Geometría Moderna I: Congruencia de triángulos

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiaremos los criterios de congruencia para triángulos, los cuales estaremos usando a lo largo del curso, nos apoyaremos en las transformaciones rígidas las cuales presentamos a continuación.

Definición 1. Decimos que dos triángulos distintos $\triangle ABC$ y $\triangle A’B’C’$ son congruentes y lo denotamos como $\triangle ABC \cong \triangle A’B’C’$, si los lados y los ángulos correspondientes son iguales, esto es,

  • $\angle A = \angle A’$, $\angle B = \angle B’$, $\angle C = \angle C’$ y
  • $AB = A’B’$, $BC = B’C’$, $AC = A’C’$.

Definición 2. Una transformación rígida es una función del plano en sí mismo, o un subconjunto de él, donde la preimagen y la imagen son congruentes.

Una reflexión en una recta es una transformación rígida que manda a todo punto en la preimagen con su punto simétrico respecto a la recta.

triangulo

Una traslación es una transformación rígida que mueve a todos los puntos en la preimagen una distancia constante en una dirección especifica.

Figura 2

Una rotación es una transformación rígida donde todos los puntos en la preimagen giran alrededor de un punto fijo en un ángulo constante.

Figura 3

Criterio lado, ángulo, lado (LAL)

Teorema 1, de congruencia lado, ángulo, lado. Si en un triángulo dos de sus lados y el ángulo interior que estos forman, son iguales a dos lados y el ángulo interior comprendido entre ellos de un segundo triángulo entonces los triángulos son congruentes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $\angle A = \angle A’$, debemos mostrar que $BC = B’C’$, $\angle B = \angle B’$ y $\angle C = \angle C’$.

Figura 4

La idea es superponer los ángulos $\angle BAC$ y $\angle B’A’C’$ de la siguiente manera, hacemos una composición de transformaciones rígidas para que $A$ y $A’$ coincidan y los segmentos $AB$ y $A’B’$  se superpongan.

Entonces como $AB = A’B’$ los puntos $B$ y $B’$ coincidirán, ahora como $\angle BAC = \angle B’A’C’$ los segmentos $AC$ y $A’C’$ quedaran sobrepuestos, si no es así entonces hacemos una reflexión a través de $AB$ para que esto suceda.

Como $AC$ y $A’C’$  tienen la misma longitud sucederá que $C$ y $C’$ coincidirán, de esta manera los segmentos $BC$ y $B’C’$ coincidirán pero también los pares de ángulos ($\angle CBA$, $\angle C’B’A’$) y ($\angle ACB$, $\angle A’C’B’$) coincidirán.

Por lo tanto, por la noción común numero 4 (cosas que coinciden una con otra son iguales entre sí), tendrán la misma magnitud,
$BC = B’C’$, $\angle CBA = \angle C’B’A’$, $\angle ACB = \angle A’C’B’$.

Como resultado, $\triangle ABC \cong \triangle A’B’C’$.

$\blacksquare$

Notemos que el procedimiento de “superponer” las figuras no se menciona en los axiomas de Euclides ni en las nociones comunes, así que este es un ejemplo de que los postulados de Euclides son incompletos como lo mencionábamos en la entrada anterior.

En el siguiente interactivo se ilustra un caso particular de como con una traslación y una rotación podemos superponer dos triángulos.

Criterio lado, lado, lado (LLL)

Definición 3. La mediatriz de un segmento es la recta perpendicular al segmento y que pasa por su punto medio, es decir, lo biseca.

La bisectriz de un ángulo es la recta que pasa por el vértice del ángulo y lo divide en dos ángulos iguales. Notemos que en un triángulo hay tres bisectrices internas y tres bisectrices externas.

Decimos que un vértice y un lado de un triángulo son opuestos si el lado no contiene al vértice. La altura de un triángulo, es el segmento que une uno de sus vértices con el pie de la perpendicular al lado opuesto.

La mediana de un triángulo es el segmento que une un vértice con el punto medio del lado opuesto.

Proposición. Los ángulos internos de un triángulo isósceles, que no son aquel comprendido entre los lados iguales, son iguales entre sí, además, la bisectriz del ángulo interior formado por los lados iguales, la altura trazada por ese vértice, la mediana y mediatriz del lado opuesto coinciden.

Demostración.  Sea $\triangle ABC$ un triángulo isósceles con $AB = AC$ y tracemos la bisectriz de $\angle A$, sea $M$ el punto en donde la bisectriz corta al lado opuesto.

Figura 5

Los triángulos $\triangle AMB$ y $\triangle AMC$ tienen dos lados iguales, $AB = AC$ por hipótesis y $AM$ es un lado en común, además $\angle BAM = \angle MAC$ por ser $AM$ bisectriz, por criterio LAL los triángulos son congruentes.

Por lo tanto, $BM = CM$, $\angle AMB = \angle CMA$ y $\angle B = \angle C$
esta última igualdad es la primera de las afirmaciones que se quería mostrar.

Por otro lado, como $BM = CM$, entonces $M$ es punto medio de $BC$ por lo que $AM$ es mediana.

Ahora, como $\angle AMB + \angle CMA = \pi$ y $\angle AMB = \angle CMA$, entonces $AM$ es perpendicular a $BC$ y así $AM$ es mediatriz y altura.

$\blacksquare$

Lema. Dado un segmento $AB$ y un punto $P$ no colineal con $A$ y $B$, no existe otro punto $P’$ diferente de $P$ y en el mismo semiplano que $P$ respecto de $AB$, tal que $AP = AP’$ y $BP = BP’$.

Demostración. Por reducción al absurdo, supongamos que existe $P’ \neq P$ talque $AP = AP’$ y $BP = BP’$, entonces consideremos los triángulos isósceles, $\triangle PAP$´ y $\triangle PBP’$.

Por la proposición anterior $\angle APP’ = \angle PP’A$ y $\angle BPP’ = \angle PP’B$.

Figura 6

Pero $\angle APP’ = \angle APB + \angle BPP’ = \angle APB + \angle PP’B$,
$\Rightarrow APP’ > PP’B$.

Por otro lado, $\angle PP’B = \angle PP’A + \angle AP’B$,
$\Rightarrow PP’B > PP’A$.

De las últimas dos desigualdades concluimos que $APP’ > PP’A$, lo cual es una contradicción al axioma de tricotomía pues vimos que $APP’ = PP’A$.

Por lo tanto, no existe $P’$ distinto de $P$ tal que $AP = AP’$ y $BP = BP’$.

$\blacksquare$

Teorema 2, de congruencia lado, lado, lado. Si los lados de un triángulo son iguales a los lados de otro triángulo, entonces los triángulos son congruentes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $BC = B’C’$ y $AC = A’C’$, veamos que los ángulos respectivos tienen la misma magnitud.

Figura 7

Hagamos la composición de transformaciones rígidas necesaria para para hacer coincidir los puntos $B$ y $B’$ de manera que los segmentos $BC$ y $B´C’$ se sobrepongan.

Como $BC = B’C’$ entonces $C$ y $C’$ coincidirán.

Ahora realizamos otra composición de transformaciones rígidas para que $A$ y $A’$ se encuentren en el mismo semiplano respecto de $BC$ y $B’C’$, que ahora son el mismo segmento.

Por el lema anterior, como $AB = A’B’$ y $AC = A’C’$, no es posible que $A \neq A’$, por lo tanto, coinciden, como $\triangle ABC$ y $\triangle A´B´C´$ coinciden, por la noción común número 4, todas sus magnitudes son iguales, por lo que $\angle A = \angle A’$, $\angle B = \angle B’$ y $\angle C = \angle C’$.

$\blacksquare$

Problema. Dado un ángulo construir su bisectriz.

Solución. Sea $\angle ABC$ el ángulo dado, trazamos una circunferencia de radio arbitrario pero positivo que corta a $AB$ en $D$ y a $BC$ en $E$.

Figura 8

Ahora construimos un triángulo equilátero sobre $DE$, como lo hicimos en la primera entrada, cuyo tercer vértice será $F$.

Veamos que $BF$ es la bisectriz de $\angle ABC$. Tenemos que $BD = BE$, pues son radios de una misma circunferencia, $DF = EF$, ya que $\triangle DEF$ es equilátero por construcción, por LLL $\triangle BDF \cong \triangle BEF$, en consecuencia $\angle DBF = \angle FBE$, por lo tanto, $BF$ es bisectriz de $\angle ABC$.

$\blacksquare$

Criterio ángulo, lado, ángulo (ALA)

Teorema 3, de congruencia ángulo, lado, ángulo. Si dos ángulos y el lado comprendido entre ellos de un triángulo son iguales a dos ángulos y el lado comprendido entre ellos de otro triangulo, entonces los triángulos son congruentes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $\angle B = \angle B’$, $\angle C = \angle C’$ y $BC = B’C’$.

Como la suma de los ángulos internos de todo triangulo es $\pi$ entonces
$\angle A + \angle B + \angle C = \pi = \angle A’ + \angle B’ + \angle C’$
$\Rightarrow A = A’$.

Si cualquier otro par de lados correspondientes fuese igual entonces por LAL, los triángulos serian congruentes. Supongamos lo contrario para llegar a una contradicción, es decir, que $AC \neq A’C’$ y $AB \neq A’B’$.

Figura 9

Sin pérdida de generalidad supongamos que $AC > A’C’$.

Construimos sobre $AC$ un punto $A’’$ tal que $A’’B = A’B’$, entonces $\triangle A’’BC \cong \triangle A’B’C’$ por LAL, por lo que $\angle A’’CB = \angle A’C’B’$.

Por hipótesis, $\angle ACB = \angle A’C’B’$ así que $\angle ACB = \angle A’’CB$, pero $\angle ACB > \angle A’’CB$, lo que es una contradicción.

Por lo tanto, $AC = A’C’$ y por LAL, $\triangle ABC \cong \triangle A’B’C’$.

$\blacksquare$

Criterio hipotenusa, cateto

Definición 4. En un triángulo rectángulo a los lados que forman el ángulo recto le llamamos catetos y al lado opuesto al ángulo recto le llamamos hipotenusa.

Teorema 4. De congruencia hipotenusa, cateto. Si la hipotenusa y un cateo de un triángulo rectángulo son iguales a la hipotenusa y un cateto de otro triángulo rectángulo, entonces los triángulos son congruentes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $\angle B = \angle B’ = \dfrac{\pi}{2}$, $AB = A’B’$ y $AC = A’C’$.

Sobre la recta determinada por $B$ y $C$ construimos un punto $C’’$ del lado opuesto a $C$ respecto a $B$, tal que $BC’’ = B’C’$.

Figura 10

Entonces por LAL, $\triangle ABC’’ \cong \triangle A’B’C’$, por lo tanto, $AC’’ = A’C’$, por hipótesis $AC = A’C’$, así que $AC = AC’’$.

Como $\triangle C’’AC$ es isósceles y por construcción $AB$ es la altura trazada desde $A$, por la proposición, $AB$ coincide con la mediatriz de $C’’C$, por lo que $BC’’ = BC$, pero $BC’’ = B’C’$ por construcción, por lo tanto, $BC = B’C’$, finalmente por LLL, $\triangle ABC \cong \triangle A’B’C’$.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos la desigualdad del triangulo y su reciproco, presentaremos el concepto de lugar geométrico y mostraremos un par de ejemplos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que si se hacen dos reflexiones sucesivas con respecto a dos rectas paralelas, el resultado es una traslación.
  2. Muestra que si se hacen dos reflexiones sucesivas con respecto a dos rectas concurrentes, se obtiene una rotación con respecto al punto de intersección entre las rectas.
  3. $i)$ Muestra que si un triangulo tiene dos ángulos iguales, entonces los lados opuestos a estos ángulos también son iguales.
    $ii)$ Muestra que los ángulos internos de un triángulo equilátero son iguales.
  4. Si dos rectas distintas se intersecan forman 4 ángulos, prueba que las bisectrices de ángulos opuestos por el vértice son la misma y que las bisectrices de ángulos adyacentes son perpendiculares.
  5. Dado un segmento, construye su mediatriz.
  6. Demuestra sin usar el quinto postulado (lo que implica que los ángulos interiores de todo triangulo suman dos ángulos rectos), que todo ángulo exterior de un triángulo es mayor que cualquiera de los ángulos interiores no adyacentes a el.
  7. Muestra con un ejemplo que el criterio LLA en general no se cumple, es decir, cuando dos triángulos diferentes tienen dos lados y un ángulo correspondientes iguales, pero el ángulo no es el que forman los lados correspondientes iguales.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Funciones crecientes y decrecientes. Funciones acotadas

Por Karen González Cárdenas

Introducción

Continuando ahora con las funciones crecientes y decrecientes, veremos qué condiciones se deben cumplir para determinar si una función crece o decrece en un intervalo. De igual manera, veremos cuándo una función es no creciente o no decreciente para finalizar con la definición de función acotada.

Definición de función creciente y decreciente

Definición: Sea $f: A \rightarrow B$ una función con $A , B \subseteq \RR$.

  • Decimos que $f$ es una función creciente si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ tales que
    $$x_{1}< x_{2} \Rightarrow f(x_{1})<f(x_{2})\quad\text{.}$$
  • Decimos que $f$ es una función decreciente si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ tales que
    $$x_{1}< x_{2} \Rightarrow f(x_{2})<f(x_{1})\quad\text{.}$$

Definición de función no creciente y no decreciente

Definición: Consideremos a la función $f: A \rightarrow B$.

  • Llamamos a $f$ una función no creciente (que decrece o permanece igual) si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ que cumplen
    $$x_{1}< x_{2} \Rightarrow f(x_{2})\leq f(x_{1})\quad\text{.}$$
  • Llamamos a $f$ una función no decreciente (que crece o permanece igual) si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ que cumplen
    $$x_{1}< x_{2} \Rightarrow f(x_{1})\leq f(x_{2})\quad\text{.}$$

Ejemplo 1

Veamos que para la función definida como:
$$f(x)=x^{2}$$

Tenemos las siguientes observaciones:

  1. Es creciente en el intervalo $[0, \infty)$.
  2. Es decreciente en el intervalo $(- \infty,0)$.

Demostración:

  1. Sea $0 \leq x_{1} < x_{2}$ así se sigue que:
    \begin{align*}
    &\Rightarrow x_{1}^{2} < x_{2}^{2}\\
    &\Rightarrow f(x_{1}) < f(x_{2})
    \end{align*}
    $\therefore f$ es creciente en $[0, \infty)$.
  2. Ahora tomemos $x_{1} < x_{2} < 0$
    \begin{align*}
    &\Rightarrow 0< -x_{2} <-x_{1}\tag{ Multiplicando por $-1$}\\
    &\Rightarrow f(-x_{2})<f(-x_{1})\tag{por 1.}\\
    &\Rightarrow (-x_{2})^{2} <(-x_{1})^{2}\\
    &\Rightarrow x_{2}^{2} < x_{1}^{2}\\
    &\Rightarrow f(x_{2})<f(x_{1})
    \end{align*}
    $\therefore f$ es decreciente en $(- \infty,0)$.

$\square$

Ejemplo 2

Para la función $g(x)= x^{2}-5x+2$ probaremos que es creciente en el intervalo $[0,\infty)$.

Tomemos $x_{1}, x_{2} \in [0,\infty)$ tales que $x_{1} < x_{2}$. Queremos demostrar que $g(x_{1})<g(x_{2})$ por lo que desarrollamos lo siguiente:
\begin{align*}
x_{1} < x_{2} &\Rightarrow x_{1} – 5 < x_{2}-5 \tag{restando $-5$}\\
&\Rightarrow x_{1}(x_{1} – 5) <x_{2}( x_{2}-5) \tag{multiplicando por $x_{1}$ y $x_{2}$}\\
&\Rightarrow x_{1}^{2} – 5x_{1} < x_{2}^{2}-5x_{2}\\
&\Rightarrow x_{1}^{2} – 5x_{1}+2 < x_{2}^{2}-5x_{2}+2 \tag{sumado $2$}\\
&\Rightarrow g(x_{1})<g(x_{2})
\end{align*}
Así concluimos que $g$ es creciente en el intervalo $[0,\infty)$.

$\square$

Algunos teoremas

Teorema: Sean $f,g: D \subseteq \r \rightarrow \r$ si $f$ y $g$ son crecientes en $D$ tales que
$f(x)>0$ y $g(x) >0$ para todo $x \in D \Rightarrow fg$ es creciente en D.
Demostración:
Tomemos $x_{1}, x_{2} \in D$ tales que $x_{1}<x_{2}$. Queremos probar que:
$$(fg)(x_{1})< (fg)(x_{2})\quad\text{.}$$
Es decir, queremos ver que se cumple la siguiente desigualdad:
$$f(x_{1})g(x_{1})< f(x_{2})g(x_{2})\quad\text{.}$$
Observemos que por hipótesis tenemos que se cumplen para todo $x \in D$ las siguientes desigualdades:

  1. $f(x)>0 \quad$ y $\quad g(x)>0$.
  2. $f(x_{1}) < f(x_{2})$ ya que $f$ es creciente.
  3. $g(x_{1}) < g(x_{2})$ ya que $g$ es creciente.

De los puntos 2 y 3 al realizar el producto obtenemos:
$$f(x_{1})g(x_{1})< f(x_{2})g(x_{2})\quad\text{.}$$

$\square$

Teorema: Si tenemos una función $f$ tal que:

  1. $f$ par y creciente en el intervalo $[0, \infty) \Rightarrow f$ es decreciente en $(-\infty, 0)$.
  2. $f$ par y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$.
  3. $f$ impar y creciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$.
  4. $f$ impar y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es decreciente en $(-\infty, 0)$.

La demostración de los puntos 1,2 y 3 se dejarán como ejercicios para el lector en la Tarea moral de esta entrada.

Demostración del punto 4:

Queremos probar que $f$ es decreciente en $(-\infty, 0)$.
Tenemos por hipótesis que $f$ es una función impar, así por definición:
$$f(-x)=-f(x)\quad\text{.}$$
Ahora si tomamos $0< x_{1}<x_{2}$ ocurre que:
\begin{align*}
f(-x_{1})&= -f(x_{1}) & f(-x_{2})&= -f(x_{2})\\
\end{align*}
Vemos que si multiplicamos por $-1$ las igualdades anteriores tenemos la siguiente equivalencia:
\begin{align}
-f(-x_{1})&= f(x_{1}) & -f(-x_{2})&= f(x_{2})\\
\end{align}

Como $f$ es una función decreciente en $[0, \infty)$ para $x_{1}$ y $x_{2}$ se sigue:
$$f(x_{2})< f(x_{1})\quad\text{.}$$
Aplicando $(1)$ tendríamos la siguiente desigualdad:
$$-f(-x_{2})< -f(-x_{1})\quad\text{.}$$
donde $-x_{1},-x_{2} \in (-\infty,0)$.

$\square$

Definición de función acotada

Definición: Sea $f: A \rightarrow B$. Decimos que:

  • $f$ está acotada superiormente $\Leftrightarrow$ existe $M \in \r$ tal que $f(x) \leq M$ para todo $x \in A$.
La gráfica de $f$ queda por debajo del valor $M$.
  • $f$ está acotada inferiormente $\Leftrightarrow$ existe $m \in \r$ tal que $m \leq f(x)$ para todo $x \in A$.
La gráfica de $f$ queda por arriba del valor $m$.
  • $f$ está acotada $\Leftrightarrow$ existe $m, M \in \r$ tal que $m \leq f(x) \leq M$ para todo $x \in A$.
La gráfica de $f$ queda entre los valores de $M$ y $m$.
  • Una equivalencia para la última definición sería:
    $f$ está acotada $\Leftrightarrow$ existe $N \in \r$ tal que $|f(x)| \leq N$ para todo $x \in A$.
La gráfica de $f$ queda entre los valores de $N$ y $-N$.
  • $f$ no está acotada $\Leftrightarrow$ para toda $M >0$ existe $x_{M} \in A$ tal que $|f(x_{M})|>M$.

Ejemplo 1

Si tenemos la función $f: \r^{+} \rightarrow \r$ definida como:
$$f(x)=\sqrt{x}\quad\text{.}$$

Probaremos que $f$ no es acotada en su dominio.
Demostración: Consideremos a $M>0$ y a $x_{M}=(M+1)^{2}$ donde $x_{M} \in D_{f}$. Así al evaluar la función en $x_{M}$ tenemos:
\begin{align*}
f(x_{M})&=f((M+1)^{2})\\
&=\sqrt{(M+1)^{2}}\\
&= M+1
\end{align*}
aquí observamos siempre ocurre que: $M+1>M$
$\therefore f$ es no acotada en su dominio.

$\square$

Ejemplo 2

Ahora si consideramos la función $g: (0, \infty) \rightarrow \r^{+}$ definida como:
\begin{equation*}
g(x)=\frac{1}{\sqrt[3]{x^{2}}} \quad\text{.}
\end{equation*}

Veremos ahora que $g$ no es acotada en su dominio.
Demostración: Sea $N>0$ y a $x_{N} \in D_{g}$ definida como:
\begin{equation*}
x_{N}= \frac{1}{(N+1)^{\frac{3}{2}}}\quad\text{.}
\end{equation*}
Al tomar $g(x_{N})$ tenemos:
\begin{align*}
g(x_{N})&=g\left(\frac{1}{(N+1)^{\frac{3}{2}}}\right)\\
&=\frac{1}{\left(\frac{1}{(N+1)^{\frac{3}{2}}}\right)^{\frac{2}{3}}}\\
&=\frac{1}{\frac{1}{N+1}}\\
&=N+1
\end{align*}
donde $N+1>N$ por lo que conluimos que $g$ es no acotada en su dominio.

$\square$

Más adelante

En la siguiente entrada, veremos un conjunto de funciones muy particular: las funciones polinomiales. Adicionalmente, revisaremos las funciones racionales. Para ambos tipos de funciones, examinaremos su definición y algunos ejemplos.

Tarea moral

  • Dada la función $f(x)=x^{3}$. Demuestra que:
    • $f$ es creciente en $[0, \infty)$.
    • $f$ es creciente en $(-\infty,0)$.
  • Demuestra los puntos 1, 2 y 3 del Teorema:
    • $f$ par y creciente en el intervalo $[0, \infty) \Rightarrow f$ es decreciente en $(-\infty, 0)$.
    • $f$ par y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$.
    • $f$ impar y creciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$.
  • Demuestra que la función $h: (0,1) \rightarrow \r$ definida como:
    $$h(x)=\frac{1}{x^{3}}$$
    no es acotada en su dominio.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Moderna I: Palabras

Por Cecilia del Carmen Villatoro Ramos

Introducción

En la entrada anterior tomamos un grupo $G$ y un subconjunto $X \subseteq G$ y, logramos encontrar al menor subgrupo de $G$ que contiene a $X$. Este conjunto resultó ser la intersección de todos los subgrupos contenidos en $G$ que, a su vez, contienen a $X$. Recordemos que se llama el subgrupo de $G$ generado por $X$ y se denota

\begin{align*}
\left< X\right> = \bigcap_{\substack{H \leq G \\ X \subseteq H}} H.
\end{align*}

Sin embargo, esto no nos dice mucho sobre los elementos de $X$. Ilustremos un poco lo que tenemos. Tomemos un grupo $G$, un subconjunto $X \subseteq G$ y al generado $ \left<X\right> \subset G$. Entonces, si tomamos $x_1,x_2,x_3 \in X$, sabemos que todas las potencias de esos elementos están en el generado de $X$. Es decir, para todas $q,r,s \in \z$, $x_1^q, x_2^r, x_3^s \in \left<X\right>$. Más aún, las diferentes multiplicaciones de esos elementos también están en $\left<X\right>$, por ejemplo, si consideramos $x_1^1, x_3^{-2}, x_2^{3}$ y $x_1^{-4}$, el elemento

\begin{align}\label{palabra}
x_1^{-4} x_3^{-2} x_1^1 x_2^{3}
\end{align}

está en $\left<X\right>$, por ser una multiplicación de elementos del subgrupo. Entonces, en el generado de $X$ estarán todos los elementos de $X$, las potencias de esos elementos y todas las multiplicaciones entre dichas potencias.

Al elemento \eqref{palabra} la llamamos una palabra en $X$ y es lo que estudiaremos en esta entrada. Además, las palabras nos permiten dar descripción del subgrupo generado. Esta idea es análoga a la que se estudia en álgebra lineal cuando se describe al subespacio generado por un conjunto como una colección de combinaciones lineales de vectores. Sin embargo, en el caso de subgrupos, esta descripción no es igual a la de álgebra lineal porque hay que recordar que un grupo en general no es abeliano. Esto influye en qué tanto se pueda simplificar una palabra.

Nuestra primera aproximación a las palabras

Definición. Sea $G$ un grupo, $X$ un subconjunto de $G$. Una palabra en $X$ es, o bien el neutro $e$, o bien un elemento de la forma

$x_1^{\alpha_1}, \dots, x_n^{\alpha_n}$

con $n \in \n^+$, $x_1,\dots, x_n\in X, \alpha_1, \dots, \alpha_n \in \z$.

Notación. Denotamos por $W_X$ al conjunto de todas las palabras en $X$.

Ejemplos

Ejemplo 1. Sea $G = D_{2(4)}$ el grupo diédrico formado por las simetrías de un cuadrado centrado en el origen. Sea $a$ la rotación de $\pi/2$ y $b$ la reflexión con respecto al eje $x$.
$ba^3 b a^{-1} b^{-4} a$ es una palabra en $\{a, b\}$.

En este caso, la palabra sí se puede simplificar como:
\begin{align*}
b a^3 b a^{-1}b^{-4} a &= ba^3ba^{-1} e a \\
& = b a^3 b a^{-1} a \\
& = ba^3 b
\end{align*}

Para la primera igualdad, recordemos que $b$ es la rotación por $\pi/2$, entonces al aplicar esa rotación $4$ veces, el cuadrado recupera su estado inicial, así por eso $ b^{4} = e$ y de forma análoga como $b^{-1}$ es la rotación por $-\pi/2$ se tiene que $b^{4} = e$.

Notación. Usaremos la notación $D_{2(4)}$ para denotar las simetrías del cuadrado (que tiene 4 vértices), este grupo diédrico tiene 8 elementos. Otros autores pueden escribir simplemente $D_8$, pero esto se puede confundir con el grupo de las simetrías de un octágono. De forma más general el grupo diédrico de un polígono de $n$ lados es el grupo de simetrías de un polígono regular de $n$ lados centrado en el origen, con la operación de composición. Lo denotatemos por $D_{2n}$ y tendrá $2n$ elementos.

Ejemplo 2. Consideremos el conjunto $ \{\pm 1, \pm i, \pm j, \pm k\}$. Este conjunto es llamado el grupo de los cuaterniones o cuaternios y se suele denotar por $Q$ o $Q_8$ porque tiene 8 elementos.

Las operaciones en el conjunto se definen como:
\begin{align*}
1 a &= a 1 = a &\forall a \in Q \\
(-1) a &= a (-1) = -a & \forall a \in Q
\end{align*}

Además, las multiplicaciones no son conmutativas y están definidas así:
$\begin{align*}
ij &= k, \quad &jk = i, \quad &ki =j, \\
ji &= -k, \quad &kj = -i, \quad &ik=-j, \\
i^2 &= j^2 = k^2 = -1.
\end{align*}$

Una palabra en $\{j\}$ es $j^5j^{-2} j^{3} j^{-4}$, resolviendo las potencias podemos concluir que esta palabra es igual a $-1$ (verificarlo quedará como ejercicio). Podemos ahora considerar el conjunto de todas las palabras formadas con el elemento $j$, es decir el conjunto de palabras en $\{j\}$. Se puede ver que:
\begin{align*}
W_{\{j\}} = \{j,-1,-j, +1\}.
\end{align*}

También podemos considerar el conjunto de palabras formadas con los elementos $j$ y $k$, es decir el conjunto de palabras en $\{j,k\}$. En este caso se tiene que:
\begin{align*}
W_{\{j,k\}} = \{\pm 1, \pm i, \pm j, \pm k \}=Q.
\end{align*}

Palabras y el subgrupo generado por $X$

Lema. Sea $G$ un grupo y $X$ un subconjunto de $G$. $W_X$ es un subgrupo de $G$ que contiene a $X$.

Demostración.
Caso 1, cuando $X = \emptyset$.
En este caso, $W_X = \{e\} \leq G$ y $X = \emptyset \subset \{e\} = W_X$.

Caso 2, cuando $X \neq \emptyset$.
P.D. $W_X \leq G$.
Por definición $e \in W_X$.
Sean $a, b \in W_X$, entonces

\begin{align*}
a &= x_1^{\alpha_1} \dots x_n^{\alpha_n} & \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m \in \z \\
b &= y_1^{\beta_1} \dots y_m^{\beta_m} & x_1, \dots, x_n, y_1, \dots, y_m \in X\\
&& n,m \in \n^+
\end{align*}

Entonces, podemos tomar $ab^{-1}$ y verificar quién es

\begin{align*}
a b^{-1} &= (a_1^{\alpha_1} \dots x_n^{\alpha_n})(y_1 \dots y_m^{\beta_m})^{-1} \\
& = x_1^{\alpha_1} \dots x_n^{\alpha_n}y_m^{-\beta} \dots y_1^{-\beta_1} \in W_X.
\end{align*}

Por lo tanto $W_X \leq G$.

P.D. $X \subseteq W_X$.
Sea $x \in X$,
\begin{align*}
x = x^1 \in W_X.
\end{align*}

Por lo tanto $X \subseteq W_X$.

En ambos casos $W_X$ es un subgrupo de $G$ que contiene a $X$.

$\blacksquare$

Teorema. Sea $G$ un grupo, $X$ un subconjunto de $G$. Entonces

$\left< X \right> = W_X$.

Demostración.
$\subseteq)$ Por el lema anterior, $W_X \in \{H \leq G : X \subseteq H\}$. Entonces, por nuestra definición del subgrupo generado,
\begin{align*}
\left< X \right> = \bigcap_{\substack{H \leq G \\ X \subseteq H}} H \subseteq W_X.
\end{align*}

$\supseteq)$ Sea $a \in W_X$, entonces $a = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ con, $n \in \n^+$, $\alpha_1, \dots, \alpha_n \in \z$ y $x_1, \dots, x_n \in X$.

Como cada $x_i \in X$, con $i \in \{1,..,n\}$, y $X \subseteq \left< X \right>$, entonces $x_i\in\left< X \right>$ para toda $i \in \{1, \dots ,n\}$.
Como el generado es un subgrupo de $G$, obtenemos que $x_i^{\alpha_i} \in \left< X \right>$ para toda $i \in \{1,\dots,n\}$. Usando nuevamente que el generado es un subgrupo de $G$ tenemos que $a = x_1^{\alpha_1} \dots x_n^{\alpha_n} \in \left<X\right>$.

Por lo tanto, $\left< X \right> = W_X$.

$\blacksquare$

¿Quién es el orden de un producto?

Ya hemos hablado del orden de un elemento. Si tenemos un grupo $G$ y $a, b \in G$ y sabemos quién es $o(a)$ y $o(b)$, ¿podemos saber cómo es $o(ab)$? En algunos casos podemos respuesta a esta pregunta dando una explicación más precisa de cómo es el orden de un producto en términos del orden de sus factores. El siguiente resultado aparece en el libro de Avella, Mendoza, Sáenz y Souto mencionado en la bibliografía, Teorema 3.3.12:

Teorema. Sea $G$ un grupo y $a, b \in G$.
Si $a$ y $b$ son de orden finito, sus ordenes son primos relativos y $ab = ba$, entonces

\begin{align*}
o(ab) &= o(a) o(b) \\
\text{y } \left< a,b \right> &= \left<ab\right>.
\end{align*}

Demostración.
Sea $G$ un grupo, $a,b \in G$ de orden finito con $n = o(a)$, $m = o(b)$. Supongamos que $(n;m) = 1$ y $ab = ba$.

P.D. $o(ab) = nm$.
Entonces

\begin{align*}
(ab)^{nm} & = a^{nm} b^{nm} & \text{ porque } ab = ba \\
& = (a^n)^m(b^m)^n & \text{ propiedades de los exponentes}\\
& = e^m e^n \\
& = e
\end{align*}

Ya teniendo que $(ab)^{nm} = e$, tenemos que ver que $nm$ es el menor exponente positivo tal que al elevar $ab$ a ese exponente nos da el neutro, o bien ver que divide a cualquier otro $k$ tal que $(ab)^k = e$. Procedamos de acuerdo a la segunda opción.

Sea $k\in\z$ tal que $(ab)^k = e$, y como $ab=ba$ esto implica que $a^k b^k = e$. Despejando, obtenemos $a^k = b^{-k}$.

Así $(a^k)^m = (b^{-k})^m = (b^m)^{-k} = e^{-k} = e$ (porque $o(b) = m$), es decir $a^{km} = e$. Dado que $o(a) = n$, entonces $n|km$ y como $(n;m) = 1$ entonces $n|k$.

Si consideramos ahora $(a^k)^n = (b^{-k})^n$ y seguimos un argumento análogo obtenemos que $m|k$.

Como $n|k$ y $m|k$ y $(n;m) = 1$, entonces $nm|k$.
Por lo tanto $o(ab) = nm$.

P.D. $\left< a,b \right> = \left< ab \right>$.
Como toda palabra en $\{ab\}$ es una palabra en $\{a, b\}$ entonces
\begin{align*}
\left< ab \right> \subseteq \left< a, b \right>.
\end{align*}

Por otro lado, como $ab = ba$, toda palabra en $\{a,b\}$ se reduce a una de la forma $a^{i}b^{j}$ con $i, j \in \z$, y como $o(a) = n$, $o(b) = m$, la expresión $a^{i}b^{j}$ se puede reducir aún más a una expresión de la forma $a^{i}b^{i}$ con $0 \leq i < n$ y $0 \leq j < m$.

Entonces $\left< a, b \right> = \{a^{i}b^{j}: 0 \leq i < n, 0 \leq j < m\}$. Luego, $|\left<a, b\right>| \leq nm$.
Pero $\left< ab \right> \subseteq \left<a,b\right>$, entonces $|\left< ab \right>| \leq |\left< a,b \right>|$.
Así,

\begin{align*}
nm = o(ab) = |\left< ab \right>| &\leq |\left< a,b \right>| \leq nm. \\
\end{align*}

Por lo tanto $\left<ab\right> = \left< a, b \right>$.

$\blacksquare$

Tarea moral

  1. En el grupo de los cuaternios definido anteriormente, verifica que $j^5j^{-2}j^3j^{-4} = -1$.
  2. Considera $Q$, el grupo de cuaternios. Reduce la siguiente palabra a uno de los elementos $\pm 1, \pm i, \pm j, \pm k$,
    $$\begin{align*}
    j^7k(-i)jki^2jk^{-6}
    \end{align*}$$
  3. Sea $D_{2n} = \{\text{ id }, a, \dots, a^{n-1}, ab, \dots, a^{n-1}b\}$ el grupo diédrico formado por las simetrías de un polígono regular de $n$ lados, con $a$ la rotación de $\displaystyle \frac{2\pi}{n}$ y $b$ la reflexión con respecto al eje $x$.
    1. Identifica geométricamente quiénes son $\text{ id }, a, \dots, a^{n-1}, ab, \dots, a^{n-1}b$.
    2. Determina quién es el elemento $bab$ y, de modo más general, quién es el elemento $ba^{i}b$ para toda $i\in\z$.
    3. Determina quién es el elemento $ba^i$ para toda $i\in\z$.
  4. Considera el grupo simétrico $S_5$, $\alpha$ la permutación que manda $1$ en $2$, $2$ en $3$ y $3$ en $1$, fija a $4$ y a $5$, y $\beta$ la permutación que intercambia $4$ y $5$.
    1. Encuentra $\beta \alpha$ y $\alpha \beta$.
    2. Encuentra el orden de $\alpha$, $\beta$, $\alpha\beta$ y $\beta\alpha$.
  5. Por último, te invitamos a que veas este video que habla sobre las aplicaciones tecnológicas del grupo de los cuaternios. El video está en inglés, pero tiene subtítulos en español.

Más adelante…

¡Felicidades por acabar la Unidad 1! Ya entiendes las bases de este curso, trata de recordarlas porque las estaremos usando implícitamente.
En la siguiente unidad estaremos viendo Permutaciones y Grupo Cociente, para no adelantar mucho, sólo diremos que ambas estructuras son grupos muy importantes en el álgebra y nuestros objetos de estudio en la siguiente unidad.

Entradas relacionadas

Cálculo Diferencial e Integral I: Funciones pares e impares

Por Karen González Cárdenas

Introducción

Ahora veremos cuales son las características que debe cumplir una función para ser par o impar. Veremos geométricamente qué ocurre con estas funciones. De igual manera, veremos qué ocurre al realizar operaciones entre ellas.

Definición de función par

Definición: Decimos que $f: A \rightarrow B$ una función es par si y sólo si para todo $x \in A$ ocurre que:
$$f(x)=f(-x)\quad\text{.}$$

Ejemplo

La función $f(x)=x^{2}$ cumple ser par ya que:
$$f(-x)=(-x)^{2}=x^{2}=f(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al eje $y$:

Definición de función impar

Definición: Decimos que $f: A \rightarrow B$ una función es impar si y sólo si para todo $x \in A$ ocurre que:
$$f(-x)= – f(x)\quad\text{.}$$

Ejemplo

La función $g(x)=x$ cumple ser impar ya que:
$$g(-x)=(-x) = – (x) = -g(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al origen:

Un teorema importante

Teorema: Cualquier función $f: \r \rightarrow \r$ puede expresarse como la suma de una función par e impar, es decir,
$$f(x)= P(x)+ I(x)$$
para toda $x \in \r$, donde $P(x)$ e $I(x)$ son únicas.
Demostración: Consideremos las funciones $P(x)$ par e $I(x)$ impar como sigue:
\begin{align*}
P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
\end{align*}

Vemos que al realizar la suma obtenemos:
\begin{align*}
P(x)+I(x) &= \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2}\\
&= \frac{f(x)+f(-x)+f(x)-f(-x)}{2}\\
&= \frac{2f(x)}{2}\\
&= f(x)
\end{align*}

Ahora nos falta ver qué $P(x)$ e $I(x)$ son únicas. Como ya sabemos que $f(x)= P(x)+ I(x)$ tenemos lo siguiente:
\begin{align}
f(x)&=P(x)+I(x)\\
f(-x)&=P(x)-I(x)\\
\end{align}
Así sumando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)+f(-x) &= 2 P(x)\\
P(x) &= \frac{f(x)+f(-x)}{2}
\end{align*}
Ahora restando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)-f(-x) &= 2 I(x)\\
I(x) &= \frac{f(x)-f(-x)}{2}
\end{align*}
Dado que tenemos la igualdad $f(x)= P(x)+ I(x)$ concluimos que $P(x)$ e $I(x)$ son únicas.

$\square$

Ejercicio

Consideremos las funciones $f,g: \r \rightarrow \r$. ¿Cómo es $f+g$, $fg$ y $f \circ g$ si:

  1. $f$ y $g$ son pares
  2. $f$ y $g$ son impares
  3. $f$ es par y $g$ es impar
  4. $f$ es impar y $g$ es par

es par, impar o no necesariamente alguna de las anteriores?

En la suma de funciones


1. Si $f$ y $g$ son pares $\Rightarrow f+g$ es par.
Demostración:
Vemos que al desarrollar:
\begin{align*}
(f+g)(-x)&= f(-x)+g(-x)\tag{ definición de $f+g$}\\
&= f(x)+g(x)\tag{ por $f$ y $g$ pares}\\
&= (f+g)(x)\tag{ definición de $f+g$}\\
\end{align*}
3. Si $f$ es par y $g$ es impar $\Rightarrow f+g$ no necesariamente es par o impar.
Consideremos $f(x)= x^{2}$ y $g(x)=x$. Luego si $x=1$ entonces:
\begin{align*}
(f+g)(-1)&= f(-1)+g(-1) & (f+g)(1)&= f(1)+g(1)\\
&= 1-1 & &= 1+1\\
&= 0 & &=2
\end{align*}
$\therefore (f+g)(-1) \neq (f+g)(1)$
$\therefore f+g$ no es par.

Además veamos que $-(f+g)(1)=-2$ por lo que:
$$-(f+g)(1) \neq (f+g)(-1)$$
$\therefore f+g$ tampoco es impar.

En el producto de funciones


1. Si $f$ y $g$ son pares $\Rightarrow fg$ es par.
Demostración:
Si tomamos $fg(-x)$ observamos lo siguiente:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= f(x)g(x) \tag{por$f$ y $g$ pares}\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par.

2. Si $f$ y $g$ son impares $\Rightarrow fg$ es par.
Demostración:
Comenzando con $fg(-x)$ y desarrollando tenemos:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= (-f(x))(-g(x)) \tag{por$f$ y $g$ impares}\\
&=f(x)g(x)\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par.

En la composición de funciones


3. Si $f$ es par y $g$ es impar $\Rightarrow f \circ g$ es par.
Demostración:
Realizando la composición $(f \circ g)(-x)$:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(-g(x)) \tag{ por $g$ impar}\\
&= f(g(x)) \tag{por $f$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par.

4.Si $f$ es impar y $g$ es par $\Rightarrow f \circ g$ es par.
Demostración:
Procediendo análogamente al punto anterior:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(g(x)) \tag{ por $g$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par.

Los puntos faltantes se dejarán como ejercicios de Tarea moral, para resolverlos se debe proceder como en los incisos anteriores según sea el caso.

Más adelante

En la siguiente entrada, continuaremos con las funciones crecientes y decrecientes. Veremos qué características debe cumplir una función para poder determinar si crece o decrece en un intervalo. También exploraremos qué significa ser una función acotada y algunas pruebas relacionadas con este concepto.

Tarea moral

  • Prueba que las funciones $P(x)$ e $I(x)$ cumplen con ser par e impar respectivamente:
    \begin{align*}
    P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
    \end{align*}
  • Demuestra que la función constante cero es la única que cumple ser par e impar.
  • Exprese a las siguientes funciones como suma de una función par y una impar:
    • $f(x)= x^{2}-4x+2$
    • \begin{multline*}h(x)=\frac{1}{1+x^{2}}\end{multline*}
  • Termina los puntos faltantes del ejercicio anterior:
    • Para $f+g$ cuando $f$ y $g$ son impares

    • Para $f+g$ cuando $f$ es impar y $g$ es par.

    • Para $fg$ cuando $f$ es par y $g$ es impar

    • Para $fg$ cuando $f$ es impar y $g$ es par

    • Para $f \circ g$ cuando $f$ y $g$ son pares

    • Para $f \circ g$ cuando $f$ y $g$ son impares

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Método de reducción de orden

Por Omar González Franco

La única forma de aprender matemáticas es hacer matemáticas.
– Paul Halmos

Introducción

Hemos comenzado estudiando algunas de las propiedades de las soluciones a ecuaciones diferenciales lineales homogéneas y no homogéneas de orden superior. Como mencionamos en la entrada anterior, es momento de comenzar a desarrollar los distintos métodos de resolución de ecuaciones diferenciales de orden superior, sin embargo, debido a la complejidad que surge de aumentar el orden, en esta entrada sólo consideraremos ecuaciones diferenciales de segundo orden.

En esta entrada desarrollaremos el método de reducción de orden, como su nombre lo indica, lo que haremos básicamente es hacer un cambio de variable o una sustitución adecuada que permita que la ecuación de segundo orden pase a ser una ecuación de primer orden y de esta manera aplicar alguno de los métodos vistos en la unidad anterior para resolver la ecuación.

Hay dos distintas formas de reducir una ecuación de segundo orden, la primera de ellas consiste en hacer el cambio de variable

$$z = \dfrac{dy}{dx}$$

Esta forma se aplica en ecuaciones tanto lineales como no lineales, pero deben satisfacer algunas condiciones, mientras que, por otro lado, la segunda forma se aplica sólo a ecuaciones lineales homogéneas en las que tenemos conocimiento previo de una solución no trivial. En este segundo caso, considerando que conocemos una solución $y_{1}(x)$, haremos la sustitución

$$y_{2}(x) = u(x) y_{1}(x)$$

para reducir de orden a la ecuación y al resolverla obtendremos la función $u(x)$ y, por tanto, la segunda solución $y_{2}(x)$, tal que $\{ y_{1}, y_{2} \}$ forme un conjunto fundamental de soluciones de la ecuación diferencial y de esta manera podamos establecer la solución general.

Comencemos por desarrollar la primer forma bajo un cambio de variable.

Ecuaciones reducibles a ecuaciones de primer orden

Hay cierto tipo de ecuaciones de segundo orden que pueden reducirse a una ecuación de primer orden y ser resueltas por los métodos que ya conocemos, vistos en la unidad anterior. Un primer tipo de ecuación son las ecuaciones lineales en las que la variable dependiente $y$ no aparece explícitamente.

Sabemos que una ecuación diferencial lineal no homogénea de segundo orden tiene la siguiente forma.

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \label{1} \tag{1}$$

Si la variable dependiente $y$ no se encuentra explícitamente en la ecuación, obtenemos la siguiente forma.

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} = g(x) \label{2} \tag{2}$$

Es quizá natural pensar que una forma de resolver la ecuación (\ref{2}) es integrarla dos veces, es esto lo que haremos considerando el siguiente cambio de variable.

$$z = \dfrac{dy}{dx}; \hspace{1cm} \dfrac{dz}{dx} = \dfrac{d^{2}y}{dx^{2}} \label{3} \tag{3}$$

Sea $a_{2}(x) \neq 0$, definimos las siguientes funciones.

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{g(x)}{a_{2}(x)}$$

Si sustituimos estas funciones y el cambio de variable (\ref{3}) en la ecuación (\ref{2}) lograremos reducirla a una ecuación lineal de primer orden con $z$ la variable dependiente.

$$\dfrac{dz}{dx} + P(x) z = Q(x) \label{4} \tag{4}$$

En la unidad anterior desarrollamos distintos métodos para resolver este tipo de ecuaciones. Una vez que resolvamos la ecuación (\ref{4}) y regresemos a la variable original veremos que dicho resultado nuevamente corresponde a una ecuación de primer orden que podrá ser resuelta una vez más con los métodos vistos anteriormente. Realicemos un ejemplo.

Ejemplo: Reducir de orden a la ecuación diferencial lineal de segundo orden

$$x \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} = x$$

para $x > 0$ y obtener su solución.

Solución: Dividamos toda la ecuación por $x \neq 0$.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{x} \dfrac{dy}{dx} = 1$$

Hacemos el cambio de variable (\ref{3}) para obtener la forma (\ref{4}).

$$\dfrac{dz}{dx} -\dfrac{1}{x}z = 1 \label{5} \tag{5}$$

Ya no deberíamos tener problema con resolver esta ecuación. Apliquemos el método para resolver ecuaciones lineales. De la ecuación reducida (\ref{5}) notamos que

$$P(x) = -\dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = 1$$

El factor integrante, es este caso, es

$$\mu(x) = e^{\int {P(x)} dx} = e^{-\int \frac{1}{x} dx} = e^{-\ln(x)} = \dfrac{1}{x}$$

Esto es,

$$\mu(x) = \dfrac{1}{x}$$

Multipliquemos la ecuación (\ref{5}) por el factor integrante,

$$\dfrac{1}{x} \dfrac{dz}{dx} -\dfrac{z}{x^{2}} = \dfrac{1}{x}$$

e identificamos que

$$\dfrac{d}{dx} \left( \dfrac{z}{x} \right) = \dfrac{1}{x} \dfrac{dz}{dx} -\dfrac{z}{x^{2}}$$

De ambas ecuaciones se tiene

$$\dfrac{d}{dx} \left( \dfrac{z}{x} \right) = \dfrac{1}{x}$$

Ahora podemos integrar ambos lados de la ecuación con respecto a $x > 0$.

\begin{align*}
\int \dfrac{d}{dx} \left( \dfrac{z}{x} \right) dx &= \int \dfrac{1}{x} dx \\
\dfrac{z}{x} &= \ln (x) + c_{1} \\
z(x) &= x \ln (x) + xc_{1}
\end{align*}

Hemos resuelto la ecuación para la variable $z$, regresemos a la variable original para resolver la nueva ecuación de primer orden.

$$\dfrac{dy}{dx} = x \ln(x) + xc_{1} \label{6} \tag{6}$$

Esta ecuación puede ser resuelta por separación de variables en su versión simple de integración directa (la ecuación ya esta separada), integremos ambos lados de la ecuación con respecto a $x$,

\begin{align*}
\int \dfrac{dy}{dx} dx &= \int x \ln(x) dx + \int xc_{1} dx \\
y(x) &= \int x \ln(x) dx + c_{1} \dfrac{x^{2}}{2}
\end{align*}

Para resolver la integral que nos falta apliquemos integración por partes, hagamos

$$u(x) = \ln(x) \hspace{1cm} y \hspace{1cm} \dfrac{dv}{dx} = x$$

Así mismo,

$$\dfrac{du}{dx} = \dfrac{1}{x} \hspace{1cm} y \hspace{1cm} v(x) = \dfrac{x^{2}}{2}$$

Entonces,

\begin{align*}
\int{x \ln(x) dx} &= \dfrac{x^{2}}{2} \ln(x) -\int{\dfrac{x}{2} dx} \\
&= \dfrac{x^{2}}{2} \ln(x) -\dfrac{x^{2}}{4} + c_{2}
\end{align*}

Sustituimos en la función $y(x)$.

$$y(x) = \dfrac{x^{2}}{2} \ln(x) -\dfrac{x^{2}}{4} + c_{1} \dfrac{x^{2}}{2} + c_{2}$$

Por lo tanto, la solución general de la ecuación diferencial

$$x \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} = x$$

es

$$y(x) = \dfrac{x^{2}}{2} \left( \ln(x) -\dfrac{1}{2} \right) + c_{1} \dfrac{x^{2}}{2} + c_{2} \label{7} \tag{7}$$

De tarea moral verifica que es la solución general ya que el conjunto

$$S = \left\{ y_{1}(x) = \dfrac{x^{2}}{2}, y_{2}(x) = 1 \right\}$$

es un conjunto fundamental de soluciones de la ecuación homogénea asociada y

$$y_{p}(x) = \dfrac{x^{2}}{2} \left( \ln(x) -\dfrac{1}{2} \right)$$

es una solución particular de la ecuación no homogénea.

$\square$

Reducción de orden en ecuaciones no lineales

Es posible aplicar un método similar en ecuaciones de segundo orden que pueden ser tanto lineales como no son lineales, en este caso, a diferencia del caso anterior, la variable dependiente $y$ puede aparecer en la ecuación, sin embargo es necesario que la variable independiente $x$ sea la que no aparezca explícitamente. Este tipo de ecuaciones también pueden reducirse a una ecuación de primer orden, pero tomando el siguiente cambio de variable.

$$\dfrac{dy}{dx} = z; \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = z \dfrac{dz}{dy} \label{8} \tag{8}$$

Donde la segunda expresión se deduce de aplicar la regla de la cadena

$$\dfrac{d^{2}y}{dx^{2}} = \dfrac{dz}{dx} = \dfrac{dz}{dy} \dfrac{dy}{dx} = z \dfrac{dz}{dy}$$

Realicemos un ejemplo con una ecuación no lineal.

Ejemplo: Reducir de orden a la ecuación diferencial no lineal de segundo orden

$$\dfrac{d^{2}y}{dx^{2}} -2y \left( \dfrac{dy}{dx}\right)^{3} = 0$$

y obtener su solución.

Solución: Es importante notar que es no lineal debido a que la primer derivada es de tercer grado y además esta multiplicada por la función $y$, lo cual no debe ocurrir en el caso lineal.

La ecuación a resolver es

$$\dfrac{d^{2}y}{dx^{2}} -2y \left( \dfrac{dy}{dx}\right)^{3} = 0$$

Hacemos el cambio de variable (\ref{8}) y separamos variables.

\begin{align*}
z \dfrac{dz}{dy} -2yz^{3} &= 0 \\
\dfrac{dz}{dy} &= 2yz^{2} \\
\dfrac{1}{z^{2}} \dfrac{dz}{dy} &= 2y
\end{align*}

Integramos ambos lados de la ecuación con respecto a $y$.

\begin{align*}
\int{\dfrac{1}{z^{2}} \dfrac{dz}{dy} dy} &= \int{2y dy} \\
\int{\dfrac{dz}{z^{2}}} &= 2 \int{y dy} \\
-\dfrac{1}{z} &= y^{2} + c_{1} \\
z &= -\dfrac{1}{y^{2} + c_{1}}
\end{align*}

Regresamos a la variable original y separamos de nuevo las variables.

\begin{align*}
\dfrac{dy}{dx} &= -\dfrac{1}{y^{2} + c_{1}} \\
(y^{2} + c_{1}) \dfrac{dy}{dx} &= -1
\end{align*}

Integramos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int{(y^{2} + c_{1}) \dfrac{dy}{dx} dx} &= -\int{dx} \\
\int{y^{2} dy} + \int{c_{1} dy} &= -\int{dx} \\
\dfrac{y^{3}}{3} + c_{1}y &= -x + c_{2}
\end{align*}

Por lo tanto, la solución implícita de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -2y \left( \dfrac{dy}{dx}\right)^{3} = 0$$

es

$$\dfrac{y^{3}}{3} + c_{1}y = c_{2} -x$$

$\square$

Realicemos un ejemplo más con una ecuación lineal.

Ejemplo: Encontrar la solución general de la ecuación diferencial

$$4 \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} = 0$$

Solución: Como la ecuación no contiene explícitamente a la función $y$ ni a la variable independiente $x$, entonces podemos aplicar cualquier cambio de variable, ya sea (\ref{3}) u (\ref{8}). Vamos a resolverla aplicando ambos casos.

Primero consideremos el cambio de variable (\ref{8}).

\begin{align*}
4z \dfrac{dz}{dy} + z &= 0 \\
4 \dfrac{dz}{dy} &= -1 \\
\dfrac{dz}{dy} &= -\dfrac{1}{4}
\end{align*}

Integremos ambos lados de la ecuación con respecto a $y$.

\begin{align*}
\int{\dfrac{dz}{dy} dy} &= -\int{\dfrac{1}{4} dy} \\
\int{dz} &= -\dfrac{1}{4} \int{dy} \\
z &= -\dfrac{1}{4} y + c_{1}
\end{align*}

Regresemos a la variable original.

\begin{align*}
\dfrac{dy}{dx} &= -\dfrac{1}{4} y + c_{1} \\
\dfrac{dy}{dx} + \dfrac{y}{4} &= c_{1}
\end{align*}

Resolvamos esta ecuación por factor integrante.

$$\mu(x) = e^{\int {P(x)} dx} = e^{\int \frac{1}{4} dx} = e^{x/4}$$

Esto es,

$$\mu(x) = e^{x/4}$$

Multipliquemos ambos lados de la ecuación por el factor integrante.

\begin{align*}
e^{x/4} \dfrac{dy}{dx} + e^{x/4} \dfrac{y}{4} &= e^{x/4} c_{1} \\
\dfrac{d}{dx}\left( y e^{x/4} \right) &= c_{1} e^{x/4}
\end{align*}

Integramos ambos lados con respecto a $x$.

\begin{align*}
\int{\dfrac{d}{dx}\left( y e^{x/4} \right) dx} &= \int{c_{1} e^{x/4} dx} \\
y e^{x/4} &= c_{1} \int{e^{x/4} dx} \\
y e^{x/4} &= c_{1} 4 e^{x/4} + c_{2} \\
y(x) &= c_{2} e^{-x/4} + 4c_{1}
\end{align*}

Renombrando a las constantes concluimos que la solución general de la ecuación diferencial

$$4 \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} = 0$$

es

$$y(x) = k_{1} e^{-x/4} + k_{2}$$

Resolvamos de nuevo la ecuación, pero ahora aplicando el cambio de variable (\ref{3}),

\begin{align*}
4 \dfrac{dz}{dx} + z &= 0 \\
\dfrac{1}{z} \dfrac{dz}{dx} &= -\dfrac{1}{4}
\end{align*}

Integremos ambos lados con respecto a $x$.

\begin{align*}
\int{\dfrac{1}{z} \dfrac{dz}{dx} dx} &= -\int{\dfrac{1}{4} dx} \\
\int{\dfrac{dz}{z}} &= -\dfrac{1}{4}\int{dx} \\
\ln|z| &= -\dfrac{x}{4} + c_{1} \\
z &= c_{2}e^{-x/4}
\end{align*}

Con $c_{2} = e^{c_{1}}$. Regresemos a la variable original.

$$\dfrac{dy}{dx} = c_{2}e^{-x/4}$$

Integremos ambos lados con respecto a $x$.

\begin{align*}
\int{\dfrac{dy}{dx} dx} = \int{c_{2} e^{-x/4} dx} \\
\int{dy} = c_{2} \int{e^{-x/4} dx} \\
y = -c_{2}4 e^{-x/4} + c_{3}
\end{align*}

Si renombramos las constantes obtenemos nuevamente que

$$y(x) = k_{1} e^{-x/4} + k_{2}$$

$\square$

Es posible reducir una ecuación diferencial de segundo orden a una de primer orden si previamente conocemos una solución de la ecuación. Usualmente este método es mayor recurrido que el anterior y también recibe el nombre de método de reducción de orden.

Reducción de orden conocida una solución

Es posible reducir una ecuación diferencial lineal homogénea de segundo orden

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = 0 \label{9} \tag{9}$$

a una ecuación diferencial de primer orden siempre que se conozca previamente una solución no trivial $y_{1}(x)$. Recordemos de la entrada anterior que una ecuación de la forma (\ref{9}) tiene como solución general la combinación lineal

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) \label{10} \tag{10}$$

con $y_{1}$ y $y_{2}$ funciones que forman un conjunto fundamental de soluciones en cierto intervalo $\delta$. Si conocemos $y_{1}$ podremos reducir la ecuación a una de primer orden y resolverla para obtener la solución $y_{2}$ y, por tanto, obtener la solución general.

Este método también es conocido como método de reducción de orden, pues tiene el mismo propósito que los casos anteriores, reducir de orden a una ecuación diferencial. La idea general del método es la siguiente.

Comenzaremos con el conocimiento previo de una solución no trivial $y_{1}(x)$ de la ecuación homogénea (\ref{9}) definida en un intervalo $\delta$. Lo que buscamos es una segunda solución $y_{2}(x)$, tal que $y_{1}$ y $y_{2}$ formen un conjunto fundamental de soluciones en $\delta$, es decir, que sean soluciones linealmente independientes entre sí. Recordemos que si ambas soluciones son linealmente independientes, entonces el cociente $\dfrac{y_{2}}{y_{1}}$ no es constante en $\delta$, es decir

$$\dfrac{y_{2}(x)}{y_{1}(x)} = u(x)$$

o bien,

$$y_{2}(x) = u(x) y_{1}(x) \label{11} \tag{11}$$

Como queremos encontrar $y_{2}$ y previamente conocemos $y_{1}$, entonces debemos determinar la función $u(x)$, dicha función se determina al sustituir (\ref{11}) en la ecuación diferencial dada, esto reducirá a dicha ecuación a una de primer orden donde la variable dependiente será $u$.

Desarrollemos el método de manera general para encontrar la expresión de $u(x)$ y, por tanto, de $y_{2}(x)$ y finalmente realicemos un ejemplo.

Método de reducción de orden

Este método se aplica a las ecuaciones diferenciales de la forma

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = 0$$

Si dividimos esta ecuación por $a_{2}(x) \neq 0$ obtenemos la forma estándar

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{12} \tag{12}$$

Con

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)}$$

ambas continuas en algún intervalo $\delta$. Supongamos además que $y_{1}(x)$ es una solución conocida de (\ref{12}) en $\delta$ y que $y_{1}(x) \neq 0 $ para toda $x \in \delta$. Si se define

$$y(x) = u(x) y_{1}(x)$$

derivando se tiene

$$\dfrac{dy}{dx} = u \dfrac{dy_{1}}{dx} + y_{1} \dfrac{du}{dx} \label{13} \tag{13}$$

Derivando una segunda ocasión se tiene

$$\dfrac{d^{2}y}{dx^{2}} = u \dfrac{d^{2}y_{1}}{dx^{2}} + 2\dfrac{dy_{1}}{dx} \dfrac{du}{dx} + y_{1} \dfrac{d^{2}u}{dx^{2}} \label{14} \tag{14}$$

Sustituyendo (\ref{13}) y (\ref{14}) en la forma estándar (\ref{12}) obtenemos lo siguiente.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + P\dfrac{dy}{dx} + Qy &= \left[ u \dfrac{d^{2}y_{1}}{dx^{2}} + 2\dfrac{dy_{1}}{dx} \dfrac{du}{dx} + y_{1} \dfrac{d^{2}u}{dx^{2}} \right] + P \left[ u \dfrac{dy_{1}}{dx} + y_{1} \dfrac{du}{dx} \right] + Q \left[ u y_{1}\right] \\
&= u \left[ \dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Qy_{1} \right] + y_{1} \dfrac{d^{2}u}{dx^{2}} + \left( 2 \dfrac{dy_{1}}{dx} + Py_{1} \right) \dfrac{du}{dx} \\
&= 0
\end{align*}

Como $y_{1}(x)$ es solución sabemos que

$$\dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Qy_{1} = 0$$

Entonces el resultado anterior se reduce a lo siguiente.

$$y_{1} \dfrac{d^{2}u}{dx^{2}} + \left( 2 \dfrac{dy_{1}}{dx} + Py_{1} \right) \dfrac{du}{dx} = 0 \label{15} \tag{15}$$

Consideremos el cambio de variable

$$w = \dfrac{du}{dx} \hspace{1cm} y \hspace{1cm} \dfrac{dw}{dx} = \dfrac{d^{2}y}{dx^{2}}$$

Entonces la ecuación (\ref{15}) se puede escribir como

$$y_{1} \dfrac{dw}{dx} + \left( 2 \dfrac{dy_{1}}{dx} + Py_{1} \right) w = 0 \label{16} \tag{16}$$

Esta ecuación es tanto lineal como separable. Separando las variables e integrando, se obtiene

\begin{align*}
\dfrac{1}{w}\dfrac{dw}{dx} + 2\dfrac{1}{y_{1}} \dfrac{dy_{1}}{dx} &= -P \\
\int{\dfrac{dw}{w}} + 2\int{\dfrac{dy_{1}}{y_{1}}} &= -\int{P dx} \\
\ln |w| + 2 \ln|y_{1}| + k &= -\int{P dx} \\
\ln |w y^{2}_{1}| + k &= -\int{P dx} \\
wy^{2}_{1} &= k_{1}e^{-\int{P dx}}
\end{align*}

Despejando a $w$ de la última ecuación, usando $w = \dfrac{du}{dx}$ e integrando nuevamente, se tiene

\begin{align*}
\dfrac{du}{dx} &= \dfrac{k_{1}e^{-\int{P dx}}}{y^{2}_{1}} \\
\int{du} &= \int{\dfrac{k_{1}e^{-\int{P dx}}}{y^{2}_{1}} dx} \\
u &= k_{1} \int{\dfrac{e^{-\int{P} dx}}{y^{2}_{1}} dx} + k_{2}
\end{align*}

Eligiendo $k_{1} = 1$ y $k_{2} = 0$ obtenemos la expresión para la función $u(x)$,

$$u(x) = \int{\dfrac{e^{-\int{P} dx}}{y^{2}_{1}} dx} \label{17} \tag{17}$$

Si sustituimos en

$$y(x) = y_{2}(x) = u(x)y_{1}(x)$$

obtenemos que la segunda solución de la ecuación diferencial (\ref{12}) es

$$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x)} dx}}{y^{2}_{1}(x)} dx} \label{18} \tag{18}$$

De tarea moral puedes probar que la función $y_{2}$ satisface la ecuación diferencial y que $y_{1}$ y $y_{2}$ son linealmente independientes en algún intervalo en el que $y_{1}$ no es cero.

Realicemos un ejemplo en el que apliquemos este método.

Ejemplo: Encontrar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 16y = 0$$

dada la solución no trivial

$$y_{1}(x) = \cos(4x)$$

Solución: En esta ocasión apliquemos directamente la expresión (\ref{18}) para obtener la solución $y_{2}(x)$.

La ecuación diferencial a resolver es

$$\dfrac{d^{2}y}{dx^{2}} + 16y = 0$$

Si la comparamos con la forma estándar (\ref{12}) notamos que

$$P(x) = 0 \hspace{1cm} y \hspace{1cm}Q(x) = 16$$

Sustituyendo en (\ref{18}), se tiene

\begin{align*}
y_{2}(x) &= \cos(4x) \int{\dfrac{e^{0}}{\cos^{2}(4x)} dx} \\
&= \cos(4x) \int{\dfrac{1}{\cos^{2}(4x)} dx}
\end{align*}

Para resolver la integral consideremos el cambio de variable $s = 4x$, $ds = 4 dx$.

$$\int{\dfrac{1}{\cos^{2}(4x)} dx} = \dfrac{1}{4} \int{\sec^{2}(s) ds}$$

Sabemos que

$$\int{\sec^{2}(s) ds} = \tan(s)$$

Así

$$y_{2}(x) = \cos(4x) \left( \dfrac{1}{4} \tan(4x) + k_{1} \right)$$

Hacemos $k_{1} = 0$.

$$y_{2}(x) = \dfrac{\cos(4x)}{4} \left( \dfrac{\sin(4x)}{\cos(4x)} \right) = \dfrac{\sin(4x)}{4}$$

Como la solución general corresponde a la combinación lineal (\ref{10}), en las constantes $c_{1}$ y $c_{2}$ se pueden englobar todas las constantes que pudieran aparecer, por ello es que podemos tomar $k_{1} = 0$ y además podemos evitar la constante $\dfrac{1}{4}$ de $y_{2}$ y considerar que

$$y_{2}(x) = \sin(4x)$$

Veamos que efectivamente satisface la ecuación diferencial.

$$\dfrac{dy_{2}}{dx} = 4 \cos(4x) \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} = -16 \sin(4x)$$

Sustituyendo en la ecuación diferencial.

$$\dfrac{d^{2}y}{dx^{2}} + 16y = -16 \sin(4x) + 16 \sin(4x) = 0$$

Cumple con la ecuación diferencial, lo mismo podemos verificar con la solución dada

$$y_{1}(x) = \cos(4x)$$

Tenemos,

$$\dfrac{dy_{1}}{dx} = -4 \sin(4x) \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{1}}{dx^{2}} = -16 \cos(4x)$$

Sustituyendo en la ecuación diferencial.

$$\dfrac{d^{2}y}{dx^{2}} + 16y = -16 \cos(4x) + 16 \cos(4x) = 0$$

Como ambas soluciones son linealmente independientes, entonces forman un conjunto fundamental de soluciones. Otra forma de verificarlo es mostrando que el Wronskiano es distinto de cero y lo es ya que

$$W(y_{1}, y_{2}) = 4 \neq 0$$

Por lo tanto, la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 16y = 0$$

corresponde a la combinación lineal

$$y(x) = c_{1} \cos(4x) + c_{2} \sin(4x)$$

$\square$

Con esto concluimos esta entrada sobre un primer método para resolver algunas ecuaciones diferenciales de segundo orden. En la siguiente entrada desarrollaremos un nuevo método.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de las siguientes ecuaciones diferenciales lineales.
  • $x \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} = 0$
  • $(x-1) \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} = 0$
  1. Resolver las siguientes ecuaciones diferenciales no lineales.
  • $(y -1)\dfrac{d^{2}y}{dx^{2}} = \left( \dfrac{dy}{dx} \right)^{2} $
  • $\left( \dfrac{dy}{dx} \right)^{2} -2 \dfrac{d^{2}y}{dx^{2}} = 0$
  1. Dada una solución no trivial de las siguientes ecuaciones diferenciales, hallar la segunda solución, tal que ambas formen un conjunto fundamental de soluciones y determina la solución general.
  • $\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 0; \hspace{1cm} y_{1}(x) = e^{2x}$
  • $\dfrac{d^{2}y}{dx^{2}} -25y = 0; \hspace{1cm} y_{1}(x) = e^{5x}$
  1. Demostrar que la función $$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x)} dx}}{y^{2}_{1}(x)} dx}$$ Satisface la ecuación diferencial $$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0$$ Siempre que $y_{1}(x)$ sea solución de la misma ecuación.
  1. Usando el inciso anterior, demostrar que $$S = \left \{ y_{1}(x), y_{1}(x) \int{\dfrac{e^{-\int{P(x)} dx}}{y^{2}_{1}(x)} dx} \right \}$$ es un conjunto fundamental de soluciones de la ecuación diferencial $$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0$$

Más adelante…

En esta entrada desarrollamos un método de reducción de orden basado en un cambio de variable para ecuaciones lineales y no lineales de segundo orden que satisfacen algunas condiciones y desarrollamos el método de reducción de orden para ecuaciones diferenciales lineales homogéneas en el caso en el que previamente conocemos una solución no trivial.

En la siguiente entrada estudiaremos otro método para resolver un tipo particular de ecuaciones diferenciales, éstas son las ecuaciones diferenciales lineales homogéneas con coeficientes constantes, de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = 0$$

Con $a, b$ y $c$ constantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»