Álgebra Superior I: Intersecciones, uniones y complementos de conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

Habiendo establecido los axiomas de la teoría de conjuntos, ahora vamos a empezar a trabajar con ellos. En particular en esta entrada nos intereseran tres operaciones: La intersección, la unión y el complemento de conjuntos.

Pensando en conjuntos

Para empezar a hablar de las operaciones que usaremos, pues primero debemos de ponernos de acuerdo a qué nos referiremos y qué queremos construir cuando hablamos de operaciones. Para estos fines, nos interesa qué podemos hacer con los conjuntos y cómo se relacionan los unos a los otros. Por ejemplo: ¿Habrá algunos elementos que pertenezcan a dos conjuntos a la vez? o ¿Qué pasa con el con elementos que sí están en unos conjuntos y en otros no? Pues veremos algunas operaciones, sin embargo hay que ver la idea intuitiva detrás de algunos de ellos.

Será bueno que de igual manera tengas los axiomas a la mano, pues serán útiles para la definición de algunas de estas operaciones:

Axioma 1Existe un conjunto.
Axioma 2Podemos hacer conjuntos a partir de proposiciones que cumplen o no cumplen elementos de algún conjunto.
Axioma 3Si $X$ y $Y$ son conjuntos, entonces $\{X,Y\}$ es un conjunto.
Axioma 4Dos conjuntos son iguales si todos sus elementos son iguales.
Axioma 5Existe un conjunto que tiene como elementos a todos los elementos que pertenecen a algún elemento de $X$.
Axioma 6Para cada conjunto $X$, existe su conjunto potencia $\mathcal P (X)$ cuyos elementos son los subconjuntos de $X$.

Intersección

Supongamos que tenemos dos conjuntos $X,Y$ de números enteros positivos del 1 al 20. $X$ es el conjunto de los números pares y $Y$ es el conjunto de los números primos. Entonces $X$ lo podemos ver como:

Mientras que $Y$ se podría ver como:

Nota que hay un elemento en común con ambos conjuntos, pues $2$ es el único par primo, es decir hay un punto de intersección que es el $2$:

En este caso diremos que $2$ se encuentra en la intersección de $X$ con $Y$, pues está en ambos conjuntos. Con esto en mente definiremos la intersección:

Definición. Sean $X$ y $Y$ dos conjuntos, entonces el conjunto intersección de $X$ y $Y$, $X \cap Y$ es: $$X\cap Y = \{x \in X : x \in Y\} $$

En nuestro ejemplo anterior, $X=\{2,4,6,8,10,12,14,16,18,20\}, Y=\{2,3,5,7,11,13,17,19\}$, y $X \cap Y = \{2\}$ pues es el único par primo.

Como puedes ver, gráficamente el área que representa la intersección entre dos conjuntos es:

Ahora vamos a ver algunas propiedades como: la conmutatividad y la asociatividad .

Proposición. La intersección es conmutativa, es decir: $$X \cap Y = Y \cap X .$$

Demostración. Recuerda que por el axioma 4, tenemos que demostrar dos cosas: primero que $X \cap Y \subset Y \cap X$ y después que $Y \cap X \subset X \cap Y$. Vas a ver una similitud en demostrar este tipo de proposiciones de igualdad de conjuntos a las demostraciones que usan el «si y solo si», pues primero tendremos que demostrar la contención de «ida» y después la del «regreso». Y esto tiene sentido, pues demostrar la igualdad entre conjuntos es demostrar la doble implicación de que un elemento pertenezca a alguno de los dos conjuntos, pues habría que demostrar:

$$\forall x \big( x \in X \cap Y \Leftrightarrow x \in Y \cap X) .$$

Así que empezamos nuestra demostración probando una contención.

$\subset)$ Consideremos $x \in X\cap Y$. Para demostrar que $X \cap Y \subset Y \cap X$, habría que demostrar que cada elemento del primer conjunto se encuentra en el segundo, así que hay que demostrar que $ x \in Y \cap X$. Para ello, nota que $$X \cap Y = \{x \in X: x \in Y\} = \{x \in X: P(x)\}$$ son los elementos de $X$ que cumplen la proposición $P(x):x \in Y$. Entonces sabemos que $x \in Y$. Por otro lado, sabemos que la proposición $Q(x): x \in X$ se cumple, entonces $x$ pertenece al conjunto

$$x \in \{y \in Y: Q(y)\} = \{y \in Y: y \in X\} = Y \cap X$$

puesto que $x$ pertenece a $Y$ y cumple $Q(x)$. De esta forma $X \cap Y \subset Y \cap X$.

$\supset )$ Nota que para demostrar la otra contención, únicamente deberíamos copiar la demostración anterior cambiando de lugar $X$ con $Y$, es decir que nuestra demostración sería muy parecida a la primera contención que hicimos. Lo podríamos poner tal cual haciendo los cambios mencionados, sin embargo puede ser redundante. En este caso diremos que «La demostración de este caso es análoga a la anterior», que significa: para hacer esta demostración tendríamos un razonamiento muy parecido a la anterior sin ningún modificación interesante, pues seguiríamos los mismos pasos. Muchas veces verás este tipo de oraciones en demostraciones, siendo una herramienta para ahorrar palabras y no ser redundante, pues el razonamiento para hacer alguna demostración (en este caso la segunda contención), sigue un razonamiento casi idéntico a algo ya hecho (en este caso la primera contención).

De esta manera, al ser esta contención análoga a la anterior, $Y \cap X \subset X \cap Y$

$\square$

Proposición. La intersección es asociativa, es decir $$X \cap (Y \cap Z) = (X \cap Y) \cap Z$$.

Demostración. Podríamos hacer esta demostración como la anterior donde hicimos la conmutatividad, sin embargo emplearemos otro razonamiento en donde cada uno de los pasos es válido. Para ello nota que queremos demostrar que $$X \cap (Y \cap Z) = (X \cap Y) \cap Z$$ y que $$(X \cap Y) \cap Z = X \cap (Y \cap Z)$$. Y para esto debemos de demostrar que $$\big( x \in X \cap (Y \cap Z) \big) \Leftrightarrow \big(x \in (X \cap Y) \cap Z\big).$$

Ahora nota que

\begin{align*}
x \in X \cap (Y \cap Z)& \Leftrightarrow (x \in X) \land \big((x \in Y)\land(x \in Z) \big)\\
& \Leftrightarrow \big((x \in X) \land (x \in Y)\big) \land (x \in Z) \ \ \ (\text{Por la asociatividad de la disyunción}) \\
& \Leftrightarrow x \in (X \cap Y) \cap Z \\
\end{align*}

De esta manera hicimos una cadena de equivalencias lógicas válidas, empezamos con un elemento en el conjunto $X \cap (Y \cap Z)$ y demostramos que ese elemento estaba en $(X \cap Y) \cap Z$ y viceversa. Esto lo hicimos con el conocimiento que ya sabíamos, y como antes ya habíamos demostrado que la disyunción es asociativa, entonces cada paso lógico es válido y con esto demostramos la igualdad entre conjuntos.

$\square$

Unión

Ahora en vez de fijarnos en donde dos conjuntos se intersectan, pensemos en cuando dos conjuntos se unen. Para esto, considera el siguiente ejemplo. Digamos que $X = \{ 1,2,3,4,5\}$ y $Y = \{4, 5,6,7 \}$ son conjuntos de números enteros.

Los conjuntos $X,Y$ son los siguientes:

El siguiente paso es construir el conjunto que tiene como elementos a los elementos de ambos conjuntos ¿Recuerdas el axioma 4? Este nos hablaba de un conjunto que contiene a todos los elementos que son elementos del mismo conjunto. Suena confuso pero este axioma junto al axioma 3 justifican la existencia de este conjunto. Veamos como lo podemos construir:

Por el axioma 3, existe el conjunto $\{X,Y\}$, es decir que existe el conjunto $A = \{\{1,2,3,4,5\}\{4,5,6,7\}\}$.

Después, como existe este conjunto $A$, por el axioma 4, existe un conjunto cuyos elementos son elementos que pertenecen a elementos de $\{X,Y\}$, entonces para dicho conjunto que llamaremos $X \cup Y$, sus elementos son $$X \cup Y = \{x: x \in X \lor x \in Y\}$$.

Entonces el conjunto unión de $X$ y $Y$ $X \cup Y = \{1,2,3,4,5,6,7\}$, pues es el conjunto que contiene a todos los elementos de ambos conjuntos.

Definición. El conjunto unión de dos conjuntos $X,Y$ es el conjunto: $$X \cup Y = \{x: x \in X \lor x \in Y\} $$

De manera gráfica, podemos ver la unión como:

Ahora enunciaremos las proposiciones que demostramos para la intersección, pero ahora usando la unión:

Proposición. La unión es conmutativa.

Demostración. Considera a $X$ y $Y$ dos conjuntos, entonces

\begin{align*}
x \in X \cup Y & \Leftrightarrow (x \in X) \lor (x \in Y)\\
& \Leftrightarrow (x \in Y) \lor (x \in X) \ \ \ (\text{Por la conmutatividad de la conjunción}) \\
& \Leftrightarrow x \in Y \cup X
\end{align*}

$\square$

Proposición. La unión es asociativa.

Para esta última no daremos demostración, sin embargo es una demotración parecida a su contraparte de la intersección.

Una vez que hemos establecido estas dos operaciones, solo falta una más por revisar ahora. Si la intersección es la disyunción y la unión es la conjunción, la siguiente que definiremos es la negación.

Complemento de conjuntos

Cuando estemos hablando de conjuntos, muchas veces estaremos dentro de un contexto de conjuntos, o un Conjunto universal, dentro del cual siempre estaremos trabajando. Por ejemplo, si estamos en cálculo de una variable, todos los conjuntos o casi todos sobre los que estemos trabajando serán conjuntos de números reales. Nota ahora que cuando estuvimos dando los ejemplos de conjuntos paraexplicar la unión y la intersección, decíamos que $X,Y$ eran conjuntos de números enteros. Es decir, estábamos acordando que nuestro conjunto universal eran los números enteros $\mathbb{Z}$.

Muchas veces el contexto sobre el conjunto universal sobre el que estamos trabajando no será especificado y se puede inferir, pues si estamos trabajando por ejemplo con números reales, no es posible que un conjunto tenga números complejos, por ejemplo.

Ahora con esto acordado, vamos a ver que cualquier conjunto $X$ en un conjunto universal $U$ se puede escribir de la siguiente manera: $$ X = \{x \in U: x \in X\}.$$

Es decir, podemos escribir al conjunto $X$ como los elementos del conjunto universal que están en $X$. Así, definiremos el complemento de $X$ o $X^c$ como: $$X^c = \{x \in U:x \not \in X\}. $$

Definición. Sea $X$ un conjunto sobre el conjunto universal $U$, entonces definimos el complemento de $X$ como $$X^c = \{x \in U: x\not \in X\}^* $$

Por ejemplo, considera $X = \{2,4,6,8,10\}$ al conjunto de los números pares dentro del conjunto de los números enteros del 1 al 10. Entonces en este caso $U = \{1,2,3,4,5,6,7,8,9,10\}$ y su complemento es $X^c = \{1,3,5,7,9\}$.

Gráficamente, podemos ver al complemento como:

Algunas de las cosas que podemos decir del complemento son:

Proposición. Sea $X$ un conjuntos dentro del conjunto universal $U$. Entonces:

  1. $X \cup X^c = U$
  2. $U^c = \emptyset$

Demostración.

  1. Esta proposición nos quiere decir que un conjunto junto al complemento «llenan» todo el espacio. Para esto, nota que
    \begin{align*}
    x \in X^c \cup X & \Leftrightarrow x \in X^c \lor x \in X \\
    & \Leftrightarrow x \in \{x \in U : x \in X \lor x \not \in X\}
    \end{align*}
    Ahora nota que $P(x): x \in X \lor x \not \in X$ es una tautología, es decir, cualquier elemento de $U$ cumple dicha definición, así,
    \begin{align*}
    x \in X^c \cup X & \Leftrightarrow x \in X^c \lor x \in X \\
    & \Leftrightarrow x \in \{x \in U : x \in X \lor x \not \in X\}\\
    & \Leftrightarrow x \in U
    \end{align*}
  2. Nota primero que ya hemos dicho que $\emptyset$ es subconjunto de cualquier conjunto, así se tiene la contención $\emptyset \subset U$. Para la otra contención, supón que no sucede que $U \subset \emptyset$. Entonces se tiene que existe un elemento $x\in U$ que cumple:$$ x\in \{x \in U: x \not \in U\}. $$ Donde se tendría que $x \in U \land x \not \in U$, lo cual es imposible. Entonces $U \subset \emptyset$. De esta manera se tiene la igualdad entre conjuntos.

$\square$

Nota

*: En la literatura, también puedes encontrar escrito el complemento de un conjunto $A$ escrito como $\bar A$ en lugar de $A^c$

Más adelante…

Ahora ya hemos visto tres operaciones básicas en la teoría de conjuntos, junto a la definición del conjunto universal, que recuerda: no siempre verás implícitamente y puede ser un conjunto que dependa del contexto. En la siguiente entrada veremos dos operaciones más que se pueden definir en términos de las que vimos ahora, así como otras propiedades de las operaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $N = \{1,2,3,4,6,9,10,15,20,30\}$ y $X = \{x \in \mathbb{Z}: x= 2n, n \in N \}$, encuentra:
    • $X \cap N$
    • $X \cup N$
  2. Demuestra que la unión es asociativa.
  3. Demuestra que la unión de subconjuntos de un conjunto $X$ siempre está contenida en $X$.
  4. Demuestra que si $Y \subset X $ y $Z \subset X$ entonces $Y \cup Z \subset X$
  5. Demuestra que si $X \subset Y$ son dos conjuntos, entonces:
    • $X \cap Y = X$
    • $X \cup Y = Y$
  6. Demuestra que:
    • $X^c \cap X^c = \emptyset$
    • $\emptyset^c = U$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Axiomas de los conjuntos.

Por Guillermo Oswaldo Cota Martínez

Introducción

Hasta ahora, hemos introducido intuitivamente la idea de qué es un conjunto, cómo describirlos y qué representan. En esta entrada vamos a hablar de tres temas importantes para trabajar con más ideas de los conjuntos: contención, subconjuntos y conjunto potencia.

Las primeras dos van de la mano, y serán una forma de definir subcolecciones dentro de una colección (a la que ahora llamamos conjunto) y nos permitirán manejar con mayor facilidad conceptos que veremos más adelante sobre las operaciones entre conjuntos.

Mientras tanto, el conjunto potencia nos hablará de la forma de combinar elementos dentro de un mismo conjunto, que es un concepto que tiene propiedades muy interesantes.

Estos tres conceptos serán fundamentales para axiomatizar la teoría de los conjuntos.

Axiomatizando los conjuntos

En la entrada pasada, dimos una peequeña introducción a la teoría de conjuntos. Hablamos de su idea intuitiva y algunos ejemplos de su uso en otras materias. Ahora nos toca entrar un poco más en fondo a sus reglas, esto es, sus axiomas.

Para poder hablar de los conjuntos, su idea y la forma en que se manejan, vamos a establecer algunos axiomas que describirán la teoría de conjuntos. Todo objeto matemático que sigan el sistema axiomático, serán conjuntos. Para ello, primero es fundamental declarar que existen los conjuntos, de otra forma no estaríamos trabajando con nada:

Axioma 1. Existe al menos un conjunto.

Este axioma nos permitirá trabajar con conjuntos, pues nos asegurará que al menos existe un conjunto $V$ con el que podremos trabajar los siguientes axiomas. Sin este axioma, no podríamos seguir trabajando la teoría, pues no tendríamos con qué trabajar.

Los siguientes axiomas serán los que nos darán la intuición de qué se puede y no puede hacer con un conjunto.

Axioma 2. Si X es un conjunto y $P(x)$ es una proposición que depende de elementos $x \in X$, entonces:

$$\{x \in X : P(x) \text{ se cumple}\} $$

también es un conjunto.

En la entrada pasada, dimos una idea intuitiva de este axioma, que nos dice que si tenemos un conjunto $X$ y cualquier proposición $P(x)$ de elementos de $X$ entonces podemos construir nuevos conjuntos a partir de los elementos de $X$ que cumplen cierta propiedad. Por ejemplo, piensa que $X$ es el conjunto de todos los zapatos, entonces un conjunto nuevo puede formarse a partir de la proposición $P(x): $»$x$ es amarillo», entonces el nuevo conjunto $\{ x \in X : P(x) $ se cumple $\}$ es el conjunto de los zapatos amarillos. Otro ejemplo de esto, sería el conjunto de los números pares que podemos definir a partir de los números enteros $\mathbb{Z} = \{\dots,-3,-2,-1,0,1,2,3,\dots\}$. Los número pares se pueden definir como: $2\mathbb{Z} = \{x \in \mathbb{Z} : x = 2n, n \in \mathbb{Z} \}$ es decir, es el conjunto creado por los número enteros multiplicados por dos.

Creando el conjunto vacío.

Antes de seguir con los demás axiomas, vamos a mostrar una consecuencia de los dos primeros axiomas. Observa que por el primer axioma, existe al menos un conjunto al que llamaremos $X$. Y el segundo axioma nos dice que con cualquier conjunto, se puede obtener un conjunto a partir de aquellos elementos que cumplan alguna proposición que depende de elementos de $X$, entonces consideremos la siguiente propocisión:

$$P(x) : x \neq x $$

Esta proposición nos dice que un objeto $x$ no es igual a sí mismo, lo cual es imposible, ninguna cosa u objeto matemático va a cumplir esta proposición. Es decir:

$$\forall x (\neg P(x)) $$

se cumple. ¿Entonces qué conjunto será el conjunto: $\{x \in X : P(x)\} = \{x \in X : x \neq x\} $?

Pues es un conjunto que no tiene a ningún elemento, pues ningún elemento $x$ de $X$ puede cumplir esa definición. Esto no representa ninguna contradicción a algún axioma, lo que nos dice es que existe un conjunto que no tiene a ningún elemento. A este conjunto lo conocemos como conjunto vacío y lo representamos como $\emptyset$. A veces también lo encontrarás como unas llaves sin nada adentro, es decir $\{\}$.

Una vez dicho esto, vamos construyendo poco a poco más resultados, sigamos con los siguientes axiomas:

Axioma 3. Si $X$ y $Y$ son conjuntos, entonces $\{X,Y\}$ es un conjunto.

Esto nos permite «poner» conjuntos, dentro de un conjunto. Es decir, podemos hacer dos conjuntos en los que cada elemento sea un conjunto. Por ejemplo, considera $X = $ el conjunto de zapatos amarillos y $Y = $ el conjunto de los Blergs. Entonces existe el conjunto $Z=\{X,Y\}$ un conjunto que solo tiene dos elementos: el conjunto de los zapatos amarillos y el conjunto de los Blergs. OJO: un zapato amarillo NO pertenece al conjunto $Z$, lo que sí pertenece al conjunto es el conjunto de todos los zapatos amarillos. Es decir, si $x$ es un zapato amarillo, entonces $x \in X$ pero no sucede que $x \in Z$. Lo que sí sucede es $X \in Z$.

De este axioma, podemos deducir la siguiente proposición:

Proposición: Si $X$ es un conjunto entonces $\{X\}$ tambien es un conjunto.

Demostración. Sea $X$ un conjunto. No hay nada en la definición del axioma 3 que impida que $X=Y$, entonces lo que nos dice el axioma es que si tenemos dos conjuntos $X,Y$ donde $X=Y$ entonces el conjunto $W=\{X,Y\}$ es un conjunto, y podemos reescribir este como $\{X,X\}$. Ahora, recuerda que hemos dicho con anterioridad que realmente al describir a un conjunto, solo nos interesan los elementos distintos que lo conforman, es decir, está de más repetir dos veces $X$ dentro de los corchetes que representan los elementos del conjunto $W$, entonces $W=\{X\}$ es un conjunto.

$\square$

Axioma 4. Si $X$ y $Y$ son dos conjuntos, diremos que $X=Y$ (el conjunto $X$ es igual al conjunto $Y$) si tienen exactamente los mismos elementos. Esto se puede describir usando lógica proposicional de la siguiente manera:

$$\big( X=Y\big) \Leftrightarrow \forall x\big(x \in X \Leftrightarrow x \in Y \big)$$

Axioma 5. Si $X$ es un conjunto, entonces el conjunto de los elementos que pertenecen a por lo menos un elemento de $X$ forman un conjunto (unión).

Vamos a leer con más calma el axioma. Primero tenemos un conjunto $X$, digamos el conjunto de todos los grupos dentro de una universidad. Entonces un alumno de esa universidad pertenece al menos a algún grupo. De esta manera, el conjunto de todos los alumnos de la universidad, forma un conjunto. Veamos esto con notación matemática:

Sea $U$ los grupos de la universidad: $\{G_1,G_2,G_3\}$, es decir, cada elemento cada grupo está formado de estudiantes, es decir cada alumno es elemento de un grupo, digamos

$$G_1 = \{A_1,A_2,A_3\}$$

$$G_2 = \{B_1,B_2,B_3\}$$

$$G_3 = \{C_1,C_2,C_3\}$$

Entonces el axioma nos dice que el conjunto de todos los elementos (alumnos) que pertenecen al menos a un elemento de $X$ (grupos del conjunto $U$), forma otro conjunto. En nuestro caso, sería el conjunto de todos los alumnos: $\{A_1,A_2,A_3,B_1,B_2,B_3,C_1,C_2,C_3\}$.

Quizá esta idea de «los elementos de un conjunto a su vez también tienen elementos» puede ser un poco difícil de entender y quizá hasta un poco filosófica: ¿Hasta qué punto podríamos usar el raciocinio para extraer las partes que componen a un todo? Es decir: Si consideramos el conjunto de todos los zapatos: ¿Qué significa ahora que haya un elemento que pertenezca a un zapato? las respuestas pueden ser variadas, y puede que incluso se te ocurran unas distintas a otra persona que lea esto, así que velo de la siguiente forma: si tenemos la capacidad de hacer una intuición de separar un elemento de algún conjunto en sus partes, entonces podemos hacer otro conjunto con esas partes. Conforme vayas avanzando en tu carrera matemática, vas a poder ir aclarando muchas de estas ideas, volveremos a este axioma más adelante.

Para el siguiente axioma, primero introduciremos algunos conceptos:

Contención entre conjuntos

Recuerda que los conjuntos los pensamos como «colecciones de algo», pueden ser conjuntos de zapatos, conuntos de autos o conjuntos de animales, por mencionar algunos. Para introducir el axioma que sigue, primero hablaremos de la contención y para explicarlo, veamos el conjunto de unas criaturas a las que les llamamos Blorgs y nos ayudaron en la entrada anterior. Lo que tienes que saber de ellos, es que se dividen en Blargs, Blergs y Blurgs según su color (amarillo,rojo y azul respectivamente), como lo puedes ver en la siguiente imagen:

Ahora, llamemos a los 3 Blargs: «blargmino», «blargastacia» y «blargencio», de manera que el conjunto de los Blargs es:

$$\text{Blargs} = \{ \text{ blargmino, blargastacia , blargencio }\}$$.

Ahora, nota que decimos que «blargmino pertenece al conjunto de los Blorgs», pero a su vez también pertenece al conjunto de los Blargs, entonces también podríamos decir blargmino pertenece al conjunto de los Blorgs». ¿Notas que no necesitamos rigor al decir qué es y qué no es un conjunto? Con el simple hecho de poder abstraer sus partes o elementos, es suficiente. Pero ahora surge una pregunta natural: ¿Existe alguna relación entre el conjunto de los $B_a$ Blargs y el conjunto $B_o$ de todos los Blorgs? En cuyo caso, nota que:

$$\forall x(x \in B_a \Rightarrow x \in B_o) $$

Es decir, todo blarg es un blorg. Diremos entonces que los Blargs con un subconjunto de los Blorgs. Ya que todo elemento de $B_a$ está en $B_o$.

Definición. Sean $A$ y $B$ dos conjuntos. Diremos que $A$ es un subconjunto de $B$ o que $A$ está contenido en $B$ si:

$$\forall x(x \in A \Rightarrow x \in B). $$

Y lo escribiremos como $A \subset B$*

Ahora, nota que cualquier conjunto contiene al conjunto vacío.

Proposición. Sea $X$ un conjunto, entonces $\emptyset \subset X$.

Demostración. Vamos a demostrar esto por contradicción, suponiendo que $\emptyset \not \subset X$, es decir supongamos que $\neg \big( \forall x(x \in \emptyset \Rightarrow x \in X) \big) = \exists x(x \in \emptyset \land x \not \in X) $. Entonces bajo nuestra suposición, existe un elemento $x$ en $\emptyset$ pero $x \not \in X$. ¿Puedes ver porqué esto es una contraidcción? Pues estamos suponiendo que existe un elemento en $\emptyset$, pero por la forma en que definimos al conjunto vacío, esto significaría que existe un elemento $x$ que cumple que $x \neq x$, lo cual es imposible. ¿Cuál fue nuestro error? Pues suponer que no se cumplía $\emptyset \subset X$. Por lo tanto, $\emptyset \subset X$

$\square$

Axioma 6. Si $X$ es un conjunto, entonces existe un conjunto conformado por todos los subconjuntos de $X$. Nos referiremos a este conjunto como el conjunto potencia y lo denotaremos por $\mathcal P (X)$.

Nota que nuestra definición de un subconjunto $Y$ de $X$ nos pide que todo elemento de $Y$ esté en $X$, así que el conjunto potencia será aquel conjunto en el que cada elemento será un conjunto que es subconjunto de nuestro conjunto original. Pongamos un ejemplo para que lo veas mejor:

Ejemplo. Considera al conjunto $X = \{1,2,3\}$ el conjunto con los números enteros del $1$ al $3$, entonces el conjunto potencia está dado por todos sus subconjuntos: $\emptyset, \{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}$ es decir, el conjunto potencia de $X$ es: $$\mathcal P(X) =\{\emptyset, \{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\}, X\} $$

Con estos seis axiomas serán con los que trabajaremos, en resumen, los axiomas son los siguientes:

Axioma 1Existe un conjunto.
Axioma 2Podemos hacer conjuntos a partir de proposiciones que cumplen o no cumplen elementos de algún conjunto.
Axioma 3Si $X$ y $Y$ son conjuntos, entonces $\{X,Y\}$ es un conjunto.
Axioma 4Dos conjuntos son iguales si todos sus elementos son iguales.
Axioma 5Existe un conjunto que tiene como elementos a todos los elementos que pertenecen a algún elemento de $X$.
Axioma 6Para cada conjunto $X$, existe su conjunto potencia $\mathcal P (X)$ cuyos elementos son los subconjuntos de $X$.

Notas

*: Algunos autores usan la notación $\subseteq$ para detonar que «el subconjunto está contenido estrictamente o es igual», por ejemplo si decimos «X \subseteq Y» diremos que cada elemento de $X$ está en $Y$ entonces puede que $X$ sea el mismo que $Y$, nosotros nos apegaremos a la notación $\subset$ para decir que un subconjunto está contenido estrictamente o es igual, y usaremos la notación $\subsetneq$ para denotar la contención estricta, es decir, $X \subsetneq Y$ si y solo si para cada $x \in X \rightarrow x \in Y$ pero existe $y \in Y \land y \not \in X$.

Más adelante…

Ahora que ya hemos establecido las reglas que seguirán los conjuntos, es hora de hablar sobre algunas operaciones dentro de esta teoría. Sobre todo hablaremos de Intersecciones, Uniones y Complementos de conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que las siguientes afirmaciones son equivalentes:
    • $X=Y$
    • $ \forall x (x \in X \Leftrightarrow x \in Y)$
    • $(X \subset Y) \land (Y \subset X) $
  2. ¿Es cierto que el conjunto vacío es único?
  3. ¿Cuál es el conjunto potencia de $\{1,2,3,4\}$?
  4. Demuestra que $X=Y$ si y solo si $\mathcal P(X) = \mathcal P(Y)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Conjuntos y elementos

Por Guillermo Oswaldo Cota Martínez

Introducción

Hasta ahora hemos hablado de una parte muy particular de la matemática, la Lógica. Esta te ayudará a entender a lo largo de los cursos de matemáticas, pues es uno de los lenguajes que muchas veces verás escrito y con la que las y los matemáticos nos comunicamos. Pero esta solo es lo que muchos considerarían, la mitad del lenguaje. Ahora introduciremos la noción de la otra mitad del lenguaje, esta es llamada la «teoría de los conjuntos».

Desarmando y armando

Para entender un poco más de esta otra parte del lenguaje, vamos a ayudarnos nuevamente de nuestros amigos Blorgs. Para recordar, los Blorgs son unos seres imaginarios que viven en otro planeta. Estos se dividen en tres especies: Los Blargs, Blergs y Blurgs. Cada uno vive en terrenos distintos y come cosas distintas en diferentes días. Así como tienen sus amigos de distintas especies.

Ahora, veamos un poco cómo es que se vería la isla Blorg, que estaría dividida según las regiones en donde vive cada especie:

Como pudiste observar, cada uno de los Blorgs vive en regiones distintas, como los Blergs viven en las montañas y los Blurgs en bosques, nunca encontrarás un blurg viviendo donde viven los Blergs. Pero cada uno de ellos es un blorg, puesto que blorg es el «conjunto» que describe a la criatura. Es decir «todo blerg es un blorg», pero «no todo blorg es un blerg». La primera idea de la palabra conjunto que vamos a tener es: una colección de objetos. En este caso, podríamos decir que todos los Blergs, Blargs y Blurgs forman el conjunto de los Blorgs.

Por ejemplo, cuando empezamos a hablar de demostraciones, siempre usábamos la frase «Consideremos a $x$ un blorg …» o «Sea $x$ un blerg …», a lo que nos referimos es que dentro del conjunto de los Blorgs, «seleccionábamos» a algun blorg. Por ejemplo, cuando decíamos «Sea $x$ un blorg», podríamos referirnos a este:

O este:

O aquel:

Incluso este:

Lo que nos importaba al momento de hacer las demostraciones, era verificar que sin importar cuál blorg nos «tomaramos», la proposición se cumplía. Y quizá teníamos que verificar algunas particularidades dependiendo de su especie, pero lo importante es que cada uno de estos blorgs que considerábamos, «pertenecía» al conjunto de los Blorgs.

Hemos dicho una palabra fundamental en la teoría de conjuntos, y esta es la noción de pertenecer. Como vimos anteriormente, vamos a decir que un conjunto es una colección de objetos. En este caso el conjunto son los Blorgs y cada blorg es un objeto de dicho conjunto. Así que vamos a decir, en este caso que si $x$ es un blorg y $B$ es el conjunto de los Blorgs, entonces $$x \in B.$$ Y se lee «$x$ pertenece a $B$».

Describiendo conjuntos

Existen dos forma de describir o enunciar a los conjuntos: por extensión y por comprensión. Un conjunto descrito por extensión es aquel en donde decimos explícitamente todos sus elementos, mientras que al describirlo por comprensión, los describimos mediante alguna propiedad que tengan en común.

Por ejemplo, imagina que existen tres Blargs: blargmino, blargastacia y blargencio. Entonces podríamos describir por extensión al conjunto de los Blargs por:

$$\text{Blargs} = \{ \text{ blargmino, blargastacia , blargencio }\}$$.

Pero recordemos que todos los Blargs son Blorgs amarillos, así que igual podríamos describir al conjunto de los Blargs por comprensión:

$$ \text{Blargs} = \{ x \text{ tal que } x \text{ es un blorg amarillo} \} .$$

Este «tal que» se refiere a que $x$ cumple con ser un blorg amarillo. Sin embargo en la práctica no vas a ver escrito esto, y en su lugar se usa la siguiente notación:

$$ \text{Blargs} = \{ x \in B : x \text{ es amarillo} \} .$$

Como podrás ver, hicimos dos reemplazos, el primero de la frase «tal que», y esto nos sirve para ahorrarnos un poco la escritura. El otro simplemente es decir en un inicio a qué conjunto pertenece $x$. Recuerda que $B$ es el conjunto de los Blorgs, así que decimos que los Blargs son los objetos $x$ pertenecientes al conjunto de los Blorgs, tal que $x$ es amarillo. De esta forma simplificamos la escritura escribiendo la pertenencia de conjunto de los objetos.

Cualquiera de las dos formas de describir a un conjunto es correcta, sin embargo es más usual trabajar con la segunda, puesto que si quisiéramos describir al conjunto $X$ de todos los números enteros del 1 al 20, sería poco cómodo escribir:

$$X = \{ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\} $$

Y en su lugar, es más fácil escribir:

$$X = \{ x \in \mathbb{Z} : 1 \leq x \leq 20\}. $$

Donde $\mathbb{Z}$ representa a los números enteros.*

Una cosa además de notar de los conjuntos, es que solo nos importan los elementos diferentes entre sí, esto quiere decir que si queremos describir al conjunto de los números primos menores a 15: $\{2,3,5,7,13\}$, si ya lo hemos descrito una vez, no hace falta volverlo a describir, es decir es redundante decir que el conjunto se conforma por $\{2,2,3,2,5,7,2,13\}$ pues la redundancia del número $2$ ya la hemos escrito en la descripción del conjunto, esto quiere decir que $\{2,2,3,2,5,7,2,13\}$ y $ \{2,3,5,7,13\}$ describen al mismo conjunto, pues la colección que representan es la misma.

Conjuntos y lógica

Si te das cuenta, estamos diciendo cómo es un conjunto en relación a cómo cumple una propiedad. Esto lo podemos traducir a términos de lógica proposicional. Por ejemplo, consideremos $$P(x)= x \text{ es amarillo}.$$

Al escribir

$$\{x \in B: P(x) \}, $$

estaremos describiendo al conjunto de los $x \in B$ para los cuales $P(x)$ es verdadera. Observa que

$$\{x \in B: P(x) \}, $$

describe al mismo conjunto que

$$ \{ x \in B : x \text{ es amarillo} \} .$$

Entonces, es el mismo conjunto que describe a los Blargs:

$$ \text{Blargs} = \{ x \in B : P(x) \} .$$

Esto nos permitirá usar conectores, proposiciones e incluso cuantificadores para describir conjuntos. Y realmente es aquí donde reluce la lógica proposicional que hemos estudiado. Pues el poder escribir conjuntos como elementos que cumplen cierta condición, da más forma a la lógica. Hay quienes dicen que no puede existir la lógica sin los conjuntos y viceversa, pues a lo que antes llamábamos «Universo de Discurso», realmente se refiere a un conjunto.

La importancia de la teoría de conjuntos

Quizá a estas alturas te preguntarás: ¿Por qué estos dos temas grandes que hemos visto (lógica y conjuntos) son algo que se ve en un primer curso de preparación matemática? Pues bien, esto no es coincidencia. En otras materias introductorias a la carrera de matemáticas como Cálculo Diferencial e Integral I, Geometría Moderna I o Geometría Analítica I empiezan a generar resultados, demostraciones, proposiciones, teoremas y demás material basándose en estas dos. Pues al hablar por ejemplo en las primeras notas de cálculo, se ve este tipo de proposiciones:

Proposición: El neutro aditivos es único en $\mathbb{R}$.

Lo que nos traduce este enunciado y su significado es la lógica y la teoría de conjuntos (que vamos a ir desarrollando en las próximas entradas) independientemente de que tengamos claros los conceptos de neutro aditivo (en el sentido del cáclulo diferencial) o del conjunto de los números reales ($\mathbb{R}$). Aún sin saber esos conceptos, la lógica y conjuntos nos dicen lo siguiente:

La teoría de conjuntos nos dice: Estamos trabajando en el conjunto $\mathbb{R}$.

La lógica nos dice: Si $x \in \mathbb{R}$ ($x$ está en el conjunto dentro del que estamos trabajando) es un neutro aditivo, entonces es único.

De esta forma, si $P(x)= x$ es un neutro aditivo, entonces:

$$\exists ! x \in \mathbb{R} (P(x)). $$

Y con nuestro conocimiento de las demostraciones, podríamos reescribir esto como:

$$\forall x,y \in \mathbb{R} \big((P(x)\land P(y)) \Rightarrow (x=y)\big) .$$

Nota que la gran diferencia al considerar a la teoría de los conjuntos, es el ingrediente de saber sobre qué conjunto estamos hablando. Ya que no es lo mismo decir

$$\exists ! x \in \mathbb{R} (P(x)). $$

A decir:

$$\exists ! x \in \mathbb{R}^2 (P(x)). $$

Y este solo es un ejemplo de cómo afecta la teoría de conjuntos en la comprensión de proposiciones, enunciados y teoremas. Nos ayudará a poner contexto, a encontrar propiedades de elementos dentro del mismo conjunto y comprender su relación los unos con los otros.

Notas

*Comúnmente los número enteros se denotan por $\mathbb{Z}$, esta

convención viene de la notación que matemáticos alemanes en el siglo XVIII como Gauss y Euler usaban para referirse a «die Zahlen», cuya traducción del alemán es «los números».

Más adelante…

Hasta ahora hemos hablado de las primeras nociones básicas de la teoría de conjuntos. Aún faltan un par de conceptos por ver y estos son la contención y el conjunto potencia. Estos resolverán algunas dudas como ¿Qué relación tienen el conjunto de los Blargs y los Blorgs? a su vez, estos nos ayudarán a axiomatizar la teoría de los conjuntos,que como recordarás, ayudarán a ponernos de acuerdo las reglas de los conjuntos para empezar a sacar resultados de ellos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Describe por comprensión al conjunto de los Blergs.
  2. Describe al conjunto de los números del 10 al 10,000.
  3. Considera al conjunto $$\{ x \in B : P(x) \land \neg Q(x)\}.$$ Donde $$ P(x) = x \text{ come peces}$$ y $$ Q(x) = x \text{ vive en el mar}.$$ ¿A qué especie de Blorgs pertenece este conjunto?
  4. ¿Qué conjunto genera la proposición $ P (x) := \exists n \in \mathbb{N}\big( x = 2n + 1 \big)$ donde $x$ es un número entero ?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Geometría Moderna I: Cuadrilátero bicéntrico

Por Rubén Alexander Ocampo Arellano

Introducción

Decimos que un cuadrilátero convexo es bicéntrico si es circunscrito y cíclico al mismo tiempo. Ahora que hemos estudiado a los cuadriláteros cíclicos y cuadriláteros circunscritos por separado, nos podemos preguntar cuando un cuadrilátero cumple con ambas definiciones y que propiedades tiene, en esta entrada abordaremos este tema.

Dos caracterizaciones para el cuadrilátero bicéntrico

Teorema 1. Sea $\square ABCD$ un cuadrilátero circunscrito y sean $E$, $F$, $G$ y $H$ los puntos de tangencia del incírculo a los lados $AB$, $BC$, $CD$ y $AD$ respectivamente, entonces $\square ABCD$ es bicéntrico si y solo si $EG \perp FH$.

Figura 1

Demostración. $\angle BEF$ y $\angle EFB$ son ángulos semiinscritos que abarcan el mismo arco, $\overset{\LARGE{\frown}}{EF}$, por lo tanto, son iguales $\angle BEF = \angle EFB = \mu$.

De manera análoga tenemos que, $\angle DGH = \angle GHD = \nu$.

Así que en los triángulos $\triangle BEF$ y $\triangle DHG$ se tiene $\pi = \angle B + 2 \mu = \angle D + 2 \nu$ por lo que
$\begin{equation} 2\pi = \angle B + \angle D + 2(\mu + \nu). \end{equation}$

Ahora supongamos que $EG$ y $FH$ son perpendiculares, y sea $P = EG \cap FH$, entonces $\angle HPE =\dfrac{\pi}{2}$, así que en $\triangle HPE$, $\dfrac{\pi}{2} = \angle PEH + \angle EHP$.

Pero $\angle EHF$ y $\angle BEF$ abren el mismo arco, por lo tanto, $\angle EHF = \mu$, de manera similar $\angle GEH = \nu$, por lo tanto $\mu + \nu = \dfrac{\pi}{2}$.

Sustituyendo la ultima igualdad en $(1)$ tenemos
$2\pi = \angle B + \angle D + \pi$
$\Leftrightarrow \angle B + \angle D = \pi$
$\Leftrightarrow \square ABCD$ es cíclico.

La proposición reciproca se muestra tomando en sentido contrario la prueba.

$\blacksquare$

Teorema 2. Sea $\square ABCD$ circunscrito, $I$ su incentro, $K$ y $J$ las intersecciones de los lados $AB$ con $DC$ y $AD$ con $BC$ respectivamente entonces $\square ABCD$ es bicéntrico si y solo si $IK \perp IJ$.

Figura 2

Demostración. Notemos que el incírculo de $\square ABCD$ es al mismo tiempo el excentro de $\triangle AJB$ y $\triangle BKC$ opuesto a los vértices $J$ y $K$ respectivamente.

Esto implica que $IJ$ e $IK$ son las bisectrices internas de $\angle J$ y $\angle K$ respectivamente.

Sean $E$, $F$, $G$ y $H$ los puntos de contacto del incírculo con $AB$, $BC$, $CD$ y $DA$ respectivamente, en la prueba del teorema anterior vimos que $\angle JHF = \angle HFJ$ y $\angle EGK = \angle KEG$.

Por lo tanto, $\triangle JHF$ y $\triangle KEG$ son isósceles.

Entonces las bisectrices de $\angle J$ y $\angle K$ son mediatrices de $FH$ y $EG$ respectivamente.

En consecuencia, $JL \perp FH$ y $KM \perp EG$, donde $L$ y $M$ son los puntos medios de $FH$ y $EG$ respectivamente.

De esto último se sigue que en el cuadrilátero $\square LPMI$, $\angle LIM + \angle MPL =\pi$.

Por lo tanto, $IJ \perp IK \Leftrightarrow FH \perp EG \Leftrightarrow \square ABCD$  es bicéntrico.

La última doble implicación se da por el teorema 1.

$\blacksquare$

Teorema de Fuss

Teorema 3, de Fuss. En un cuadrilátero bicéntrico el circunradio $R$, el inradio $r$ y la distancia $d$ entre el circuncentro y el incentro se relacionan mediante la siguiente expresión:
$\dfrac{1}{(R + d)^2} + \dfrac{1}{(R – d)^2} = \dfrac{1}{r^2}$.

Demostración. Sean $\square ABCD$ bicéntrico, $(O, R)$, $(I, r)$ el circuncírculo y el incírculo respectivamente, $E$ y $F$ los puntos de tangencia de los lados $AB$ y $BC$ respectivamente con $(I, r)$.

Figura 3

Dado que $\square ABCD$  es cíclico, entonces $\angle A + \angle C = \pi$ y como $I$ es la intersección de las bisectrices internas de $\square ABCD$ tenemos lo siguiente:

$\begin{equation} \angle EAI + \angle ICF = \dfrac{\pi}{2}. \end{equation}$

Como $\triangle AEI$ y $\triangle CFI$ son triángulos rectángulos y tienen la misma altura desde $I$.

Al “pegar” los triángulos $\triangle AEI$ y $\triangle CFI$ por la altura formamos un triángulo rectángulo $\triangle ACI$ cuya área es :

$(\triangle ACI) = \dfrac{(AE + FC)r}{2} = \dfrac{AI \times CI}{2}$
$\Leftrightarrow (AE + FC)^2r^2 = AI^2 \times CI^2$.

Figura 4

Podemos calcular $AC$ aplicando el teorema de Pitágoras
$AI^2 + CI^2 = AC^2 = (AE + FC)^2$.

De las últimas dos expresiones obtenemos $(AI^2 + CI^2)r^2 = AI^2 \times CI^2 \Leftrightarrow$
$\begin{equation} \dfrac{1}{AI^2} + \dfrac{1}{CI^2} = \dfrac{1}{r^2}. \end{equation}$

Consideremos $G$ y $H$ los puntos donde $AI$ y $CI$ intersecan a $(O, R)$.

$\angle HAB = \angle HCB = \angle ICF$ pues son subtendidos por el mismo arco.

Por la ecuación $(2)$,
$\angle HAG = \angle HAB + \angle BAG = \angle ICF + \angle EAI = \dfrac{\pi}{2}$,
por lo tanto, $HG$ es diámetro.

Con el teorema de Apolonio calculamos la mediana $IO$ en $\triangle IHG$
$\begin{equation} IH^2 + IG^2 = 2IO^2 + \dfrac{HG^2}{2} = 2d^2 + \dfrac{(2R)^2}{2} = 2(d^2 + R^2). \end{equation}$

Como $\square AHGC$ es cíclico, entonces
$\begin{equation} AI \times GI = HI \times CI = d^2 – R^2. \end{equation}$

Donde la última igualdad se debe a la potencia de $I$ respecto de $(O, R)$.

De $(4)$ y $(5)$ obtenemos

$\dfrac{1}{AI^2} + \dfrac{1}{CI^2} = \dfrac{GI^2}{(R^2 – d^2)^2} + \dfrac{HI^2}{(R^2 – d^2)^2}$
$= \dfrac{GI^2 + HI^2}{(R^2 – d^2)^2} = \dfrac{2(d^2 + R^2)}{(R^2 – d^2)^2} = \dfrac{(R + d)^2 + (R – d)^2}{(R^2 – d^2)^2}$
$\begin{equation} = \dfrac{1}{(R + d)^2} + \dfrac{1}{(R – d)^2}. \end{equation}$

De $(3)$ y $(6)$ obtenemos la relación buscada
$\dfrac{1}{r^2} = \dfrac{1}{(R + d)^2} + \dfrac{1}{(R – d)^2}$.

$\blacksquare$

Puntos colineales en el cuadrilátero bicéntrico

Teorema 4. En un cuadrilátero bicéntrico el incentro, el circuncentro y la intersección de las diagonales son colineales.

Demostración. Sean $\square ABCD$ bicéntrico, $I$, $O$, su incentro y circuncentro respectivamente y consideremos $E$, $F$, $G$ y $H$ las intersecciones de $AI$, $BI$, $CI$ y $DI$ con $(O, R)$, el circuncírculo de $\square ABCD$, respectivamente.

Figura 5

En $\triangle GDB$ la mediatriz de $BD$ pasa por $N$ el punto medio de $BD$ y $O$, y la mediana por $G$ pasa por $G$ y $N$.

Como $CG$ es bisectriz de $\angle DCB$, entonces $\angle DBG = \angle DCG = \angle GCB = \angle GDB$, por tanto, $\triangle GBD$ es isósceles y así la mediatriz de $BD$ y la mediana por $G$ coinciden, por lo que $G$, $N$ y $O$ son colineales, al mismo tiempo que esta recta es diámetro pues pasa por $O$.

En la prueba del teorema de Fuss vimos que $GE$ es diámetro por lo tanto $G$, $N$, $O$ y $E$ son colineales además $\angle ONP = \dfrac{\pi}{2}$ donde $P$ es la intersección de las diagonales $AC$ y $BD$.

De manera análoga $F$, $M$, $O$ y $H$ son colineales donde $M$ es el punto medio de $AC$ y $\angle PMO = \dfrac{\pi}{2}$.

Se sigue que $\square PNOM$ es cíclico, por lo tanto
$\begin{equation} \angle MNP = \angle MOP. \end{equation}$

Por otro lado, como $\square DBHF$ es cíclico e $I$ es la intersección de las diagonales, por construcción, se sigue que $\triangle IBD \sim \triangle IHF$, son semejantes.

$\Rightarrow \dfrac{IB}{IH} = \dfrac{BD}{FH} = \dfrac{\dfrac{1}{2}BD}{\dfrac{1}{2}FH} = \dfrac{BN}{OH}$ y como $\angle IBN = \angle OHI$, por criterio de semejanza LAL, $\triangle IBN \sim \triangle IHO$.

Por lo tanto, $\angle BNI = \angle IOH$ y así
$\begin{equation}  \angle INP = \angle MOI. \end{equation}$

Por el teorema de Newton, sabemos que $N$, $I$ y $M$ son colineales, además $I$ se encuentra entre $N$ y $M$.

Por las ecuaciones $(7)$ y $(8)$ tenemos
$\angle MOI =  \angle INP = \angle MNP = \angle MOP$.

Es decir, el ángulo que forman las rectas $IO$ y $MO$ es el mismo ángulo que forman las rectas $PO$ y $MO$, por lo tanto $IO$ y $PO$ son la misma recta, y así los puntos $I$, $O$ y $P$ son colineales.

$\blacksquare$

Acotando el área del cuadrilátero bicéntrico

Teorema 5. El área de un cuadrilátero bicéntrico $\square ABCD$ con inradio $r$ y circunradio $R$ cumple la siguiente desigualdad:
$4r^2 \leq (\square ABCD) \leq 2R^2$.

Demostración. Primero veamos que $4r^2 \leq (\square ABCD)$, sean $E$, $F$, $G$ y $H$ los puntos de tangencia del incírculo con los lados $AB$, $BC$, $CD$ y $AD$ respectivamente.

Figura 6

Como las tangentes desde un punto a una circunferencia son iguales tenemos
$AE = AH = x$, $BE = BF = y$, $CF = CG = z$ y $DG = DH = w$.

En la demostración del teorema de Fuss vimos que $\angle IAH + \angle GCI = \dfrac{\pi}{2}$ de esto se sigue que $\triangle IHA$ y $\triangle CGI$ son semejantes
$\Rightarrow \dfrac{r}{z} = \dfrac{x}{r} \Leftrightarrow r^2 = xz$.

De manera análoga vemos que $r^2 = yw$.

Aplicando la desigualdad entre la media aritmética y la media geométrica obtenemos

$(\square ABCD) = 2((\triangle IAE) + (\triangle IBF) + (\triangle ICG) + (\triangle IDH))$
$= r(x + y + z + w)$
$ = 2r (\dfrac{x + z}{2} + \dfrac{y + w}{2}) \geq 2r(\sqrt{xz} + \sqrt{yw})$
$ = (2r)(2r) = 4r^2$.

Donde la igualdad se da si y solo si $x = y = z = w = r$, si esto es así entonces $\triangle ADC$ es isósceles, entonces, $\angle IAH = \angle GCI = \dfrac{\pi}{4}$.

Por lo tanto, $\angle A= \angle C = \dfrac{\pi}{2}$.

Del mismo modo vemos que $\angle B = \angle C = \dfrac{\pi}{2}$, y así, $\square ABCD$ es un cuadrado.

$\blacksquare$

Ahora veamos que $(\square ABCD) \leq 2R^2$, tracemos la diagonal $BD$ y sean $E$ y $F$ los pies de las perpendiculares a $BD$ trazadas desde $A$ y $C$ respectivamente y $P$ la intersección de las diagonales.

Figura 7

Por el teorema de Pitágoras, $AE \leq AP$ y $CF \leq CP \Rightarrow AE + CF \leq AC$
y se tiene la igualdad si y solo si las diagonales son perpendiculares.

Luego,
$(\square ABCD) = (\triangle ABD) + (\triangle CBD) $
$= \dfrac{BD}{2}(AE + CF) \leq \dfrac{AC \times BD}{2}$.

Como $\square ABCD$  es cíclico entonces cada diagonal es menor o igual que el diámetro $2R$ del circuncírculo.

Por lo tanto $(\square ABCD) \leq 2R^2$, donde la igualdad se da si y solo si las diagonales son perpendiculares y son diámetros del circuncírculo, es decir, $\square ABCD$  es un cuadrado.

$\blacksquare$

Más adelante…

En la siguiente entrada veremos una generalización del teorema de Ptolomeo, el teorema de Casey.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que para un cuadrilátero bicéntrico $\square ABCD$ de lados $a$, $b$, $c$ y $d$, diagonales $p$ y $q$, inradio $r$ y circunradio $R$ se tiene:
    $i)$ $(\square ABCD) = \sqrt{abcd}$,
    $ii)$ $8pq \leq (a + b + c + d)^2$,
    $iii)$ $\sqrt{2}r \leq R$.
  2.  Sea $\square ABCD$ un cuadrilátero circunscrito y sean $E$, $F$, $G$ y $H$ los puntos de tangencia del incírculo a los lados $AB$, $BC$, $CD$ y $AD$ respectivamente, considera los puntos medios $I$, $J$, $K$ y $L$ de los segmentos $HE$, $EF$, $FG$ y $GH$ respectivamente muestra que $\square ABCD$ es cíclico si y solo si $\square IJKL$ es un rectángulo.
Figura 8
  1. Sea $\square ABCD$ bicéntrico, $(I, r)$ el incírculo y $P$ la intersección de las diagonales, muestra que:
    $i)$ $\dfrac{1}{AI^2} + \dfrac{1}{CI^2} = \dfrac{1}{BI^2} + \dfrac{1}{DI^2} = \dfrac{1}{r^2}$,
    $ii)$ $\dfrac{AP}{CP} = \dfrac{AI^2}{CI^2}$ , $Wikipedia\dfrac{BP}{DP} = \dfrac{BI^2}{DI^2}$.
  2. Construye un cuadrilátero bicéntrico.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Concepto de función

Por Karen González Cárdenas

Introducción

En la unidad anterior desarrollamos todo lo concerniente a los números reales, ahora comenzaremos a ver funciones. Para ello recordemos de nuestros cursos de álgebra cómo se define el producto cartesiano de un par de conjuntos $A$ y $B$:
$$ A\times B := \left\{ (a,b) : a \in A, b \in B \right\},$$
así vemos que sus elementos son pares ordenados.

Por lo que decimos que cualquier subconjunto $R \subseteq A\times B$, es llamado una relación entre $A$ y $B$.

Basándonos en este par de conceptos daremos la definición formal de función entre un par de conjuntos.

Definición de función

Definición (función): Una función $f$ entre los conjuntos $A$ y $B$ es una relación tal que:

  • Para todo $a \in A$ existe $b \in B$ donde $(a,b) \in f$.
  • Si $(a, b_{1}), (a, b_{2})$ entonces $b_{1}= b_{2}$.

Notación:

  • $f : A \rightarrow B$ es una función con dominio $A$ y codominio $B$.
  • $f(a)=b$ es llamada la regla de correspondencia de f.

En resumen, a una función $f : A \rightarrow B$ la conforman tres cosas:

  • Su dominio.
  • Su codominio.
  • Su regla de correspondencia.

El conjunto imagen de una función

Definición (Conjunto imagen): Sea $f : A \rightarrow B$ una función. La imagen de f se define como:
$$Im_{f}:= \left\{ b \in B : \exists a \in A (f(a) =b) \right\}.$$
Simplificado sería:
$$Im_{f}:= \left\{ f(a) \in B : a \in A \right\}.$$

Ejemplo: Sea $f: \r \rightarrow \r$. Si $f(x)=|x|$ entonces $Im_{f}=[0, \infty)$.

Demostración:
$\subseteq )$ Sea $x \in \r$. Vemos que $f(x)= |x|\geq 0$ por lo que $f(x) \in [0, \infty)$.

$\supseteq )$ Tomemos $y \in [0, \infty)$. Debemos probar que existe $x \in \r$ tal que $f(x)= y$.
Sea $x=y \in \r$ con $y \geq 0$. Así se sigue que $f(y)= |y|=y$ por lo que $f(y)=x$.

$\square$

Ejemplo

Encuentra el dominio y la imagen de la siguiente función:
$$f(x)= \sqrt{1-x^{2}}\quad \text{.}$$

Dominio:
Vemos que $y=\sqrt{1-x^{2}}$ está bien definido
\begin{align*}
&\Leftrightarrow 1-x^{2} \geq 0\\
&\Leftrightarrow 1 \geq x^{2}\\
&\Leftrightarrow 1 \geq |x|\\
\end{align*}
Así concluimos que el dominio es el conjunto:
$$D_{f}= [-1,1]\quad \text{.}$$
Imagen:
Como $x \in [-1,1]$ entonces
\begin{align*}
-1 \leq x \leq 1 &\Leftrightarrow 0 \leq x^{2} \leq 1\\
&\Leftrightarrow 0 \geq -x^{2} \geq -1\\
&\Leftrightarrow 1\geq 1-x^{2} \geq 1-1\\
&\Leftrightarrow 1\geq 1-x^{2} \geq 0\\
&\Leftrightarrow 1\geq \sqrt{1-x^{2}} \geq 0\\
\end{align*}

Por lo anterior tenemos:
$$Im_{f} = [0,1]\quad \text{.}$$

Ejercicio 1

Encuentra el dominio de la siguiente función:
\begin{equation*} f(x)= \frac{1}{4-x^{2}} \end{equation*}

Vemos que la función está bien definido si y sólo si:
\begin{align*}
4-x^{2} \neq 0 &\Leftrightarrow (2-x)(2+x) \neq 0\\
&\Leftrightarrow x \neq 2 \quad \text{y} \quad x\neq -2
\end{align*}
Por lo que su dominio sería:
$$D_{f}= \r – \left\{-2,2 \right\}\quad \text{.}$$
es decir, todos los reales quitando el $-2$ y el $2$.

Ejercicio 2

Encuentra el dominio de la siguiente función:
$$f(x)= \sqrt{x-x^{3}}\quad \text{.}$$

Dominio:
Vemos ahora que para $y=\sqrt{x-x^{3}}$ está bien definido
\begin{align*}
&\Leftrightarrow x-x^{3} \geq 0\\
&\Leftrightarrow x(1-x^{2}) \geq 0\\
&\Leftrightarrow x(1-x)(1+x) \geq 0\\
&\Leftrightarrow x \geq 0,\quad x\leq 1, \quad x \geq -1
\end{align*}

De las condiciones anteriores vemos que tenemos los siguientes posibles intervalos que cumplen la desigualdad inicial:

  • $(-\infty, -1]$
    Vemos que al sustituir $x= -1 \in (-\infty,-1]$ tenemos que:
    $$-1-(-1)^{3} = -1-(-1)= 0 \geq 0$$
    por lo que se cumple la desigualdad $x-x^{3} \geq 0$.
  • $(-1,0)$
    Tomando $x=-\frac{1}{2}$ vemos que:
    $$-\frac{1}{2} -\left(-\frac{1}{2} \right) ^{3} = -\frac{1}{2} + \frac{1}{8} = -\frac{3}{8}$$
    Por lo que no se cumple ser mayor o igual que cero.
  • $[1,0]$
    Ahora si tomamos $x=1$ observamos:
    $$1- 1^{3} =1-1 =0$$
    por lo que cumple la desigualdad.
  • $(1,\infty)$
    Por último si consideramos $x= 2$ ocurre que:
    $$2- (2)^{3} =2-8 =-6$$
    que no cumple la desigualdad.

Del análisis anterior vemos que los intervalos que cumplen con $x-x^{3} \geq 0$ son:
$$(-\infty, -1] \cup [1,0]\quad \text{.}$$
Por lo que el dominio de la función sería:
$$D_{f}=(-\infty, -1] \cup [1,0]\quad \text{.}$$

Gráfica de una función

Definición (gráfica): Sea $f:D_{f} \subseteq \r \rightarrow \r$ Definimos a la gráfica de f como el conjunto:
$$ Graf(f)= \left\{ (x,y)\in {\mathbb{R}}^2: x \in D_{f}, \quad y=f(x) \right\},$$
que es equivalente a decir:
$$Graf(f)= \left\{(x, f(x)): x \in D_{f} \right\}\quad \text{.}$$

Ejemplos

  • Para la función constante tenemos:
    $$f(x)=c ,$$
    donde $D_{f}= \r$ y $Im_{f}= {c}$.

    Por lo que su gráfica se vería como:
  • Para la función identidad tenemos:
    $$Id(x)=x ,$$
    donde $D_{f}= \r$ y $Im_{f}= \r$.

    Así su gráfica se vería:

Más adelante

En la próxima entrada veremos las definiciones relacionadas con las operaciones entre funciones: suma, producto, cociente y composición.

Tarea moral

A continuación encontrarás una serie de ejercicios que te ayudarán a repasar los conceptos antes vistos:

  • Sea $f: \r \rightarrow \r$. Demuestra que si $f(x)=x^{2}$ entonces $Im_{f}=[0, \infty).$
  • Encuentra el dominio de las siguientes funciones:
    • $\begin{multline*} f(x)= \sqrt{x+1} \end{multline*}$
    • $\begin{multline*} f(x)= x \sqrt{x^{2}-2} \end{multline*}$
    • $\begin{multline*} f(x)= \sqrt{-x}+ \frac{1}{\sqrt{x+2}} \end{multline*}$
    • $\begin{multline*} f(x)= \sqrt{2+x-x^{2}} \end{multline*}$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»