$\triangle$

Ejemplo 3. Sean $d_1,\dots, d_n\in F$ escalares y $A$ una matriz diagonal tal que $[a_{ii}]=d_i$. Los elementos pueden no ser distintos entre sí, así que escogemos una colección máxima $d_{i_1},\dots, d_{i_k}$ de elementos distintos. Para cualquier polinomio $P$, tenemos que $P(A)$ es simplemente la matriz diagonal con entradas $P(d_i)$ (esto porque el producto $A^n$ tiene como entradas a $d_i^n$). Entonces para que $P(A)=0$ se tiene que cumplir que $P(d_i)=0$, y para que esto pase es suficiente que $P(d_{i_k})=0$. Eso quiere decir que $P$ tiene al menos a los $d_{i_k}$ como raíces, y entonces $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k})$ divide a $P$.

Nota como esto es suficiente: encontramos un polinomio mónico, $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k})$ que divide a cualquier $P$ tal que $P(A)=0$. Así

\begin{align*}
\mu_A(X)=(X-d_{i_1})\cdots (X-d_{i_k}).
\end{align*}

$\triangle$

Cambio de campos

En uno de los ejemplos argumentamos que el polinomio mínimo era $X^2+1$ porque este es irreducible sobre $\mathbb{R}$. Pero, ¿qué pasaría si cambiáramos nuestro campo a $\mathbb{C}$? La situación puede ser incluso más delicada: a una matriz con entradas racionales la podemos considerar como una instancia particular de una matriz con entradas reales, que a su vez podemos considerar como una matriz compleja. ¿Hay tres polinomios mínimos distintos? El siguiente teorema nos da una respuesta tranquilizante.

Teorema. Sean $F_1\subset F_2$ dos campos y $A\in M_n(F_1)$ una matriz, entonces el polinomio mínimo de $A$ vista como elemento de $M_n(F_1)$ y el polinomio mínimo de $A$ vista como elemento de $M_n(F_2)$ son iguales.

Demostración. Sea $\mu_1$ el polinomio de $A\in M_n(F_1)$ y $\mu_2$ el polinomio mínimo de $A\in M_n(F_2)$. Puesto que $F_1[X]\subset F_2[X]$, se tiene que $\mu_1\in F_2[X]$ y además $\mu_1(A)=0$ por definición. Luego $\mu_2$ necesariamente divide a $\mu_1$. Sean $d_1=\deg \mu_1$ y $d_2=\deg \mu_2$, basta verificar que $d_2\geq d_1$ y para que esto se cumpla basta con encontrar $P\in F_1[X]$ de grado a lo más $d_2$ tal que $P(A)=0$ (entonces $\mu_1$ dividiría a este polinomio y se sigue la desigualdad).

Desarrollando que $\mu_2(A)=0$ en todas sus letras (o mejor dicho, en todos sus coeficientes) se tiene

\begin{align*}
a_0 I_n+ a_1 A+\dots + a_{d_2} A^{d_2}=O_n.
\end{align*}

Esto es equivalente a tener $n^2$ ecuaciones homogéneas en las variables $a_0,\dots, a_{d_2}$. Como $A$ tiene entradas en $F_1$ los coeficientes de estas ecuaciones todos pertenecen a $F_1$. Tenemos un sistema de ecuaciones con coeficientes en $F_1$ que tiene una solución no trivial en $F_2$: tiene automáticamente una solución no trivial en $F_1$ por un ejercicio de la entrada de Álgebra Lineal I de resolver sistemas de ecuaciones usando determinantes. Esto nos da el polinomio buscado.

$\square$

Mínimos puntuales

Ahora hablaremos (principalmente a través de problemas resueltos) de otro objeto muy parecido al polinomio mínimo: el polinomio mínimo puntual. Este es, esencialmente un «polinomio mínimo en un punto». Más específicamente si $T:V\to V$ es lineal con polinomio mínimo $\mu_T$ y $x\in V$ definimos

\begin{align*}
I_x=\lbrace P\in F[X]\mid P(T)(x)=0\rbrace.
\end{align*}

Nota que la suma y diferencia de dos elementos en $I_x$ también está en $I_x$.

Problema 1. Demuestra que existe un único polinomio mónico $\mu_x\in F[X]$ tal que $I_x$ es el conjunto de múltiplos de $\mu_x$ en $F[X]$. Más aún, demuestra que $\mu_x$ divide a $\mu_T$.

Solución. El caso $x=0$ se queda como ejercicio. Asumamos entonces que $x\neq 0$. Nota que $\mu_T\in I_x$ puesto que $\mu_T(T)=0$. Sea $\mu_x$ el polinomio mónico de menor grado en $I_x$. Demostraremos que $I_x=\mu_x\cdot F[X]$.

Primero si $P\in \mu_x \cdot F[X]$ entonces por definición $P=\mu_x Q$ para algún $Q\in F[X]$ y entonces

\begin{align*}
P(T)(x)=Q(T)(\mu_x(T)(x))=Q(T)(0)=0.
\end{align*}

Así $P\in I_x$, y queda demostrado que $\mu_x \cdot F[X]\subset I_x$.

Conversamente, si $P\in I_x$ podemos usar el algoritmo de la división para llegar a una expresión de la forma $P=Q\mu_x+R$ para algunos polinomios $Q,R$ con $\deg R<\deg \mu_x$. Supongamos que $R\neq 0$. Similarmente a como procedimos antes, se cumple que $R= P-Q\mu_x\in I_x$ dado que $I_x$ es cerrado bajo sumas y diferencias. Dividiendo por el coeficiente principal de $R$, podemos asumir que $R$ es mónico. Entonces $R$ es un polinomio mónico de grado estrictamente menor que el grado de $\mu_x$, una contradicción a nuestra suposición: $\mu_x$ es el polinomio de grado menor con esta propiedad. Luego $R=0$ y $\mu_x$ divide a $P$.

Así queda probado que si $P\in I_x$ entonces $P\in \mu_x\cdot F[X]$, lo que concluye la primera parte del problema. Para la segunda, vimos que $\mu_T\in I_x$ y por tanto $\mu_x$ divide a $\mu_T$.

$\square$

Problema 2. Sea $V_x$ el subespacio generado por $x, T(x), T^2(x), \dots$. Demuestra que $V_x$ es un subespacio de $V$ de dimensión $\deg \mu_x$, estable bajo $T$.

Solución. Es claro que $V_x$ es un subespacio de $V$. Además, dado que $T$ manda a generadores en generadores, también es estable bajo $T$. Sea $d=\deg\mu_x$. Demostraremos que $x, T(x),\dots, T^{d-1}(x)$ forman una base de $V_x$, lo que concluiría el ejercicio.

Veamos que son linealmente independientes. Si $$a_0x+a_1T(x)+a_2T^2(x)+\dots+a_{d-1}T^{d-1}(x)=0$$ para algunos escalares $a_i$ no todos cero, entonces el polinomio

\begin{align*}
P=a_0+a_1X+\dots+a_{d-1}X^{d-1}
\end{align*}

es un elemento de $I_x$, pues $P(T)(x)=0$. Luego $\mu_x$ necesariamente divide a $P$, pero esto es imposible puesto que el grado de $P$ es $d-1$, estrictamente menor que el grado de $\mu_x$. Luego los $a_i$ deben ser todos nulos, lo que muestra que $x,T(x),T^2(x),\dots,T^{d-1}(x)$ es una colección linealmente independiente.

Sea $W$ el espacio generado por $x,T(x),\dots, T^{d-1}(x)$. Afirmamos que $W$ es invariante bajo $T$. Es claro que $T(x)\in W$, similarmente $T(T(x))=T^2(x)\in W$ y así sucesivamente. El único elemento «sospechoso» es $T^{d-1}(x)$, para el cual basta verificar que $T(T^{d-1}(x))=T^d(x)\in W$. Dado que $\mu_x(T)(x)=0$ y $\mu_x$ es mónico de grado $d$, existen escalares $b_i$ (más precisamente, los coeficientes de $\mu_x$) no todos cero tales que

\begin{align*}
T^{d}(x)+b_{d-1}T^{d-1}(x)+\dots+b_0 x=0.
\end{align*}

Esto nos muestra que podemos expresar a $T^d(x)$ en términos de $x, T(x),\dots, T^{d-1}(x)$ y por tanto $T^d(x)$ pertenece a $W$.

Ahora, dado que $W$ es estable bajo $T$ y contiene a $x$, se cumple que $T^{k}(x)\in W$ para todo $k\geq 0$. En particular $V_x\leq W$. Luego $V_x=W$ (la otra contención es clara) y $x,T(x),\dots, T^{d-1}(x)$ genera a $W$, o sea a $V_x$.

Mostramos entonces que $x,T(x),\dots, T^{d-1}(x)$ es una base para $V_x$ y así $\dim V_x=d$.

$\square$

Unos ejercicios para terminar

Presentamos unos últimos ejercicios para calcular polinomios mínimos.

Problema 1. Calcula el polinomio mínimo de $A$ donde

\begin{align*}
A= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}.
\end{align*}

Solución. A estas alturas no tenemos muchas herramientas que usar. Comenzamos con calcular $A^2$:

\begin{align*}
A^2= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}= \begin{pmatrix} 1 & 0 & 0\\ 0 &1 & 0 \\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Entonces en particular $A^2=I_3$. Así, el polinomio mínimo $\mu_A$ tiene que dividir a $X^2-1$. Este último se factoriza como $(X-1)(X+1)$, pero es claro que $A$ no satisface ni $A-I_3=0$ ni $A+I_3=0$. Entonces $\mu_A$ no puede dividir propiamente a $X^2-1$, y por tanto tienen que ser iguales.

$\triangle$

Problema 2. Calcula el polinomio mínimo de la matriz $A$ con

\begin{align*}
A=\begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}.
\end{align*}

Solución. Nota como

\begin{align*}
A-I_2=\begin{pmatrix} 0 & 2\\ 0 & 0\end{pmatrix}
\end{align*}

y es fácil verificar que el cuadrado de la matriz de la derecha es cero. Así $(A-I_2)^2=0$, o sea, el polinomio $P(X)=(X-1)^2$ anula a $A$. Similarmente al problema anterior, $\mu_A$ tiene que dividir a $P$, pero $P$ sólo tiene un factor: $X-1$. Dado que $A$ no satisface $A-I_2=0$ se tiene que $\mu_A$ no puede dividir propiamente a $P$, y entonces tienen que ser iguales. Luego $\mu_A=(X-1)^2=X^2-2X+1$.

$\triangle$

Más adelante…

En las entradas subsecuentes repasaremos los eigenvalores y eigenvectores de una matriz, y (como mencionamos) ligaremos el polinomio característico de una matriz con su polinomio mínimo para entender mejor a ambos.

Tarea moral

Aquí unos ejercicios para practicar lo que vimos.

  1. Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n$?
  2. Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2-1$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n-1$?
  3. Encuentra el polinomio de la matriz $A$ en $M_n(F)$ cuyas entradas son todas $1$.
  4. Si $T:M_n(\mathbb{R})\to M_n(\mathbb{R})$ es la transformación que manda a cada matriz en su transpuesta, encuentra el polinomio mínimo de $T$.
  5. Sea $V$ un espacio vectorial y $x,y$ vectores linealmente independientes. Sea $T:V\to V$ una transformación lineal. ¿Cómo son los polinomios $P$ tales que $P(T)$ se anula en todo el subespacio generado por $x$ y $y$? ¿Cómo se relacionan con los polinomios mínimos puntuales de $T$ para $x$ y $y$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»