Cálculo Diferencial e Integral I: Funciones polinomiales y racionales. Análisis geométrico de funciones

Introducción

Quizás en algunos de tus cursos anteriores te presentaron funciones parecidas a las siguientes:
\begin{align*}
f(x)&= 4x^{2}-3x+1 & t(x)&=\frac{x^{2}+2x+5}{x^{3}+3} & k(x)&= x^{3}\\
\end{align*}
todas pertenecen al conjunto de las funciones algebraicas. A lo largo de esta entrada veremos las definiciones formales para cada uno y comenzaremos a realizar un análisis geométrico con este conjunto de funciones.

Funciones polinomiales

Definición(función polinomial): Sea $f$ una función. Decimos que $f$ es una función polinomial si está definida como:
$$p(x)=a_{n}x^{n}+ a_{n-1}x^{n-1}+ \ldots + a_{0}$$
donde$ n \in \mathbb{N}\cup \left\{0 \right\}$ y los coeficientes $a_{i} \in \r$.

Definición (grado de una función polinomial): Llamamos grado de p(x) a la potencia mayor de $x$ con un coeficiente $a_{1} \neq 0$
Ejemplos:

  • $g(x)= 120x^{10}+34x^{6}+14$
    el grado de $g(x)$ es $10$
  • $h(x)= \pi x^{3}+ 2\pi x^{2}+x$
    el grado de $h(x)$ es $3$

Una observación importante es que las funciones del tipo $f(x)=x^{n}$ con $n\in \mathbb{N}$, mejor conocidas cómo potencias de $x$ son un caso particular de las funciones polinomiales.

Funciones racionales

Definición (función racional): Consideremos $g$ una función. Diremos que $g$ es una función racional si está definida como el cociente de dos polinomios:
$$g(x)=\frac{a_{n}x^{n}+ a_{n-1}x^{n-1}+ \ldots + a_{0}}{b_{n}x^{n}+ b_{n-1}x^{n-1}+ \ldots + b_{0}}$$
donde $ n \in \mathbb{N}\cup \left\{0 \right\}$, los coeficientes $a_{i}, b_{i} \in \r$ y $b_{n}x^{n}+ b_{n-1}x^{n-1}+ \ldots + b_{0} \neq 0$.

Ejemplos:

  • $$h(x)=\frac{x^{2}-1}{x+3}$$
  • $$g(x)=\frac{x}{x^{3}+1}$$

Análisis geométrico

En numerosas ocasiones tendremos la necesidad de realizar un bosquejo de la gráfica de una función. Para ello nos basaremos en la gráfica de una función conocida previamente y la siguiente serie de elementos donde consideremos a $f(x)$ una función en los reales y a $\alpha$ una constante:
Traslaciones

  • Para $h(x)= f(x)+ \alpha$ con $\alpha >0$ tenemos que la gráfica de $h$ es la gráfica de $f$ trasladada verticalmente $\alpha$ unidades hacia arriba (sobre el eje $y$).
  • Y para $h(x)= f(x)- \alpha$ con $\alpha >0$ la gráfica de $h$ es la gráfica de $f$ trasladada verticalmente $\alpha$ unidades hacia abajo (sobre el eje $y$).
  • Ahora si $h(x)= f(x-c)$ con $\alpha >0$ entonces la gráfica de $h$ sería la gráfica de $f$ trasladada horizontalmente $\alpha$ unidades hacia la derecha (sobre el eje $x$).
  • En cambio si $h(x)= f(x+c)$ con $\alpha >0$ entonces la gráfica de $h$ sería la gráfica de $f$ trasladada horizontalmente $\alpha$ unidades hacia la izquierda (sobre el eje $x$).

Consideremos los siguientes ejemplos para $f(x)= x^{2}$:

Ampliaciones y reducciones

  • Si $g(x)= f(\alpha x)$ con $\alpha >1$ su gráfica sería la gráfica de $f$ comprimida horizontalmente (sobre el eje $x$).
  • Para $g(x)= f(\alpha x)$ con $0<\alpha <1$ su gráfica sería la gráfica de $f$ expandida horizontalmente (sobre el eje $x$).
  • Y para $g(x)= f(\alpha x)$ con $\alpha <-1$ su gráfica sería la gráfica de $f$ comprimida horizontalmente (sobre el eje $x$) y reflejada respecto del eje $y$.
  • Finalizamos con $g(x)= f(\alpha x)$ con $-1<\alpha <0$ su gráfica sería la gráfica de $f$ expandida horizontalmente (sobre el eje $x$) y reflejada respecto del eje $y$.

Observación: Si $\alpha=1$ vemos que $f((1)x)=f(x)$ por lo que no hay cambios.

  • Ahora bien si $g(x)= \alpha f(x)$ donde $\alpha >1$ la gráfica de $g$ es la gráfica de $f$ expandida verticalmente (sobre el eje $y$).
  • Cuando $g(x)= \alpha f(x)$ donde $0<\alpha <1$ la gráfica de $g$ es la gráfica de $f$ comprimida verticalmente (sobre el eje $y$).
  • Si $g(x)= \alpha f(x)$ donde $-1<\alpha $ la gráfica de $g$ es la gráfica de $f$ expandida verticalmente (sobre el eje $y$) y reflejada respecto del eje $x$.
  • Para $g(x)= \alpha f(x)$ donde $-1<\alpha <0$ la gráfica de $g$ es la gráfica de $f$ comprimida verticalmente (sobre el eje $y$) y reflejada respecto del eje $x$.

Observación: Para $\alpha =1$ tenemos que $(1)(f(x))=f(x)$.

Hablemos sobre la función inversa

Recordemos que si tenemos $f: A \rightarrow B$ una función esto significa que:
$$Graf(f)= \left\{(x, f(x)): x \in A \right\}$$

Ahora si consideramos a $f$ una función invertible, vemos que para $f^{1}: B \rightarrow A$ ocurre:
$$Graf(f^{-1})= \left\{(f(x), x): f(x) \in B \right\}$$
esto nos permite observar que un punto $(y,x) \in Graf(f^{-1})$ es la reflexión ortogonal del punto $(x,y) \in Graf(f)$ respecto a la función identidad.

De este modo podemos obtener la gráfica de $f^{-1}$ reflejando ortogonalmente la gráfica de $f$ respecto a la identidad.

En este ejemplo tomamos la función $f(x)=x^{2}$ en el dominio donde cumple ser biyectiva por lo que su función inversa sería $h(x)= \sqrt{x}$:

En la sección de Tarea moral encontrarás algunos ejercicios que te ayudará a poner en práctica lo desarrollado en esta entrada.

Tarea moral

Realiza las gráficas de las siguientes funciones dado que $f(x)=x^{3}$:

  • $f(x)+4$
  • $f(x-3)+2$
  • $f^{-1}(x)$
  • $f(2x)$
  • $2f(x)$

Más adelante

En la siguiente entrada comenzaremos a revisar al conjunto de las funciones trigonométricas, veremos sus definiciones, algunas identidades trigonométricas que serán de utilidad y sus gráficas.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.