Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por $ X $

Introducción

Ya vimos qué es un subgrupo cíclico generado por $\left<a\right>$. Ahora nos preguntamos si, teniendo $G$ cíclico y tomando cualquier subrgrupo $H \subset G$ ¿será cierto que $H$ también es cíclico?

Ilustremos esto con un ejemplo. Consideremos $\z$ con la suma, en este caso $\z = \left<1\right>$,

$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$.

Entre posibles subgrupos podemos encontrar:

$\dots, -6, -4, -2, 0, 2, 4, 6, \dots$
$\dots, -9, -6, -3, 0, 3, 6, 9, \dots$

es decir $\left<2\right>$ y $\left<3\right>$ respectivamente. Pero también podemos observar que tanto $2$ como $3$ son la mínima potencia de $1$ que aparece en sus respectivos generados. Es decir, aunque el $1$ no esté en un subgrupo cíclico de $\z$, el subgrupo será generado por la mínima potencia de $1$ que sí sea elemento del subgrupo. En esta entrada, comenzaremos probando este resultado.

En la segunda parte de esta entrada regresaremos a nuestra problemática inicial. Si tenemos un subconjunto $X \subset G$, con $G$ un grupo, ¿cuál es el mínimo subgrupo $H \in G$ tal que $X \subset H$?

Podemos estar de acuerdo en que es posible que $X$ esté contenido en más de un subgrupo, en general estará contenido por una familia se subgrupos de $G$. A estos subgrupos los denotaremos como $H_i$ con $i \in \{1, \dots, n\}$. Entonces el mínimo subgrupo de $G$ que contenga a $X$ será la intersección de esta familia, porque sabemos que $\displaystyle X \subset \bigcap_{i \in \{1, \dots, n\}}H_i$. Esto será lo que desarrollaremos en la segunda parte de la entrada.

Los subgrupos de un grupo cíclico, es cíclico.

Teorema. Todo subgrupo de un grupo cíclico, es cíclico.

Demostración.
Sea $G$ un grupo cíclico, $H \leq G$.
Como $G$ es cíclico, entonces $G = \left< a \right>$ para algún $a \in G$.

Para ver que $H$ es cíclico tenemos que proponer un generador de $H$, este generador tiene que ser una potencia de $a$, porque $H \subset G$ y $G$ es cíclico. Por lo que dijimos en la introducción, agarraremos la menor potencia de $a$ que esté en $H$. Pero, para ello, tenemos que asegurarnos de que existen potencias positivas de $a$. Así, manejaremos dos casos.

Si $H = \{e\} = \left< e \right>$ que es cíclico.

Si $H \neq \{e\}$, sea $h \in H\setminus\{e\}$. Entonces como $H \leq G$, $h \in G = \left<a\right>$. Así $h = a^k$ para algún $k \in \z$ y como $h \neq e$ entonces $k \neq 0$.

Tenemos que $h^{-1} = a^{-k} \in H$ pues $H$ es subgrupo.

Así $a^k$, $a^{-k} \in H$ (con $k \in \z \setminus\{0\}$), entonces no importa si $k$ es positivo o negativo, siempre habrá $a$ elevado a algo positivo, es decir,

$\{n \in \z^+ | a^n \in H\} \neq \emptyset$.

Sea $m = \text{mín } \{n \in \z^+|a^n\in H\}$.
P.D. $H = \left< a^m \right>$

$\supseteq]$
Por la elección de $m$, $a^m \in H$ y entonces $\left< a^m \right> \subseteq H$.

$\subseteq]$
Sea $h \in H$. Como $H \leq G = \left<a\right>$, entonces $h = a^k$ para algún $k \in \z$.

Por el algoritmo de la división existen $q,r \in \z$ tales que $k = mq+r$ con $0 \leq r < m$.
Entonces $h = a^k = a^{mq+r} = (a^m)^q a^r$
$(a^m)^{-q}h = a^r$

Pero $a^m \in H$, $h \in H$ y $H$ es subgrupo, entonces $a^r = (a^m)^{-q}h \in H$ con $0 \leq r < m$. Para no contradecir la elección de $m$ concluimos que $r=0$.

Así $h = a^{mq} = (a^m)^q \in \left< a^m \right>$.
Por lo tanto $H = \left< a^m \right>$ y $H$ es cíclico.

$\square$

El mínimo subgrupo que contiene a cualquier subconjunto $X$

Teorema. La intersección de una familia no vacía de subgrupos de un grupo $G$ es un subgrupo de $G$.

Cuando decimos familia no vacía nos referimos a que haya al menos un grupo a intersecar. Es una condición que se pide para que a nivel conjuntista no hayaproblemas con la intersección.

Demostración.
Sea $G$ un grupo y $\{H_i | i \in I\}$ una familia de subgrupos de $G$.
P.D. $\displaystyle \bigcap_{i \in I} H_i \leq G$.

Como $H_i \leq G$ para toda $i \in I$, entonces $e \in H_i$ para toda $i \in I$ y así $\displaystyle e \in \bigcap_{i \in I} H_i$.

Sea $\displaystyle a, b \in \bigcap_{i \in I}$. Tenemos que $a,b \in H_i$ para toda $i \in I$.
Como $H_i \leq G$ para toda $i \in I$, entonces $ab^{-1} \in H_i$ para $i \in I$ y así $a b^{-1} \in \displaystyle \bigcap_{i \in I}H_i$.

Por lo tanto $\displaystyle \bigcap_{i \in I} H_i \leq G$.

$\square$

Corolario. Sea $G$ un grupo y $X$ un subconjunto de $G$. Existe un subgrupo de $G$ que contiene a $X$ y que estará contenido en cualquier subgrupo de $G$ que contenga a $X$.

Demostración.
Sea $G$ un grupo y $X$ subconjunyo de $G$.
$G$ es un subgrupo de $G$ que contienen a $X$ y entonces la familia $\{H \leq G | X \subseteq H\}$ es no vacia. Entonces sí existen subgrupos de $G$ que contienen a $X$.

Consideremos $\displaystyle \bigcap_{\substack{H \leq G \\ X \subseteq H}} H$. Por el teorema anterior es un subgrupo de $G$ y por construcción $X \in \displaystyle \bigcap_{\substack{H \leq G \\ X \subseteq H}} H$.

Si $\hat{H}$ es un subconjunto de $G$ que contiene a $X$, entonces $\hat{H} \in \{H \leq G | X \subseteq H \}$, y al ser uno de los intersectados, obtenemos

$\displaystyle \bigcap_{\substack{H \leq G \\ X \subseteq H}} H \subseteq \hat{H}$.

$\square$

El subgrupo de $G$ generado por $X$

Para concluir esta entrada, daremos una definición que resume lo visto.

Definición. Sea $G$ un grupo y $X$ un subgrupo de $G$. El conjunto

\begin{align*}
\bigcap_{\substack{H \leq G \\ X \subseteq H}} H
\end{align*}

es el subgrupo de $G$ generado por $X$ y se denota por $\left< X \right>$.

Decimos que $X$ genera a $G$ si $\left< X \right> = G$.

Observación. Sea $G$ un grupo y sea $a \in G$. Entonces

\begin{align*} \left< \{a\} \right> = \left< a \right>. \end{align*}

Demostración. Se quedará como tarea moral.

Notación. Para $a_1,\dots, a_n \in G$, el conjunto $\left< \{a_1,\dots, a_n\}\right>$ se denota por $\left< a_1, \dots, a_n \right>$.

Tarea moral

  1. Sea $G$ un grupo tal que todos sus subgrupos propios son cíclicos, entonces $G$ es cíclico. Demuestra este enunciado o encuentra un contraejemplo.
  2. Considera a los enteros con la suma. Describe a los subgrupos:
    1. $\left<\{10, 15\}\right>$ (se denota por $\left<10,15\right>$).
    2. $\left<\{9, 20\}\right>$ (se denota por $\left<9,20\right>$).
  3. Demuestra la última observación: Sea $G$ un grupo y sea $a \in G$. Entonces $\left< \{a\} \right> = \left< a \right>$. Hint: Usa la doble contención y el teorema anterior.

Más adelante…

Ya estudiamos a los elementos de la forma $a^k$ con $a \in G$, $k \in \z$ y $G$ grupo. En la siguiente entrada combinaremos varios elementos de esa forma. Estudiaremos qué son y algunas propiedades de las llamadas palabras. Además, la siguiente entrada es la última de esta unidad, ¡sigue avanzando! ya casi acabas.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.