Archivo de la etiqueta: grupo diédrico

Álgebra Moderna I: Palabras.

Por Cecilia del Carmen Villatoro Ramos

Introducción

En la entrada anterior tomamos un grupo $G$ y un subconjunto $X \subseteq G$ y, logramos encontrar al menor subgrupo de $G$ que contiene a $X$. Este conjunto resultó ser la intersección de todos los subgrupos contenidos en $G$ que, a su vez, contienen a $X$. Recordemos que se llama el subgrupo de $G$ generado por $X$ y se denota

\begin{align*}
\left< X\right> = \bigcap_{\substack{H \leq G \\ X \subseteq H}} H.
\end{align*}

Sin embargo, esto no nos dice mucho sobre los elementos de $X$. Ilustremos un poco lo que tenemos. Tomemos un grupo $G$, un subconjunto $X \subseteq G$ y al generado $ \left<X\right> \subset G$. Entonces, si tomamos $x_1,x_2,x_3 \in X$, sabemos que todas las potencias de esos elementos están en el generado de $X$. Es decir, para todas $q,r,s \in \z$, $x_1^q, x_2^r, x_3^s \in \left<X\right>$. Más aún, las diferentes multiplicaciones de esos elementos también están en $\left<X\right>$, por ejemplo, si consideramos $x_1^1, x_3^{-2}, x_2^{3}$ y $x_1^{-4}$, el elemento

\begin{align}\label{palabra}
x_1^{-4} x_3^{-2} x_1^1 x_2^{3}
\end{align}

está en $\left<X\right>$, por ser una multiplicación de elementos del subgrupo. Entonces, en el generado de $X$ estarán todos los elementos de $X$, las potencias de esos elementos y todas las multiplicaciones entre dichas potencias.

Al elemento \eqref{palabra} la llamamos una palabra en $X$ y es lo que estudiaremos en esta entrada. Además, las palabras nos permiten dar descripción del subgrupo generado. Esta idea es análoga a la que se estudia en álgebra lineal cuando se describe al subespacio generado por un conjunto como una colección de combinaciones lineales de vectores. Sin embargo, en el caso de subgrupos, esta descripción no es igual a la de álgebra lineal porque hay que recordar que un grupo en general no es abeliano. Esto influye en qué tanto se pueda simplificar una palabra.

Nuestra primera aproximación a las palabras

Definición. Sea $G$ un grupo, $X$ un subconjunto de $G$. Una palabra en $X$ es, o bien el neutro $e$, o bien un elemento de la forma

$x_1^{\alpha_1}, \dots, x_n^{\alpha_n}$

con $n \in \n^+$, $x_1,\dots, x_n\in X, \alpha_1, \dots, \alpha_n \in \z$.

Notación. Denotamos por $W_X$ al conjunto de todas las palabras en $X$.

Ejemplos

  1. Sea $G = D_{2(4)}$ el grupo diédrico formado por las simetrías de un cuadrado centrado en el origen. Sea $a$ la rotación de $\pi/2$ y $b$ la reflexión con respecto al eje $x$.
    $ba^3 b a^{-1} b^{-4} a$ es una palabra en $\{a, b\}$.
    En este caso, la palabra sí se puede simplificar como:
    \begin{align*}
    b a^3 b a^{-1}b^{-4} a &= ba^3ba^{-1} e a \\
    & = b a^3 b a^{-1} a \\
    & = ba^3 b
    \end{align*}
    Para la primera igualdad, recordemos que $b$ es la rotación por $\pi/2$, entonces al aplicar esa rotación $4$ veces, el cuadrado recupera su estado inicial, así por eso $ b^{4} = e$ y de forma análoga como $b^{-1}$ es la rotación por $-\pi/2$ se tiene que $b^{4} = e$.

    Notación. Usaremos la notación $D_{2(4)}$ para denotar las simetrías del cuadrado (que tiene 4 vértices), este grupo diédrico tiene 8 elementos. Otros autores pueden escribir simplemente $D_8$, pero esto se puede confundir con el grupo de las simetrías de un octágono. De forma más general el grupo diédrico de un polígono de $n$ lados es el grupo de simetrías de un polígono regular de $n$ lados centrado en el origen, con la operación de composición. Lo denotatemos por $D_{2n}$ y tendrá $2n$ elementos.
  2. Consideremos el conjunto $ \{\pm 1, \pm i, \pm j, \pm k\}$. Este conjunto es llamado el grupo de los cuaterniones o cuaternios y se suele denotar por $Q$ o $Q_8$ porque tiene 8 elementos.
    Las operaciones en el conjunto se definen como:
    \begin{align*}
    1 a &= a 1 = a &\forall a \in Q \\
    (-1) a &= a (-1) = -a & \forall a \in Q
    \end{align*}
    Además, las multiplicaciones no son conmutativas y están definidas así:
    $\begin{align*}
    ij &= k, \quad &jk = i, \quad &ki =j, \\
    ji &= -k, \quad &kj = -i, \quad &ik=-j, \\
    i^2 &= j^2 = k^2 = -1.
    \end{align*}$

    Una palabra en $\{j\}$ es $j^5j^{-2} j^{3} j^{-4}$, resolviendo las potencias podemos concluir que esta palabra es igual a $-1$ (verificarlo quedará como ejercicio). Podemos ahora considerar el conjunto de todas las palabras formadas con el elemento $j$, es decir el conjunto de palabras en $\{j\}$. Se puede ver que:
    \begin{align*}
    W_{\{j\}} = \{j,-1,-j, +1\}.
    \end{align*}

    También podemos considerar el conjunto de palabras formadas con los elementos $j$ y $k$, es decir el conjunto de palabras en $\{j,k\}$. En este caso se tiene que:
    \begin{align*}
    W_{\{j,k\}} = \{\pm 1, \pm i, \pm j, \pm k \}=Q.
    \end{align*}

Palabras y el subgrupo generado por $X$

Lema. Sea $G$ un grupo y $X$ un subconjunto de $G$. $W_X$ es un subgrupo de $G$ que contiene a $X$.

Demostración.
Caso 1, cuando $X = \emptyset$.
En este caso, $W_X = \{e\} \leq G$ y $X = \emptyset \subset \{e\} = W_X$.

Caso 2, cuando $X \neq \emptyset$.
P.D. $W_X \leq G$.
Por definición $e \in W_X$.
Sean $a, b \in W_X$, entonces

\begin{align*}
a &= x_1^{\alpha_1} \dots x_n^{\alpha_n} & \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m \in \z \\
b &= y_1^{\beta_1} \dots y_m^{\beta_m} & x_1, \dots, x_n, y_1, \dots, y_m \in X\\
&& n,m \in \n^+
\end{align*}

Entonces, podemos tomar $ab^{-1}$ y verificar quién es

\begin{align*}
a b^{-1} &= (a_1^{\alpha_1} \dots x_n^{\alpha_n})(y_1 \dots y_m^{\beta_m})^{-1} \\
& = x_1^{\alpha_1} \dots x_n^{\alpha_n}y_m^{-\beta} \dots y_1^{-\beta_1} \in W_X.
\end{align*}

Por lo tanto $W_X \leq G$.

P.D. $X \subseteq W_X$.
Sea $x \in X$,
\begin{align*}
x = x^1 \in W_X.
\end{align*}

Por lo tanto $X \subseteq W_X$.

En ambos casos $W_X$ es un subgrupo de $G$ que contiene a $X$.

$\blacksquare$

Teorema. Sea $G$ un grupo, $X$ un subconjunto de $G$. Entonces

$\left< X \right> = W_X$.

Demostración.
$\subseteq)$ Por el lema anterior, $W_X \in \{H \leq G : X \subseteq H\}$. Entonces, por nuestra definición del subgrupo generado,
\begin{align*}
\left< X \right> = \bigcap_{\substack{H \leq G \\ X \subseteq H}} H \subseteq W_X.
\end{align*}

$\supseteq)$ Sea $a \in W_X$, entonces $a = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ con, $n \in \n^+$, $\alpha_1, \dots, \alpha_n \in \z$ y $x_1, \dots, x_n \in X$.

Como cada $x_i \in X$, con $i \in \{1,..,n\}$, y $X \subseteq \left< X \right>$, entonces $x_i\in\left< X \right>$ para toda $i \in \{1, \dots ,n\}$.
Como el generado es un subgrupo de $G$, obtenemos que $x_i^{\alpha_i} \in \left< X \right>$ para toda $i \in \{1,\dots,n\}$. Usando nuevamente que el generado es un subgrupo de $G$ tenemos que $a = x_1^{\alpha_1} \dots x_n^{\alpha_n} \in \left<X\right>$.

Por lo tanto, $\left< X \right> = W_X$.

$\blacksquare$

¿Quién es el orden de un producto?

Ya hemos hablado del orden de un elemento. Si tenemos un grupo $G$ y $a, b \in G$ y sabemos quién es $o(a)$ y $o(b)$, ¿podemos saber cómo es $o(ab)$? En algunos casos podemos respuesta a esta pregunta dando una explicación más precisa de cómo es el orden de un producto en términos del orden de sus factores:

Teorema. Sea $G$ un grupo y $a, b \in G$.
Si $a$ y $b$ son de orden finito, sus ordenes son primos relativos y $ab = ba$, entonces

\begin{align*}
o(ab) &= o(a) o(b) \\
\text{y } \left< a,b \right> &= \left<ab\right>.
\end{align*}

Demostración.
Sea $G$ un grupo, $a,b \in G$ de orden finito con $n = o(a)$, $m = o(b)$. Supongamos que $(n,m) = 1$ y $ab = ba$.

P.D. $o(ab) = nm$.
Entonces

\begin{align*}
(ab)^{nm} & = a^{nm} b^{nm} & \text{ porque } ab = ba \\
& = (a^n)^m(b^m)^n & \text{ propiedades de los exponentes}\\
& = e^m e^n \\
& = e
\end{align*}

Ya teniendo que $(ab)^{nm} = e$, tenemos que ver que $nm$ es el menor exponente positivo tal que al elevar $ab$ a ese exponente nos da el neutro, o bien ver que divide a cualquier otro $k$ tal que $(ab)^k = e$. Procedamos de acuerdo a la segunda opción.

Sea $k\in\z$ tal que $(ab)^k = e$, y como $ab=ba$ esto implica que $a^k b^k = e$. Despejando, obtenemos $a^k = b^{-k}$.

Así $(a^k)^m = (b^{-k})^m = (b^m)^{-k} = e^{-k} = e$ (porque $o(b) = m$), es decir $a^{km} = e$. Dado que $o(a) = n$, entonces $n|km$ y como $(n,m) = 1$ entonces $n|k$.

Si consideramos ahora $(a^k)^n = (b^{-k})^n$ y seguimos un argumento análogo obtenemos que $m|k$.

Como $n|k$ y $m|k$ y $(n,m) = 1$, entonces $nm|k$.
Por lo tanto $o(ab) = nm$.

P.D. $\left< a,b \right> = \left< ab \right>$.
Como toda palabra en $\{ab\}$ es una palabra en $\{a, b\}$ entonces
\begin{align*}
\left< ab \right> \subseteq \left< a, b \right>.
\end{align*}

Por otro lado, como $ab = ba$, toda palabra en $\{a,b\}$ se reduce a una de la forma $a^{i}b^{j}$ con $i, j \in \z$, y como $o(a) = n$, $o(b) = m$, la expresión $a^{i}b^{j}$ se puede reducir aún más a una expresión de la forma $a^{i}b^{i}$ con $0 \leq i < n$ y $0 \leq j < m$.

Entonces $\left< a, b \right> = \{a^{i}b^{j}: 0 \leq i < n, 0 \leq j < m\}$. Luego, $|\left<a, b\right>| \leq nm$.
Pero $\left< ab \right> \subseteq \left<a,b\right>$, entonces $|\left< ab \right>| \leq |\left< a,b \right>|$.
Así,

\begin{align*}
nm = o(ab) = |\left< ab \right>| &\leq |\left< a,b \right>| \leq nm. \\
\end{align*}

Por lo tanto $\left<ab\right> = \left< a, b \right>$.

$\blacksquare$

Tarea moral

  1. En el grupo de los cuaternios definido anteriormente, verifica que $j^5j^{-2}j^3j^{-4} = -1$.
  2. Considera $Q$, el grupo de cuaternios. Reduce la siguiente palabra a uno de los elementos $\pm 1, \pm i, \pm j, \pm k$,
    $$\begin{align*}
    j^7k(-i)jki^2jk^{-6}
    \end{align*}$$
  3. Sea $D_{2n} = \{\text{ id }, a, \dots, a^{n-1}, ab, \dots, a^{n-1}b\}$ el grupo diédrico formado por las simetrías de un polígono regular de $n$ lados, con $a$ la rotación de $\displaystyle \frac{2\pi}{n}$ y $b$ la reflexión con respecto al eje $x$.
    1. Identifica geométricamente quiénes son $\text{ id }, a, \dots, a^{n-1}, ab, \dots, a^{n-1}b$.
    2. Determina quién es el elemento $bab$ y, de modo más general, quién es el elemento $ba^{i}b$ para toda $i\in\z$.
    3. Determina quién es el elemento $ba^i$ para toda $i\in\z$.
  4. Considera el grupo simétrico $S_5$, $\alpha$ la permutación que manda $1$ en $2$, $2$ en $3$ y $3$ en $1$, fija a $4$ y a $5$, y $\beta$ la permutación que intercambia $4$ y $5$.
    1. Encuentra $\beta \alpha$ y $\alpha \beta$.
    2. Encuentra el orden de $\alpha$, $\beta$, $\alpha\beta$ y $\beta\alpha$.
  5. Por último, te invitamos a que veas este video que habla sobre las aplicaciones tecnológicas del grupo de los cuaternios. El video está en inglés, pero tiene subtítulos en español.

Más adelante…

¡Felicidades por acabar la Unidad 1! Ya entiendes las bases de este curso, trata de recordarlas porque las estaremos usando implícitamente.
En la siguiente unidad estaremos viendo Permutaciones y Grupo Cociente, para no adelantar mucho, sólo diremos que ambas estructuras son grupos muy importantes en el álgebra y nuestros objetos de estudio en la siguiente unidad.

Entradas relacionadas

Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo

Por Cecilia del Carmen Villatoro Ramos

Introducción

Cuando se estudian campos vectoriales u otras estructuras algebraicas primero se definen ciertas propiedades básicas y después, otras propiedades importantes que se desprenden de las primeras. Ahora, vamos a ver propiedades de los grupos. Dentro de los grupos mencionamos la existencia de un neutro, asociatividad e inverso. Pero de ahí se desprenden otras propiedades que vamos a usar como la cancelación, la unicidad de los neutros, etc.

Propiedades de grupos

Propiedades. Sea $(G,*)$ un grupo, entonces

  1. Para cualesquiera $x, a, b \in G$, se tiene que $$x*a = x*b \Rightarrow a = b,$$ también se vale cancelar por la derecha, $$a*x = b*x \Rightarrow a = b.$$ Estas propiedades son conocidas como las leyes de cancelación.
  2. El neutro en $(G,*)$ es único.
  3. Cada $a \in G$ tiene un único inverso y se denota por $a^{-1}$.
  4. Para toda $a \in G$, $(a^{-1})^{-1} = a$.

Demostración. 1. Sean $x,a,b \in G$.
Supongamos que $x*b = x*b$. Sea $\tilde{x} \in G$ inverso de $x$. Tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
\tilde{x} * (x * a) = \; & \tilde{x} * (x * b) & \text{ }\\
(\tilde{x} * x) * a = \; & (\tilde{x} * x) * b & \text{por la asociatividad}\\
e* a = \; & e * b & \text{por ser $\tilde{x}$ el inverso de $x$}\\
a = \;& b & \text{por ser $e$ el neutro}
\end{align*}$

La cancelación por la derecha es análoga y se deja como ejercicio.

2. Sean $e, e’ \in G$ neutros

$\begin{align*}
e \;{=}\; & e * e’ & \text{ por ser $e’$ un neutro}\\
{=}\; & e’ & \text{ por ser $e$ un neutro}\\
\end{align*}$

$\therefore \; e= \; e’$

3. Sea $a\in G$. Supongamos que $\hat{a}, \tilde{a} \in G$ son inversos de a, entonces:

$\begin{align*}
\hat{a} \;{=}\; & e * \hat{a} & \text{ por ser $e$ el neutro}\\
= \; &(\tilde{a} * a)* \hat{a} & \text{ por ser $\tilde{a}$ un inverso de $a$}\\
=\; & \tilde{a} * (a * \hat{a}) & \text{ por la asociatividad}\\
=\; & \tilde{a} * e & \text{por ser $\hat{a}$ un inverso de $a$}\\
=\; &\tilde{a} & \text{ por ser $e$ el neutro}
\end{align*}$

$\therefore \hat{a} = \tilde{a}$

4. Sea $a \in G$.
Como $(a^{-1})^{-1}$ es el inverso de $a^{-1}$ tenemos que

$a^{-1} * (a^{-1})^{-1} = e$

Como $a^{-1}$ es el inverso de $a$ tenemos que

$a^{-1} * a = e$

Así $a^{-1}*(a^{-1})^{-1} = a^{-1} *a$, entonces por la propiedad 1 podemos cancelar el elemento $a^{-1}$ por la izquierda y concluir que $(a^{-1})^{-1} = a$.

$\blacksquare$

Definición débil de grupo

Teorema. Sea $G$ un conjunto, $*$ una operación binaria en $G$. Supongamos que

  1. $*$ es asociativa,
  2. existe $e \in G$ tal que $e*a = a $ para toda $a \in G$ y
  3. $\forall a \in G$ existe $ \tilde{a} \in G$ tal que $\tilde{a}*a=e$,

entonces $(G,*)$ es un grupo. A partir de ahora, a las propiedades $2$ y $3$ de la definición débil de grupo las denotaremos como $2’$ y $3’$ respectivamente para dejar que los números $2$ y $3$ denoten las propiedades de la definición de grupo.

Demostración. Supongamos que $(G,*)$ cumple $1, 2’$ y $3’$.
Sea $a \in G$, por $3’$, existe $\tilde{a} \in G$ tal que $\tilde{a} * a = e$.
Tenemos que $\tilde{a}$ es un inverso izquierdo de $a$. Veamos primero que $\tilde{a}$ es también un inverso derecho de $a$, es decir que $a * \tilde{a} = e$.

$\begin{align*}
\tilde{a} * (a * \tilde{a}) \;=\;& (\tilde{a} * a) * \tilde{a} & \text{por la asociatividad}\\
= \; & e * \tilde{a} & \text{por la propiedad }3’\\
= \;& \tilde{a} & \text{ por la propiedad } 2’\\
\end{align*}$

$\Rightarrow \tilde{a} * (a * \tilde{a}) = \tilde{a}$.

Por $3’$ existe $b \in G$ tal que $b*\tilde{a}=e$. Multiplicando $ \tilde{a} * (a * \tilde{a}) = \tilde{a}$ a la izquierda por $b$ tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
b * (\tilde{a} * (a * \tilde{a})) =\;& b * \tilde{a} & \text{ }\\
(b * \tilde{a}) * (a * \tilde{a}) = \;& b * \tilde{a} & \text{por la asociatividad}\\
e * (a * \tilde{a}) =\;& e & \text{ya que $b$ es un inverso izquierdo de $\tilde{a}$}\\
a * \tilde{a}=\;& e &\text{ya que $e$ es un neutro izquierdo.}
\end{align*}$

Así, $\tilde{a}$ es también un inverso derecho de $a$.

Por $2’$, $e*a=a$ para toda $a\in G$, es decir $e$ es un neutro izquierdo. Veamos ahora que $e$ también es un neutro derecho probando que $a * e = a$ para toda $a \in G$.

Sea $a \in G$, por $3’$ existe $\tilde{a} \in G$ tal que $\tilde{a} * a=e$, y por lo que acabamos de probar $a * \tilde{a} = e$. Usando estas igualdades y la propiedad asociativa tenemos que

$a * e = a * (\tilde{a} * a) = (a * \tilde{a}) * a = e * a$

y como $e$ es un neutro por la izquierda, $e * a = a$. Así $a * e = a$.

Por lo tanto $(G, *)$ es un grupo.

$\blacksquare$

Tarea moral

  1. Usando la Definición débil de grupo, determina cuáles de estos conjuntos son un grupo.
    • $G = \r \setminus \{-1\}$, $a*b := a+b+ab$.
    • $G = \r^*$, $a*b = |a|b$.
    • $G = \{r \in \mathbb{Q} \;|\; r = \frac{p}{q} \text{ con } (p,q)= 1 \text{ y } q \text{ impar}\}$, $a*b = a+b$ (la adición usual).
    • Sea $X$ un conjunto. Considera $G = \mathcal{P}(X)$ el conjunto potencia de $X$ con la operación binaria $A \triangle B = (A \cup B)\setminus (A \cap B)$ para todo $A,B \in \mathcal{P}(X)$.
  2. Muestra que $G = \r^*$ con la operación $a * b = |a| b$, tiene un neutro izquierdo $e$ y para cada elemento $a$ existe $\tilde{a}$ tal que $a * \tilde{a} = e$ ¿qué puedes concluir con respecto a la definición débil de un grupo?
  3. Para el conjunto $\mathcal{S}:= \{\bigstar, \blacktriangledown, \blacklozenge, \clubsuit \}$, considera las operaciones que creaste en la tarea moral de una entrada anterior.
    • Si definiste una operación tal que $(\cS, *)$ es un grupo, comprueba las propiedades vistas en esta entrada y verifica la definición débil.
    • Si no, observa si alguna de las propiedades analizadas se cumplen con tu operación.
  4. Si quieres conocer el grupo de transformaciones lee la sección 3.1.1 del libro Introducción analítica a la geometría de Javier Bracho (página 112 a la 115).
  5. Si quieres conocer el grupo diédrico puedes ver el video Dihedral Group de Socratica. El video está en inglés. De todas maneras, después usaremos el grupo diédrico, así que lo definiremos más adelante.

Más adelante…

En la siguiente entrada generalizaremos la propiedad de la asociatividad porque hasta ahora sólo la manejamos con tres elementos. Además, seguiremos formalizando conceptos que ya conocemos intuitivamente: definiremos qué es una potencia, escribiremos las leyes de los exponentes y las demostraremos.

Entradas relacionadas