Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna I: Triángulo medial y recta de Euler

Por Rubén Alexander Ocampo Arellano

Introducción

Continuando con el estudio de las propiedades del centroide, en esta entrada veremos que es colineal con el ortocentro y el circuncentro, y que además triseca al segmento que une dichos puntos. Para establecer estos resultados, veremos primero algunos resultados del triángulo medial de un triángulo dado.

Triángulo medial

Definición 1. Al triángulo que tiene como vértices los puntos medios de un triángulo dado se le conoce como triángulo medial o triángulo complementario del triángulo dado.

Teorema 1. Un triángulo y su triángulo medial son homotéticos además comparten el mismo centroide.

Demostración. Sean $\triangle ABC$, $A’$, $B’$ y $C’$ los puntos medios de $BC$, $AC$ y $AB$ respectivamente.

Por el teorema del segmento medio, los lados del triángulo medial $\triangle A’B’C’$ son paralelos a los lados de $\triangle ABC$ y por lo tanto son homotéticos.

Ya que las rectas determinadas por dos puntos homólogos, $AA’$, $BB’$ y $CC’$ son las medianas de $\triangle ABC$, entonces el centroide $G$ es el centro de homotecia y sabemos que $AG = 2GA’$, por lo que la razón de homotecia es $\dfrac{-1}{2}$, donde el signo menos indica que dos puntos homólogos de esta homotecia se encuentran en lados opuestos respecto del centro de homotecia.

Figura 1

Como $BC$ y $B’C’$ son rectas homotéticas, entonces el punto homólogo de $A’ \in BC$ es $E = A’G \cap B’C’$, y como $A’$ es el punto medio de $BC$ entonces $E$ es el punto medio de $B’C’$, pues la homotecia preserva las proporciones.

Por lo tanto, $A’G$ es mediana de $\triangle A’B’C’$, de manera similar podemos ver que $B’G$ y $C’G$ son medianas de $\triangle A’B’C’$, por lo tanto, $G$ es el centroide de $\triangle A’B’C’$.

$\blacksquare$

Proposición 1. El circuncentro de un triángulo es el ortocentro de su triángulo medial.

Demostración. Se sigue del hecho de que las mediatrices de un triángulo son las alturas de su triángulo medial, esto es así porque los vértices del triángulo medial son, por definición, los puntos medios de un triángulo dado y los lados del triángulo medial son paralelos a los lados del triángulo dado.

$\blacksquare$

Figura 2

Triángulo anticomplementario

Definición 2. Dado un triángulo, al triángulo formado por las rectas paralelas a los lados del triángulo dado a través de los respectivos vértices opuestos, se le conoce como triángulo anticomplementario del triángulo dado.

Proposición 2. Un triángulo y su triángulo anticomplementario son homotéticos y tienen el mismo centroide.

Demostración. Consideremos $\triangle ABC$ y $\triangle A’’B’’C’’$ su triángulo anticomplementario.

Figura 3

Como $\square C’’BCA$ y $\square ABCB’’$ son paralelogramos entonces $C’’A = BC = AB’’$, por lo tanto, $A$ es el punto medio de $B’’C’’$. De manera análoga vemos que $B$ y $C$ son puntos medio de $A’’C’’$ y $A’’B’’$ respectivamente,

Por lo tanto, $\triangle ABC$ es el triángulo medial de $\triangle A’’B’’C’’$ y por el teorema 1 se tiene el resultado.

$\blacksquare$

Circunferencia de Droz Farny

Proposición 3. El producto de los segmentos en que el ortocentro divide a la altura de un triángulo es igual para las tres alturas del triángulo.

Demostración. Sean $\triangle ABC$ y $D$, $E$ y $F$ los pies de las alturas por $A$, $B$ y $C$ respectivamente y $H$ el ortocentro.

Figura 4

Notemos que $\triangle AFH \sim \triangle CDH$ y $\triangle AEH \sim \triangle BDH$ (son semejantes) pues son triángulos rectángulos y comparten un ángulo opuesto por el vértice, por lo tanto
$\dfrac{AH}{CH} = \dfrac{FH}{DH}$ $\Rightarrow AH \times DH = CH \times HF$,
$\dfrac{AH}{BH} = \dfrac{EH}{DH}$ $\Rightarrow AH \times DH = BH \times HE$.

De esto se sigue que
$CH \times HF = AH \times DH = BH \times HE$.

$\blacksquare$

Teorema 2. Si tomamos los vértices de un triángulo como centros de circunferencias del mismo radio, estas cortaran a los respectivos lados de su triángulo medial en tres pares de puntos que son equidistantes del ortocentro del triángulo.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ su triángulo medial, tracemos tres circunferencias del mismo radio $(A, r)$, $(B, r)$ y $(C, r)$ las cuales intersecan a $B’C’$, $A’C’$ y $A’B’$ en $P$, $P’$; $Q$, $Q’$ y $R$, $R’$, respectivamente.

Sean $D \in BC$ el pie de la altura por $A$, y $M = AD \cap B’C’$, por el teorema de Pitágoras en $\triangle AMP$ y $\triangle HMP$ tenemos
$AP^2 – AM^2 = MP^2 = HP^2 – HM^2$
$\Rightarrow AP^2 – HP^2 = AM^2 – HM^2 = (AM + HM)(AM – HM)$.

Figura 5

Como $\triangle AC’B’ \cong \triangle C’BA’$ son congruentes por criterio LLL entonces sus alturas desde $A$ y $C’$, respectivamente, son iguales , por lo tanto $AM = MD$,
$\Rightarrow AP^2 – HP^2 = (MD + HM)AH = HD \times AH$.

Por otra parte, $\triangle PAP’$ es isósceles y como $AM$ es altura entonces $AM$ es mediatriz de $PP’$, por lo tanto $HP = HP’$$\Rightarrow$
$\begin{equation} HP’^2 = HP^2 = AP^2 – AH \times HD. \end{equation}$.

Si consideramos $E$ y $F$ los pies de las alturas por $B$ y $C$ respectivamente podemos encontrar fórmulas análogas
$\begin{equation} HQ’^2 = HQ^2 = BQ^2 – BH \times HE, \end{equation} $
$\begin{equation} HR’^2 = HR^2 = CR^2 – CH \times HF. \end{equation} $.

Como $(A, r)$, $(B, r)$ y $(C, r)$ tienen el mismo radio, entonces $AP = BQ = CR$ y por la proposición 3, $AH \times DH = BH \times HE = CH \times HF$.

Tomando lo anterior en cuenta y a las ecuaciones $(1)$, $(2)$ y $(3)$ se sigue que
$HP = HP’ = HQ = HQ’ = HR = HR’$.

$\blacksquare$

Recta de Euler

Teorema 3. El circuncentro, el centroide y el ortocentro de todo triangulo son colineales, con el centroide siempre en medio, a la recta determinada por estos tres puntos se le conoce como recta de Euler del triángulo, además $HG = 2GO$.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ su triángulo medial, por el teorema 1, $\triangle ABC$ y $\triangle A’B’C’$ están en homotecia desde $G$, el centroide, que es el mismo para ambos triángulos, y la razón de homotecia es $\dfrac{-1}{2}$.

Consideremos la altura $AD$ de $\triangle ABC$, la homotecia de $AD$ es una recta paralela a ella y que pasa por el punto homólogo de $A$, $A’$, es decir la homotecia de una altura de $\triangle ABC$ es una altura de $\triangle A’B’C’$.

Figura 6

Como el ortocentro $H$ de $\triangle ABC$ es la intersección de sus alturas, entonces su punto homologo bajo la homotecia estará en la intersección de las alturas de $\triangle A’B’C’$, esto es, el ortocentro de $\triangle A’B’C’$, $H’$.

Con esto tenemos que el ortocentro de $\triangle A’B’C’$ es colineal con $G$ el centroide y el ortocentro de $\triangle ABC$ respectivamente, además, debido a la razón de homotecia, $HG = 2GH’$.

Por la proposición 1, el ortocentro del triángulo medial $\triangle A’B’C’$ es el circuncentro $O$ de $\triangle ABC$.

Así, $O$, $G$ y $H$ son colineales y $HG = 2GO$.

$\blacksquare$

Observación. Notemos que si el triángulo es equilátero el ortocentro, el centroide y el circuncentro son el mismo punto y por lo tanto la recta de Euler degenera en un punto.

Problema. Construye un triángulo $\triangle ABC$ dados el vértice $A$, el circuncentro $O$ y las distancias de $A$ al ortocentro $AH$, y al centroide $AG$.

Solución. El centroide $G$ se encuentra en la circunferencia con centro en $A$ y radio $AG$, $(A, AG)$, el ortocentro $H$ se encuentra en la circunferencia con centro en $A$ y radio $H$, $(A, AH)$.

Por el teorema 3 sabemos que $H$, $G$ y $O$ son colineales y que $HO = 3GO$, por lo que $H$ y $G$ se encuentran en homotecia desde $O$.

Entonces, a $(A, AH)$ le aplicamos una homotecia con centro en $O $ y razón $\dfrac{1}{3}$, esto será una circunferencia $\Gamma$ y $G$ resultara de la intersección de $\Gamma$ con $(A, AG)$.

Figura 7

Teniendo a $G$ construido, como tenemos el circuncírculo $(O, OA)$ y un vértice del triángulo, el problema se reduce a la solución del problema 2 de la entrada anterior.

$\blacksquare$

Distancia entre puntos notables

Teorema 4. Para un triángulo con lados $a$, $b$, $c$, ortocentro $H$, centroide $G$, y circuncírculo $(O, R)$ tenemos:
$OH^2 = 9R^2 – (a^2 + b^2 + c^2)$,
$HG^2 = 4R^2 – \dfrac{4}{9}( a^2 – b^2 + c^2)$.

Demostración. Por el teorema 3 sabemos que $OH = 3OG$ y $HG = 2GO$, además en la entrada anterior calculamos
$OG^2 = R^2 – (\dfrac{a^2 + b^2 + c^2}{9})$.

Por lo tanto,
$OH^2 = 9OG^2 = 9R^2 – (a^2 + b^2 + c^2)$,
$HG^2 = 4OG^2 = 4R^2 – \dfrac{4}{9}(a^2 + b^2 + c^2)$.

$\blacksquare$

Corolario. Podemos calcular la suma de los cuadrados de las distancias del ortocentro a los vértices del triángulo en función del circunradio y los lados del triángulo con la siguiente fórmula.
$HA^2 + HB^2 + HC^2 = 12R^2 + (a^2 + b^2 + c^2)$.

Demostración. Por el teorema 4, y usando las fórmulas encontradas en la entrada anterior
$HA^2 + HB^2 + HC^2 = GA^2 + GB^2 + GC^2 + 3HG^2$,
$GA^2 + GB^2 + GC^2 = \dfrac{a^2 + b^2 + c^2}{3}$ .

Esto implica que,
$HA^2 + HB^2 + HC^2 = \dfrac{a^2 + b^2 + c^2}{3} + 12R^2 – \dfrac{4}{3}(a^2 + b^2 + c^2)$
$= 12R^2 – (a^2 + b^2 + c^2)$.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos otro triángulo asociado a un triángulo dado, aquel cuyos vértices son los pies de las alturas del triángulo dado.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que el triángulo complementario y el triángulo anticomplementario de un triángulo dado son homotéticos, encuentra el centro y la razón de homotecia.
  2. Sea $\triangle ABC$ y $P$ un punto en el plano, considera $A’$, $B’$ y $C’$ los pies de las perpendiculares dese $P$ a $BC$, $AC$ y $AB$ respectivamente. Desde los puntos medios de $A’B’$, $A’C’$ y $B’C’$ traza perpendiculares a los lados de $AB$, $AC$ y $BC$ respectivamente, muestra que este último conjunto de perpendiculares son concurrentes.
  3. Sean $D$, $D’ \in BC$ de un triangulo $\triangle ABC$, tal que el punto medio de $BC$ es el punto medio de $DD’$, sea $E = AD \cap B’C’$, donde $B’$ y $C’$ son los puntos medios de $AC$ y $AB$ respectivamente, muestra que $ED’$ pasa por el centroide de $\triangle ABC$.
  4. Muestra que la recta de Euler de un triángulo pasa por uno de los vértices del triángulo si y solo si el triángulo es isósceles o rectángulo.
  5. Prueba que la recta que une el centroide de un triangulo con un punto $P$ en su circuncírculo biseca al segmento que une el punto diametralmente opuesto a $P$ con el ortocentro.
  6. Sean $H$, $G$, $(O, R)$ y $(I, r)$, el ortocentro, el centroide, el circuncírculo y el incírculo de un triángulo, muestra que:
    $i)$ $HI^2 + 2OI^2 = 3(IG^2 + 2OG^2)$,
    $ii)$ $3(IG^2 + \dfrac{HG^2}{2}) – IH^2 = 2R(R – 2r)$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 68-69, 94-96, 101-102.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 18-19.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 65-68.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones lineales no homogéneas de segundo orden – Método de variación de parámetros

Por Omar González Franco

Las matemáticas son un lugar donde puedes hacer
cosas que no puedes hacer en el mundo real.
– Marcus du Sautoy

Introducción

Con lo que hemos estudiado en las dos últimas entradas somos capaces de resolver ecuaciones diferenciales lineales de segundo orden homogéneas y no homogéneas con coeficientes constantes, es decir, ecuaciones de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = g(x) \label{1} \tag{1}$$

Con $a, b, c$ constantes y $g(x) = 0$ en el caso homogéneo o $g(x) \neq 0$ en el caso no homogéneo, en éste último caso aún estamos limitados a la forma que puede tener la función $g$, pues sabemos resolver las ecuaciones diferenciales en el caso en el que la función $g$ es una constante, una función polinomial, una función exponencial, funciones seno o coseno, o una combinación entre ellas. La pregunta ahora es, ¿cómo resolver este tipo de ecuaciones para cualquier tipo de función $g(x)$?.

En esta entrada desarrollaremos un método que nos permite obtener la solución general independientemente de la forma que tenga la función $g(x)$. A dicho método se le conoce como variación de parámetros.

El nombre de este método resulta familiar. En la unidad anterior desarrollamos éste método para el caso de las ecuaciones diferenciales lineales de primer orden como método alterno al método por factor integrante. Lo que haremos en esta entrada es una adaptación del método de variación de parámetros para el caso en el que las ecuaciones diferenciales son de orden superior, en particular, de segundo orden.

Variación de parámetros

Consideremos la ecuación diferencial

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g_{0}(x) \label{2} \tag{2}$$

Si $a_{2}(x) \neq 0$ para toda $x$ en el intervalo $\delta$ en el que está definida la solución, entonces podemos definir las funciones

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)}, \hspace{1cm} Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} g(x) = \dfrac{g_{0}(x)}{a_{2}(x)}$$

de manera que la ecuación (\ref{2}) la podemos escribir en su forma estándar como

$$\dfrac{d^{2}y}{dx^{2}} + P(x)\dfrac{dy}{dx} + Q(x)y = g(x) \label{3} \tag{3}$$

En el caso de primer orden se hizo la suposición de que la solución particular era de la forma

$$y_{p}(x) = k(x)y_{1}(x) = k(x) e^{-\int{P(x)dx}}$$

Manteniendo esta idea, en el caso de segundo orden se busca una solución de la forma

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) \label{4} \tag{4}$$

Donde $y_{1}$ y $y_{2}$ forman un conjunto fundamental de soluciones en $\delta$ de la ecuación homogénea asociada a (\ref{3}). Determinemos la primera y segunda derivada de $y_{p}$ para sustituir los resultados en la ecuación diferencial (\ref{3}).

$$\dfrac{dy_{p}}{dx} = k_{1}\dfrac{dy_{1}}{dx} + y_{1}\dfrac{dk_{1}}{dx} + k_{2}\dfrac{dy_{2}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \label{5} \tag{5}$$

y

$$\dfrac{d^{2}y_{p}}{dx^{2}} = k_{1}\dfrac{d^{2}y_{1}}{dx^{2}} + 2\dfrac{dy_{1}}{dx}\dfrac{dk_{1}}{dx} + y_{1}\dfrac{d^{2}k_{1}}{dx^{2}} + k_{2}\dfrac{d^{2}y_{2}}{dx^{2}} + 2\dfrac{dy_{2}}{dx}\dfrac{dk_{2}}{dx} + y_{2}\dfrac{d^{2}k_{2}}{dx^{2}} \label{6} \tag{6}$$

Sustituyendo en (\ref{3}) y reorganizando los términos obtenemos lo siguiente.

\begin{align*}
k_{1} \left[ \dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Q y_{1} \right] + y_{1} \dfrac{d^{2}k_{1}}{dx^{2}} + \dfrac{dk_{1}}{dx} \dfrac{dy_{1}}{dx} + k_{2} \left[ \dfrac{d^{2}y_{2}}{dx^{2}} + P\dfrac{dy_{2}}{dx} + Q y_{2} \right] \\
+ y_{2} \dfrac{d^{2}k_{2}}{dx^{2}} + \dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} + P \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x)
\end{align*}

Como $y_{1}$ y $y_{2}$ son soluciones de la ecuación homogénea asociada, entonces

$$\dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Q y_{1} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} + P\dfrac{dy_{2}}{dx} + Q y_{2} = 0$$

y además notamos que

$$\dfrac{d}{dx} \left[ y_{1}\dfrac{dk_{1}}{dx} \right] = y_{1} \dfrac{d^{2}k_{1}}{dx^{2}} + \dfrac{dk_{1}}{dx} \dfrac{dy_{1}}{dx} \label{7} \tag{7}$$

y

$$\dfrac{d}{dx} \left[ y_{2}\dfrac{dk_{2}}{dx} \right] = y_{2} \dfrac{d^{2}k_{2}}{dx^{2}} + \dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} \label{8} \tag{8}$$

Considerando lo anterior la ecuación diferencial queda como

$$\dfrac{d}{dx} \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + P \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x) \label{9} \tag{9}$$

Nuestro propósito es determinar a las funciones $k_{1}(x)$ y $k_{2}(x)$ de (\ref{4}), esto implica que debemos formar un sistema con dos ecuaciones que debemos resolver para obtener dichas funciones. De acuerdo al resultado obtenido vamos a establecer la restricción de que las funciones $k_{1}$ y $k_{2}$ satisfacen la relación

$$y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} = 0 \label{10} \tag{10}$$

Considerando esto la ecuación se reduce a

$$\dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x) \label{11} \tag{11}$$

Las ecuaciones (\ref{10}) y (\ref{11}) corresponden al sistema de dos ecuaciones que debemos resolver.

Como podemos notar, es un sistema para determinar las derivadas de las funciones $k_{1}$ y $k_{2}$ y no las funciones mismas, esto implica que una vez que determinemos a las derivadas será necesario hacer una integración a cada una de ellas. Resolvamos el sistema.

Multipliquemos la ecuación (\ref{10}) por $\dfrac{dy_{2}}{dx}$ y la ecuación (\ref{11}) por $y_{2}$.

$$y_{1}\dfrac{dk_{1}}{dx} \dfrac{dy_{2}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} = 0 \label{12} \tag{12}$$

$$y_{2} \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + y_{2} \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = y_{2} g(x) \label{13} \tag{13}$$

Si a la ecuación (\ref{12}) le restamos la ecuación (\ref{13}) obtenemos lo siguiente.

$$\dfrac{dk_{1}}{dx} \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2} \dfrac{dy_{1}}{dx} \right) = -y_{2}(x)g(x) \label{14} \tag{14}$$

Recordemos que el Wronskiano esta definido como

$$W(y_{1}, y_{2}) = y_{1} \dfrac{dy_{2}}{dx} -y_{2} \dfrac{dy_{1}}{dx} \label{15} \tag{15}$$

Entonces la ecuación (\ref{14}) la podemos escribir como

$$\dfrac{dk_{1}}{dx} \left[ W(y_{1}, y_{2}) \right] = -y_{2}(x)g(x) \label{16} \tag{16}$$

Como $y_{1}$ y $y_{2}$ forman un conjunto fundamental de soluciones de la ecuación homogénea asociada, entonces

$$W(y_{1}, y_{2}) \neq 0$$

Así, de la ecuación (\ref{16}) obtenemos que

$$\dfrac{dk_{1}}{dx} = -\dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} \label{17} \tag{17}$$

Hemos encontrado el valor de la derivada de la función $k_{1}(x)$, integrando obtenemos finalmente que

$$k_{1}(x) = -\int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{18} \tag{18}$$

En un proceso totalmente análogo, si multiplicamos a la ecuación (\ref{10}) por $\dfrac{dy_{1}}{dx}$ y a la ecuación (\ref{11}) por $y_{1}$ y realizamos los mismos pasos obtendremos la ecuación para la derivada de la función $k_{2}(x)$.

$$\dfrac{dk_{2}}{dx} = \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} \label{19} \tag{19}$$

Integrando obtendremos la función que buscamos

$$k_{2}(x) = \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{20} \tag{20}$$

Sustituyendo los resultados (\ref{18}) y (\ref{20}) en la solución particular (\ref{4}) obtenemos finalmente la solución que buscábamos

$$y_{p}(x) = -y_{1}(x) \int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} + y_{2}(x) \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{21} \tag{21}$$

El resultado (\ref{21}) corresponde a la solución particular de la ecuación diferencial (\ref{2}) que, a diferencial del método de coeficientes indeterminados, se aplica para cualquier función $g(x)$, aunque cabe mencionar que si la función $g$ es muy compleja, entonces nos resultará, en algunas ocasiones, complicado resolver las integrales involucradas.

A lo largo del curso hemos motivado a no memorizar las formulas y en su lugar desarrollar el procedimiento del método correspondiente, sin embargo, en esta ocasión se trata de un método muy largo y complicado para usarse cada vez que se intente resolver una ecuación diferencial, por lo que se recomienda seguir los siguientes pasos.

  • Primero se determina la solución complementaria $$y_{c} = c_{1}y_{1} + c_{2}y_{2}$$ de la ecuación diferencial homogénea asociada, esto nos permitirá determinar el conjunto fundamental de soluciones $\{y_{1}, y_{2}\}$.
  • Una vez conocido el conjunto fundamental de soluciones se procede a calcular el Wronskiano $W(y_{1}, y_{2})$.
  • Posteriormente se divide la ecuación diferencial por $a_{2}$ para escribir la ecuación es su forma estándar (\ref{3}) y así obtener la forma de la función $g(x)$.
  • Se sustituyen los valores correspondientes en (\ref{18}) y (\ref{20}) para obtener las funciones $k_{1}$ y $k_{2}$ respectivamente.
  • Finalmente se sustituyen los resultados en la solución particular $$y_{p} = k_{1}y_{1} + k_{2}y_{2}$$ y posteriormente en la solución general $$y = y_{c} + y_{p}$$

Cuando se calculan las integrales indefinidas (\ref{18}) y (\ref{20}) no es necesario considerar las constantes de integración. Para mostrar esto consideremos las constantes $c_{3}$ y $c_{4}$, tales que

\begin{align*}
y(x) &= y_{c}(x) + y_{p}(x) \\
&= c_{1}y_{1}(x) + c_{2}y_{2}(x) + \left[ k_{1}(x) + c_{3} \right] y_{1}(x) + \left[ k_{2}(x) + c_{4} \right] y_{2}(x) \\
&= \left[ c_{1} + c_{3} \right] y_{1}(x) + \left[ c_{2} + c_{4} \right] y_{2}(x) + k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) \\
&= C_{1}y_{1}(x) + C_{2}y_{2}(x) + k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x)
\end{align*}

Es decir, las constantes de la solución complementaria contienen todas las constantes que puedan aparecer en el método.

Realicemos algunos ejemplos.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$3 \dfrac{d^{2}y}{dx^{2}} -6 \dfrac{dy}{dx} + 6y = e^{x} \sec(x)$$

Solución: El primer paso es obtener la solución complementaria. La ecuación auxiliar es

$$3k^{2} -6k + 6 = 0$$

De donde $k_{1} = 1 + i$ y $k_{2} = 1 -i$, identificamos que $\alpha = \beta = 1$, entonces la forma de la solución complementaria es

$$y_{c}(x) = c_{1}e^{x} \cos(x) + c_{2}e^{x} \sin(x)$$

El conjunto fundamental de soluciones esta conformado por las funciones

$$y_{1}(x) = e^{x} \cos(x) \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{x} \sin(x)$$

La derivada de ambas soluciones son

$$\dfrac{dy_{1}}{dx} = e^{x} \cos(x) -e^{x} \sin(x) \hspace{1cm} y \hspace{1cm} \dfrac{dy_{2}}{dx} = e^{x} \sin(x) + e^{x} \cos(x)$$

Usando estos resultados calculemos el Wronskiano.

\begin{align*}
W &= \begin{vmatrix}
e^{x} \cos(x) & e^{x} \sin(x) \\
e^{x} \cos(x) -e^{x} \sin(x) & e^{x} \sin(x) + e^{x} \cos(x)
\end{vmatrix} \\
&= e^{2x} \cos(x) \sin(x) + e^{2x} \cos^{2}(x) -e^{2x} \cos(x) \sin(x) + e^{2x} \sin^{2}(x) \\
&= e^{2x}
\end{align*}

El Wronskiano es

$$W(x) = e^{2x}$$

¡Cuidado!, como en la ecuación diferencial la segunda derivada tiene un coeficiente, debemos dividir toda la ecuación por dicho coeficiente para obtener la forma estándar y así la función $g(x)$. La ecuación en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} -2 \dfrac{dy}{dx} + 2y = \dfrac{e^{x} \sec(x)}{3}$$

En este caso la función $g$ es

$$g(x) = \dfrac{e^{x} \sec(x)}{3}$$

Ahora que ya conocemos los valores que necesitábamos, recurrimos a las ecuaciones (\ref{18}) y (\ref{20}) para obtener las funciones que buscamos.

Para la función $k_{1}(x)$, tenemos lo siguiente.

\begin{align*}
k_{1}(x) &= -\int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} \\
&= -\int{\dfrac{\left( e^{x} \sin(x) \right) \left( \dfrac{e^{x} \sec(x)}{3} \right)}{e^{2x}} dx} \\
&= -\int{\dfrac{e^{2x} \sin(x) \sec(x)}{3e^{2x}} dx} \\
&= -\dfrac{1}{3} \int{\tan(x) dx} \\
&= \dfrac{1}{3} \ln|\cos(x)|
\end{align*}

La integral de la tangente es común. Por tanto, la función $k_{1}$ es

$$k_{1}(x) = \dfrac{1}{3} \ln|\cos(x)|$$

Para el caso de la función $k_{2}(x)$, tenemos lo siguiente.

\begin{align*}
k_{2}(x) &= \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \\
&= \int{\dfrac{\left( e^{x} \cos(x) \right) \left( \dfrac{e^{x} \sec(x)}{3} \right)}{e^{2x}} dx} \\
&= \int{\dfrac{e^{2x} \cos(x) \sec(x)}{3e^{2x}} dx} \\
&= \dfrac{1}{3} \int{dx} \\
&= \dfrac{1}{3}x
\end{align*}

La función $k_{2}$ es

$$k_{2}(x) = \dfrac{1}{3}x$$

Ya podemos establecer que la solución particular, de acuerdo a (\ref{4}), es

$$y_{p}(x) = \dfrac{1}{3} \ln|\cos(x)| \left[ e^{x} \cos(x) \right] + \dfrac{1}{3}x \left[ e^{x} \sin(x) \right]$$

Por lo tanto, la solución general de la ecuación diferencial

$$3 \dfrac{d^{2}y}{dx^{2}} -6 \dfrac{dy}{dx} + 6y = e^{x} \sec(x)$$

es

$$y(x) = c_{1}e^{x} \cos(x) + c_{2}e^{x} \sin(x) + \dfrac{1}{3}e^{x} \cos(x) \ln|\cos(x)| + \dfrac{1}{3}x e^{x} \sin(x)$$

$\square$

Con este ejemplo encontramos un buen momento para reflexionar y darnos cuenta de que ya hemos avanzado mucho, tan sólo observa el tipo de ecuación que acabamos de resolver y no sólo eso, observa que tan compleja es la solución general.

¡Sigamos adelante!.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 2\dfrac{dy}{dx} + y = \dfrac{e^{-x}}{x}$$

Solución: Como la ecuación ya está es su forma estándar la función $g$ es

$$g(x) = \dfrac{e^{-x}}{x}$$

Determinemos la solución complementaria, la ecuación auxiliar es

$$k^{2} + 2k + 1 = 0$$

De donde $k_{1} = k_{2} = -1$, la multiplicidad de la solución nos indica que la forma de la solución complementaria es

$$y_{c}(x) = c_{1}e^{-x} + c_{2}xe^{-x}$$

El conjunto fundamental de soluciones esta conformado por las funciones

$$y_{1}(x) = e^{-x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = xe^{-x}$$

Usando estas soluciones y sus derivadas calculemos el Wronskiano.

\begin{align*}
W &= \begin{vmatrix}
e^{-x} & xe^{-x} \\
-e^{-x} & e^{-x} -xe^{-x}
\end{vmatrix} \\
&= e^{-2x} -xe^{2x} + xe^{-2x} \\
&= e^{-2x}
\end{align*}

El Wronskiano es

$$W(x) = e^{-2x}$$

Sustituyamos estos resultados directamente en la ecuación (\ref{21}).

\begin{align*}
y_{p}(x) &= -e^{-x} \int {\dfrac{ \left( xe^{-x} \right) \left( \dfrac{e^{-x}}{x} \right) }{e^{-2x}}dx} + xe^{-x} \int {\dfrac{ \left( e^{-x} \right) \left( \dfrac{e^{-x}}{x} \right) }{e^{-2x}}dx} \\
&= -e^{-x}\int dx+xe^{-x}\int \dfrac{dx}{x} \\
&= -xe^{-x} + xe^{-x}\ln(x)
\end{align*}

La solución particular es

$$y_{p}(x) = -xe^{-x} + xe^{-x}\ln(x)$$

Por lo tanto, la solución general de la ecuación diferencial es

$$y(x) = c_{1}e^{-x} + c_{2}xe^{-x} -xe^{-x} + xe^{-x}\ln(x)$$

$\square$

Un ejemplo más.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -y = 4x^{3}e^{x}$$

Solución: La función $g$ es

$$g(x) = 4x^{3}e^{x}$$

y la ecuación auxiliar es

$$k^{2} -1 = 0$$

De donde $k_{1} = 1$ y $k_{2} = -1$. Entonces, la solución complementaria es

$$y_{c}(x) = c_{1}e^{x} + c_{2}e^{-x}$$

El conjunto fundamental de soluciones esta conformado por

$$y_{1}(x) = e^{x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{-x}$$

Usando estas funciones y sus derivadas calculemos el Wronskiano.

\begin{align*}
W &= \begin{vmatrix}
e^{x} & e^{-x} \\
e^{x} & -e^{-x} \end{vmatrix} = -2
\end{align*}

El Wronskiano es $W = -2$. Sustituyendo estos resultados directamente en la ecuación (\ref{21}), obtenemos lo siguiente.

\begin{align*}
y_{p}(x) &= -e^{x} \int {\dfrac{(e^{-x})(4x^{3}e^{x})}{-2} dx} + e^{-x} \int {\dfrac{(e^{x})(4x^{3}e^{x})}{-2} dx} \\
&= 2e^{x} \int {x^{3} dx} -2e^{-x} \int {x^{3}e^{2x} dx} \\
&= \dfrac{1}{2}x^{4}e^{x} -2e^{-x} \int {x^{3}e^{2x} dx}
\end{align*}

La integral que nos falta se puede resolver por partes tomando $u = x^{2}$ y $v^{\prime} = e^{2x}$. Resolviendo la integral obtendremos lo siguiente.

$$\int {x^{3}e^{2x} dx} = \dfrac{1}{2}e^{2x}x^{3} -\dfrac{3}{4}e^{2x}x^{2} + \dfrac{3}{4}e^{2x}x -\dfrac{3}{8}e^{2x}$$

Sustituyendo en la solución particular tenemos

\begin{align*}
y_{p}(x) &= \dfrac{1}{2}x^{4}e^{x} -2e^{-x} \left( \dfrac{1}{2}e^{2x}x^{3} -\dfrac{3}{4}e^{2x}x^{2} + \dfrac{3}{4}e^{2x}x -\dfrac{3}{8}e^{2x} \right) \\
&= \dfrac{1}{2}x^{4}e^{x} -x^{3}e^{x} + \dfrac{3}{2}x^{2}e^{x} -\dfrac{3}{2}xe^{x} + \dfrac{3}{4}e^{x}
\end{align*}

Finalmente obtenemos como solución particular a la función

$$y_{p}(x) = e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x + \dfrac{3}{4} \right)$$

Y por lo tanto, la solución general de la ecuación diferencial es

$$y(x) = c_{1}e^{x} + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x + \dfrac{3}{4} \right)$$

Este resultado es válido, sin embargo se puede simplificar más, ya que se puede reescribir a la solución como

$$y(x) = e^{x} \left( c_{1} + \dfrac{3}{4} \right) + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x \right)$$

y definir la constante $C_{1} = c_{1} + \dfrac{3}{4}$ para finalmente escribir la solución como

$$y(x) = C_{1} e^{x} + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x \right)$$

$\square$

Variación de parámetros en ecuaciones de orden superior

Este método se puede generalizar a ecuaciones de orden $n$ aunque, por su puesto, los cálculos se vuelven más extensos.

A continuación mostraremos el panorama general para ecuaciones diferenciales de orden $n$ y mostraremos los resultados para el caso $n = 3$ que nos mostrará la forma en que aumenta la complejidad de los cálculos.

La ecuación de orden $n$ es su forma estándar es

$$\dfrac{d^{n}y}{dx^{n}} + P_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + P_{1}(x) \dfrac{dy}{dx} + P_{0}(x) y = g(x) \label{22} \tag{22}$$

Si la solución complementaria de (\ref{22}) es

$$y_{c}(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) \label{23} \tag{23}$$

Entonces una solución particular debe ser

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) + \cdots + k_{n}(x)y_{n}(x) \label{24} \tag{24}$$

Análogo a las ecuaciones (\ref{10}) y (\ref{11}), las derivadas $\dfrac{dk_{i}}{dx} = k^{\prime}_{i}$ con $i = 1, 2, \cdots, n$ se determinan del sistema de $n$ ecuaciones

\begin{align*}
y_{1}k^{\prime}_{1} + y_{2}k^{\prime}_{2} + \cdots + y_{n}k^{\prime}_{n} &= 0 \\
y^{\prime}_{1}k^{\prime}_{1} + y^{\prime}_{2}k^{\prime}_{2} + \cdots + y^{\prime}_{n}k^{\prime}_{n} &= 0 \\
\vdots \\
y^{(n -1)}_{1}k^{\prime}_{1} + y^{(n -1)}_{2}k^{\prime}_{2} + \cdots + y^{(n-1)}_{n}k^{\prime}_{n} &= g(x) \label{25} \tag{25}
\end{align*}

Al igual que el caso de segundo orden, las primeras $n -1$ ecuaciones del sistema son suposiciones que se hacen para simplificar la ecuación resultante de sustituir la solución (\ref{24}) en la ecuación (\ref{22}).

Usando la regla de Cramer para resolver el sistema se obtiene que

$$\dfrac{dk_{i}}{dx} = \dfrac{W_{i}}{W}; \hspace{1cm} i = 1, 2 , \cdots, n \label{26} \tag{26}$$

Donde $W$ es el Wronskiano del conjunto fundamental $\{ y_{1}(x), y_{2}(x), \cdots, y_{n}(x) \}$ y $W_{i}$ es el determinante que se obtiene de remplazar la $i$-ésima columna del Wronskiano por la columna formada por el lado derecho de (\ref{25}), es decir, la columna que consta de $(0, 0, \cdots, g(x))$.

Para que quede más claro lo anterior, en el caso $n = 3$ las $\dfrac{dk_{i}}{dx}$, $i = 1, 2, 3$ quedan como

$$\dfrac{dk_{1}}{dx} = \dfrac{W_{1}}{W}, \hspace{1cm} \dfrac{dk_{2}}{dx} = \dfrac{W_{2}}{W}, \hspace{1cm} \dfrac{dk_{3}}{dx} = \dfrac{W_{3}}{W} \label{27} \tag{27}$$

Donde

$$W = \begin{vmatrix}
y_{1} & y_{2} & y_{3} \\
y^{\prime}_{1} & y^{\prime}_{2} & y^{\prime}_{3} \\
y^{\prime \prime}_{1} & y^{\prime \prime}_{2} & y^{\prime \prime}_{3}
\end{vmatrix} \label{28} \tag{28}$$

y

\begin{align*}
W_{1} = \begin{vmatrix}
0 & y_{2} & y_{3} \\
0 & y^{\prime}_{2} & y^{\prime}_{3} \\
g(x) & y^{\prime \prime}_{2} & y^{\prime \prime}_{3}
\end{vmatrix}, \hspace{1cm} W_{2} = \begin{vmatrix}
y_{1} & 0 & y_{3} \\
y^{\prime}_{1} & 0 & y^{\prime}_{3} \\
y^{\prime \prime}_{1} & g(x) & y^{\prime \prime}_{3}
\end{vmatrix}, \hspace{1cm} W_{3} = \begin{vmatrix}
y_{1} & y_{2} & 0 \\
y^{\prime}_{1} & y^{\prime}_{2} & 0 \\
y^{\prime \prime}_{1} & y^{\prime \prime}_{2} & g(x)
\end{vmatrix}
\end{align*}

Habrá que integrar las ecuaciones de (\ref{27}) para obtener las funciones $k_{i}$, $i = 1, 2, 3$ y así obtener la solución particular

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) + k_{3}(x)y_{3}(x) \label{29} \tag{29}$$

Notemos que usando esta notación, los resultados (\ref{17}) y (\ref{19}) del caso $n = 2$ se pueden escribir como

$$\dfrac{dk_{1}}{dx} = \dfrac{W_{1}}{W} = -\dfrac{y_{2}g(x)}{W} \hspace{1cm} y \hspace{1cm} \dfrac{dk_{2}}{dx} = \dfrac{W_{2}}{W} = \dfrac{y_{1}g(x)}{W} \label{30} \tag{30}$$

Donde

\begin{align*} W = \begin{vmatrix}
y_{1} & y_{2} \\
y^{\prime}_{1} & y^{\prime}_{2}
\end{vmatrix}, \hspace{1cm} W_{1} = \begin{vmatrix}
0 & y_{2} \\
g(x) & y^{\prime}_{2}
\end{vmatrix} \hspace{1cm} y \hspace{1cm} W_{2} = \begin{vmatrix}
y_{1} & 0 \\
y^{\prime}_{1} & g(x)
\end{vmatrix} \label{31} \tag{31}
\end{align*}

Realicemos un ejemplo con una ecuación de orden $3$.

Ejemplo: Resolver la ecuación diferencial de tercer orden

$$\dfrac{d^{3}y}{dx^{3}} + \dfrac{dy}{dx} = \tan(x)$$

Solución: La función $g$ es

$$g(x) = \tan(x)$$

y la ecuación auxiliar es

$$k^{3} + k = k(k^{2} + 1) = 0$$

De donde $k_{1} = 0$, $k_{2} = i$ y $k_{3} = -i$. Dos raíces son complejas conjugadas con $\alpha = 0$ y $\beta = 1$. La primer raíz nos indica que la forma de una solución es

$$y_{1}(x) = e^{k_{1}x} = 1$$

mientras que las dos raíces restantes nos indican dos solución de la forma

$$y_{2}(x) = e^{\alpha x} \cos(\beta x) = \cos(x)$$

y

$$y_{3}(x) = e^{\alpha x} \sin(\beta x) = \sin(x)$$

Por lo tanto, la solución complementaria de la ecuación diferencial es

$$y_{c}(x) = c_{1} + c_{2} \cos(x) + c_{3} \sin(x)$$

Como vimos, el conjunto fundamental de soluciones es $\{ y_{1} = 1, y_{2} = \cos(x) , y_{3} = \sin(x) \}$, las primeras y segundas derivadas correspondientes son

$$\dfrac{dy_{1}}{dx} = 0, \hspace{1cm} \dfrac{dy_{2}}{dx} = -\sin(x), \hspace{1cm} \dfrac{dy_{3}}{dx} = \cos(x)$$

y

$$\dfrac{d^{2}y_{1}}{dx^{2}} = 0, \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} = -\cos(x), \hspace{1cm} \dfrac{d^{2}y_{3}}{dx^{2}} = -\sin(x)$$

Ahora calculemos los determinantes correspondientes, el primero de ellos es el Wronskiano

$$W = \begin{vmatrix}
1 & \cos(x) & \sin(x) \\
0 & -\sin(x) & \cos(x) \\
0 & -\cos(x) & -\sin(x)
\end{vmatrix} = \sin^{2}(x) + \cos^{2}(x) = 1$$

Para el resto de determinantes, tenemos

$$W_{1} = \begin{vmatrix}
0 & \cos(x) & \sin(x) \\
0 & -\sin(x) & \cos(x) \\
\tan(x) & -\cos(x) & -\sin(x)
\end{vmatrix} = \tan(x) \left[ \cos^{2}(x) + \sin^{2}(x) \right] = \tan(x)$$

$$W_{2} = \begin{vmatrix}
1 & 0 & \sin(x) \\
0 & 0 & \cos(x) \\
0 & \tan(x) & -\sin(x)
\end{vmatrix} = -\cos(x) \tan(x) = -\sin(x)$$

y

$$W_{3} = \begin{vmatrix}
1 & \cos(x) & 0 \\
0 & -\sin(x) & 0 \\
0 & -\cos(x) & \tan(x)
\end{vmatrix} = -\sin(x) \tan(x) = -\dfrac{\sin^{2}(x)}{\cos(x)}$$

Sustituyendo estos resultados en (\ref{27}), obtenemos

$$\dfrac{dk_{1}}{dx} = \tan(x), \hspace{1cm} \dfrac{dk_{2}}{dx} = -\sin(x), \hspace{1cm} \dfrac{dk_{3}}{dx} = -\dfrac{\sin^{2}(x)}{\cos(x)}$$

Procedemos a integrar cada ecuación (sin considerar constantes) para obtener las funciones que buscamos.

La primer integral es común,

$$k_{1}(x) = \int{\tan(x) dx} = -\ln|\cos(x)|$$

La segunda integral es directa

$$k_{2}(x) = -\int{\sin(x) dx} = \cos(x)$$

Mientras que para la tercer integral si se requiere de un mayor cálculo.

\begin{align*}
k_{3}(x) &= -\int{\dfrac{\sin^{2}(x)}{\cos(x)} dx} \\
&= -\int{\dfrac{1 -\cos^{2}(x)}{\cos(x)} dx} \\
&= -\int{\dfrac{1}{\cos(x)} dx} + \int{\cos(x) dx} \\
\end{align*}

Por un lado

$$-\int{\dfrac{1}{\cos(x)} dx} = -\int{\sec(x) dx} = -\ln|\tan(x) + \sec(x)|$$

por otro lado,

$$\int{\cos(x) dx} = \sin(x)$$

entonces

$$k_{3}(x) = -\ln|\tan(x) + \sec(x)| + \sin(x)$$

Ahora que conocemos las funciones incógnita concluimos que la solución particular de la ecuación diferencial es

\begin{align*}
y_{p}(x) &= -\ln|\cos(x)|(1) + \cos(x) [\cos(x)] + \left[ -\ln|\tan(x) + \sec(x)| + \sin(x) \right] (\sin(x)) \\
&= -\ln|\cos(x)| + \cos^{2}(x) -\sin(x) \ln|\tan(x) + \sec(x)| + \sin^{2}(x) \\
&= -\ln|\cos(x)| -\sin(x) \ln|\tan(x) + \sec(x)| \\
\end{align*}

Por lo tanto, la solución general de la ecuación diferencial de tercer orden es

$$y(x) = c_{1} + c_{2} \cos(x) + c_{3} \sin(x) -\ln|\cos(x)| -\sin(x) \ln|\tan(x) + \sec(x)|$$

$\square$

Como podemos notar, los cálculos se hacen más extensos, sin embargo los pasos a seguir son los mismos para cualquier orden.

El método de variación de parámetros, a diferencia del método de coeficientes indeterminados, tiene la ventaja de que siempre produce una solución de la ecuación diferencial independientemente de la forma de la función $g(x)$, siempre y cuando se pueda resolver la ecuación homogénea asociada. Además, el método de variación de parámetros es aplicable a ecuaciones diferenciales lineales con coeficientes variables.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de las siguientes ecuaciones diferenciales.
  • $\dfrac{d^{2}y}{dx^{2}} -9\dfrac{dy}{dx} = 18x^{2}e^{9x}$
  • $\dfrac{d^{2}y}{dx^{2}} + 9y = 18e^{x} \sin(x)$
  • $4 \dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + y = e^{x/2}\sqrt{1 -x^{2}}$
  1. Resolver las siguientes ecuaciones diferenciales para las condiciones iniciales dadas.
  • $\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} = 12e^{4x}(x + 1); \hspace{1cm} y(0) = 0, \hspace{0.6cm} y^{\prime}(0) = 4$
  • $\dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} -6y = 10e^{x} \sin(x); \hspace{1cm} y(0) = \dfrac{2}{17}, \hspace{0.6cm} y^{\prime}(0) = 0$
  1. Obtener la solución general de las siguientes ecuaciones diferenciales de tercer orden. Simplificar la forma de la solución redefiniendo las constantes.
  • $\dfrac{d^{3}y}{dx^{3}} + 4 \dfrac{dy}{dx} = \sec(2x)$
  • $\dfrac{d^{3}y}{dx^{3}} + \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -y = 2e^{-x}$

Más adelante…

Hemos concluido con el estudio de las ecuaciones diferenciales lineales de orden superior con coeficientes constantes.

Lo que sigue es estudiar este mismo tipo de ecuaciones, pero en el caso en el que los coeficientes no son constantes, es decir, son coeficientes variables. Estas ecuaciones suelen ser mucho más difícil de resolver, sin embargo existe un tipo de ecuación especial, conocida como ecuación de Cauchy – Euler, que contiene coeficientes variables, pero que su método de resolución es bastante similar a lo que hemos desarrollado en el caso de coeficientes constantes, pues su resolución involucra resolver una ecuación auxiliar. En la siguiente entrada estudiaremos dicha ecuación.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Otras aplicaciones de formas canónicas de Jordan

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En las notas anteriores desarrollamos teoría interesante acerca de las formas canónicas de Jordan, ahora vamos a ver algunos ejemplos de todo eso.

Ejemplo 1

Considera la matriz $$A = \begin{pmatrix}1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & -2 \end{pmatrix}$$

Calculamos $\chi_{A}(X)$ expandiendo $det(XI_{5} – A)$ con respecto a la tercera fila y obtenemos (usando de nuevo la expansión respecto a la segunda fila en el nuevo determinante) \begin{align*} \chi_{A}(X) &= X \begin{vmatrix} X-1 & 0 & 0 & -2 \\ 0 & X & 0 & 0 \\ 0 & -1 & X & 0 \\ 1 & 0 & 0 & X+2 \end{vmatrix} \\ &= X^{2} \begin{vmatrix} X-1 & 0 & 2 \\ 0 & X & 0 \\ 1 & 0 & X+2 \end{vmatrix} \\ &= X^{3} \begin{vmatrix} X-1 & -2 \\ 1 & X+2 \end{vmatrix} \\ &= X^{4} (X+1) \end{align*}

El eigenvalor $-1$ tiene multiplicidad algebraica 1, por lo que hay un solo bloque de Jordan asociado con este eigenvalor, de tamaño 1. Ahora, veamos qué pasa con el eigenvalor 0 que tiene multiplicidad algebraica 4. Sea $N_{m}$ el número de bloques de Jordan de tamaño $m$ asociados con ese eigenvalor. Por el Teorema visto en la nota anterior tenemos que $$N_{1} = rango(A^{2}) – 2rango(A) + 5,$$ $$N_{2} = rango(A^{3}) – 2rango(A^{2}) + rango(A)$$ etcétera. Puedes checar fácilmente que $A$ tiene rango 3.

Luego, calculemos $A^{2} = \begin{pmatrix} -1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 \end{pmatrix}$, $A^{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & -2 \end{pmatrix}$.

Nota que $A^{2}$ tiene rango 2 (pues una base del generado por sus filas está dada por la primera y cuarta fila) y $A^{3}$ tiene rango 1. De donde, $$N_{1} = 2-2 \cdot 3 + 5 = 1,$$ por lo que hay un bloque de Jordan de tamaño 1 y $$N_{2} = 1-2 \cdot 2 + 3 = 0,$$ entonces no hay un bloque de Jordan de tamaño 2. Dado que la suma de los tamaños de los bloques de Jordan asociados con el eigenvalor 0 es 4, y como ya sabemos que hay un bloque de tamaño 1 y no hay de tamaño 2, deducimos que hay un bloque de tamaño 3 y que la forma canónica de Jordan de $A$ es $$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Ejemplo 2

Más adelante…

Con esto finalizamos el curso de Álgebra Lineal II, lo que sigue es el maravilloso mundo del Álgebra Moderna.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Usa el Teorema de Jordan para probar que cualquier matriz $A \in M_{n}(\mathbb{C})$ es similar a su transpuesta.
  2. Prueba que si $A \in M_{n}(\mathbb{C})$ es similar a $2A$, entonces $A$ es nilpotente.
  3. Usa el teorema de Jordan para probar que si $A \in M_{n}(\mathbb{C})$ es nilpotente, entonces $A$ es similar a $2A$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Geometría Moderna I: Medianas y centroide

Por Rubén Alexander Ocampo Arellano

Introducción

En la entrada puntos nobles del triangulo, vimos que las medianas de un triangulo concurren en un punto, al que llamamos centroide, y que este punto tiene la propiedad de trisecar a las medianas. En esta entrada estudiaremos algunas propiedades más de las medinas y el centroide.

Medianas como los lados de un triángulo

Teorema 1. Si con las medianas de un triángulo dado construimos otro triangulo, entonces cada mediana del triángulo construido es igual a tres cuartos uno de los lados del triángulo dado.

Demostración. Sean $\triangle ABC$ y $AA´$, $BB’$ y $CC’$ las medianas del triángulo.

Construimos $D \in C’B’$ tal que $C’B’ = B’D$, como $C´B´$ es un segmento medio de $\triangle ABC$ entonces $C’B’ \parallel BC$ y $2C’B’ = BC$.

Lo anterior implica que $\square B’BA’D$ es un paralelogramo y por lo tanto $BB’ = A’D$.

Figura 1

Como las diagonales de $\square AC’CD$ se cortan en su punto medio entonces $\square AC’CD$ es un paralelogramo, por lo tanto, $CC’ = AD$, entonces los lados de $\triangle AA’D$ son las medianas de $\triangle ABC$, por criterio LLL, cualquier otro triangulo con los mismos lados será congruente con $\triangle AA’D$.

Sea $E = AA’ \cap C’B’$, como $A’C’$ es un segmento medio de $\triangle ABC$ entonces $\square AC’A’B’$ es un paralelogramo, por lo tanto, $E$ es el punto medio de $AA’$ y de $C’B’$.

Por lo anterior tenemos que $DE$ es mediana de $\triangle ADA’$ y que $DE = \dfrac{3}{4}$, pues por construcción $C’B’ = B’D$.

Dado que $C’D = BC$ $\Rightarrow DE = \dfrac{3}{4}BC$.

Con una construcción similar podemos ver que las otras medianas de $\triangle ADA’$ son iguales a $\dfrac{3}{4}AC$ y $\dfrac{3}{4}AB$.

Observación. Notemos que si seguimos este proceso de construir triángulos con las medianas del triángulo anterior obtenemos dos grupos de triángulos semejantes, un grupo conformado por el primer, el tercer, el quinto triángulo etc. En el otro grupo estarían el segundo, el cuarto triángulo … ambos con razón de semejanza $\dfrac{3}{4}$.

$\blacksquare$

Corolario 1. El área de un triángulo construido con las medianas de un triángulo dado, es igual a tres cuartos el área del triángulo dado.

Demostración. El área de $\triangle ADA’$ (figura 1) es igual a la suma de las áreas de $\triangle EDA$ y $\triangle EDA’$ que tienen la misma base $ED$ y la suma de sus alturas es igual a la altura de $\triangle ABC$ y por el teorema 1, $DE = \dfrac{3}{4}BC$.

Por lo tanto,
$(\triangle ADA’) = (\triangle EDA) + (\triangle EDA’) = \dfrac{ED \times h_1}{2} + \dfrac{ED \times h_2}{2}$
$= \dfrac{3}{4}\dfrac{BC(h_1 + h_2)}{2} = \dfrac{3}{4}(\triangle ABC)$.

$\blacksquare$

Construcciones

Problema 1. Construir un triángulo dadas las longitudes de sus medianas $m_a$, $m_b$ y $m_c$.

Por el teorema 1, sabemos que las medianas del triángulo cuyos lados son $m_a$, $m_b$ y $m_c$, están en proporción $\dfrac{3}{4}$ a los lados del triángulo buscado.

Para encontrar las medianas del triángulo con lados $m_a$, $m_b$ y $m_c$, podemos construir este triangulo y luego sus medianas o podemos calcular sus longitudes con el teorema de Apolonio.

Después, multiplicamos cada valor obtenido por $\dfrac{4}{3}$ y así obtendremos los lados del triangulo requerido.

$\blacksquare$

Problema 2. Dados una circunferencia y un punto dentro de esta, es posible inscribir en la circunferencia una infinidad de triángulos que tienen como centroide el punto dado.

Demostración. Sean $\Gamma(O)$ y $G$ la circunferencia y el punto dado, tomamos $A \in \Gamma(O)$, sobre la recta $AG$ construimos $A’$ tal que $GA’ = \dfrac{AG}{2}$.

Si $A’$ cae dentro de $\Gamma(O)$ por $A’$ trazamos una perpendicular a $OA’$ que interseca a $\Gamma(O)$ en $B$ en $C$, como $\triangle BOC$ es isósceles y $OA’$ es la altura por $O$, entonces $A’$ es el punto medio de $BC$.

Figura 2

En $\triangle ABC$ se cumple que $AA’$ es mediana y $G$ triseca a $AA’$, como el centroide de un triángulo es el único que tienen esa propiedad, entonces $G$ es el centroide de $\triangle ABC$.

Notemos que $A$ y $A’$ están en homotecia con centro en $G$ y razón $\dfrac{-1}{2}$, como $A$ describe una circunferencia, $A’$ describe una circunferencia.

Entonces hay dos posibilidades, que la homotecia de $\Gamma(O)$ este totalmente contenida dentro de ella, con lo que con cualquier punto $A$ de $\Gamma(O)$ será posible hacer la construcción previa, o la homotecia de $\Gamma(O)$ este parcialmente contenida dentro de $\Gamma(O)$ y solo con un arco de $\Gamma(O)$ será posible hacer la construcción.

Finalmente, notemos que no es posible que la homotecia de $\Gamma$ se encuentre completamente fuera de esta pues $G$ es un punto interior de $\Gamma$.

$\blacksquare$

Una propiedad del centroide

Lema. Sea $P$ un punto dentro de un triángulo $\triangle ABC$, entonces las áreas $(\triangle APB) = (\triangle APC)$ si y solo si $P$ se encuentra en la mediana $AA’$.

Demostración. Supongamos que $(\triangle APB) = (\triangle APC)$. Como $\triangle APB$ y $\triangle APC$ tienen la misma base $AP$ entonces sus alturas son iguales es decir la distancia de $B$ a $AP$ es igual a la distancia de $C$ a $AP$.

Figura 3

Ahora consideremos $A’ = AP \cap BC$, los triángulos $\triangle A’PB$ y $\triangle A’CP$ tienen la misma base $PA’$, por lo anterior sus alturas por B y C respectivamente también son iguales y así sus áreas son iguales $(\triangle A’PB) = (\triangle A’CP)$.

Por otro lado, para ambos triángulos, $\triangle A’PB$ y $\triangle A’CP$, la altura trazada por $P$ es la misma, esto implica que las respectivas bases son iguales, es decir $BA’ = A’C$.

Por lo tanto, $P$ está en la mediana trazada por $A$.

Recíprocamente supongamos que $P$ es un punto en la mediana $AA’$, como los pares de triángulos $\triangle BA’A$, $\triangle A’CA$ y $\triangle BA’P$, $\triangle A’CP$ tienen la misma altura desde $A$ y $P$ respectivamente, entonces
$(\triangle BA’A) = (\triangle A’CA)$ y $(\triangle BA’P) = (\triangle A’CP)$,

Por lo tanto,
$(\triangle BA’A) – (\triangle BA’P) = (\triangle A’CA) – (\triangle A’CP)$
$\Rightarrow (\triangle APB) = (\triangle APC)$.

$\blacksquare$

Teorema 2. Sea $G$ un punto dentro de un triángulo $\triangle ABC$, entonces $(\triangle AGB) = (\triangle AGC) = (\triangle BGC)$ si y solo si $G$ es el centroide de $\triangle ABC$.

Demostración. Supongamos que $(\triangle AGB) = (\triangle AGC) = (\triangle BGC)$, por el teorema anterior esto ocurre si y solo si $G$ está en la intersección de las medianas, si y solo si $G$ es el centroide de $\triangle ABC$.

$\blacksquare$

Proposición 1. Sean $\triangle ABC$ con $BC = a$, $AC = b$ y $AB = c$. Sean $G$ el centroide y $P$, $Q$, $R$ los pies de las perpendiculares desde $G$ a los lados $AB$, $BC$ y $AC$ respectivamente, entonces
$(\triangle PQR) = \dfrac{4}{9}(\triangle ABC)^3(\dfrac{a^2 + b^2 + c^2}{a^2b^2c^2})$.

Figura 4

Demostración. Por el teorema 3, $\triangle AGB$, $\triangle AGC$ y $\triangle BGC$ tienen la misma área, entonces
$(\triangle BGC) = \dfrac{BC \times GQ}{2}$
$\Rightarrow GQ = \dfrac{2(\triangle BGC)}{a} = \dfrac{2(\triangle ABC)}{3a}$.

De manera análoga tenemos que
$GP = \dfrac{2(\triangle ABC)}{3c}$ y $GR = \dfrac{2(\triangle ABC)}{3b}$.

Notemos que en $\square PBQG$, $\angle P + \angle Q = \pi$, en consecuencia tenemos que
$\angle G + \angle B = \pi$
$\Rightarrow \sin \angle PGQ = \sin \angle B$

Recordemos que podemos calcular el área de $\triangle ABC$ con la formula $\dfrac{ac \sin \angle B}{2}$.

Ahora calculamos
$(\triangle PGQ) = \dfrac{GP \times GQ \sin \angle B}{2}$

$= \dfrac{4(\triangle ABC)^2}{9ac} \dfrac{(\triangle ABC)}{ac}$

$= \dfrac{4(\triangle ABC)^3}{9a^2c^2}$.

De lo anterior se sigue que
$(\triangle PQR) = (\triangle PGQ) + (\triangle QGR) + (\triangle RGP)$

$= \dfrac{4(\triangle ABC)^3}{9a^2c^2} + \dfrac{4(\triangle ABC)^3}{9a^2b^2} + \dfrac{4(\triangle ABC)^3}{9b^2c^2}$

$= \dfrac{4}{9}(\triangle ABC)^3(\dfrac{a^2 + b^2 + c^2}{a^2b^2c^2})$.

$\blacksquare$

Distancia entre el centroide y el circuncentro

Teorema 3. Sean $\triangle ABC$, $G$ su centroide y $P$ un punto en el plano, entonces tenemos la siguiente igualdad
$PA^2 + PB^2 + PC^2 = GA^2 + GB^2 + GC^2 + 3PG^2$.

Demostración. Consideremos $A’$ y $M$ puntos medios de $BC$ y $AG$ respectivamente, con el teorema de Apolonio podemos calcular las medianas de los triángulos $\triangle BPC$, $\triangle A’PM$ y $\triangle GPA$ y tomemos en cuenta que $GA = MA’$.

Figura 5

Por lo tanto,
$PB^2 + PC^2 = 2PA’^2 + \dfrac{BC^2}{2}$,
$PG^2 + PA^2 = 2PM^2 + \dfrac{GA^2}{2}$,
$PA’^2 + PM^2 = 2PG^2 + \dfrac{MA’^2}{2} = 2PG^2 + \dfrac{GA^2}{2}$.

Sumando las tres expresiones y recordando que $GA = 2GA’$, obtenemos
$PA^2 + PB^2 + PC^2 = (PA’^2 + PM^2) + PG^2 + GA^2 + \dfrac{BC^2}{2}$
$= 2PG^2 + \dfrac{GA^2}{2} + PG^2 + GA^2 + \dfrac{BC^2}{2}$
$= 3PG^2 + GA^2 + 2GA’^2 + \dfrac{BC^2}{2}$.

Ahora aplicamos el teorema de Apolonio a $\triangle BGC$ y obtenemos
$GB^2 + GC^2 = 2GA’^2 + \dfrac{BC^2}{2}$.

Por lo tanto,
$PA^2 + PB^2 + PC^2 = 3PG^2 + GA^2 + GB^2 + GC^2$.

$\blacksquare$

Proposición 2. La suma de los cuadrados de las distancias del centroide de un triángulo a sus vértices es igual a un tercio la suma de los cuadrados de los lados del triángulo.

Demostración. Sea $\triangle ABC$ con $a = BC$, $b = AC$ y $c = AB$, con la formula para las medianas obtenemos:
$GA^2 = \dfrac{4}{9}AA’^2 = \dfrac{4}{9} (\dfrac{b^2 + c^2}{2} – \dfrac{a^2}{4})$,
$GB^2 = \dfrac{4}{9}BB’^2 = \dfrac{4}{9} (\dfrac{a^2 + c^2}{2} – \dfrac{b^2}{4})$,
$GC^2 = \dfrac{4}{9}CC’^2 = \dfrac{4}{9} (\dfrac{a^2 + b^2}{2} – \dfrac{c^2}{4})$.

Por lo tanto,
$GA^2 + GB^2 + GC^2 = \dfrac{a^2 + b^2 + c^2}{3}$.

$\blacksquare$

Corolario 2. La distancia entre el centroide $G$ y el circuncentro $O$ de un triángulo $\triangle ABC$ con circunradio $R$ se puede expresar de la siguiente forma:

$OG^2 = R^2 – (\dfrac{a^2 + b^2 + c^2}{9})$.

Demostración. Por el teorema 3 y la proposición 2 tenemos lo siguiente
$3R^2 = OA^2 + OB^2 + OC^2 = 3OG^2 + GA^2 + GB^2 + GC^2$
$= 3OG^2 + \dfrac{a^2 + b^2 + c^2}{3}$.

Despejando $OG^2$ obtenemos el resultado
$OG^2 = R^2 – (\dfrac{a^2 + b^2 + c^2}{9})$.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos algunas propiedades de un triangulo especial asociado a un triangulo dado, aquel que tiene como vértices los puntos medios del triangulo dado. Esto nos permitirá mostrar que el ortocentro, el centroide y el circuncentro de un triángulo siempre son colineales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Construye un triángulo dados dos vértices y el centroide.
  2. Prueba que en un triángulo la recta que une el punto medio de una de sus medianas con uno de los vértices del triángulo triseca el lado opuesto al vértice considerado.
  3. Muestra que las medianas de un triángulo dividen al triangulo en seis triángulos que tienen la misma área.
  4. Demuestra que en un triangulo,
    $i)$ entre cualesquiera dos de sus medianas la menor de ellas biseca al lado mas grande,
    $ii)$ si dos de sus medianas son iguales entonces el triangulo es isósceles.
  5. Sean $\triangle ABC$ y $AA’$, $BB’$, $CC’$ sus medianas, muestra que $\frac{3}{4}(AB^2 + BC^2 + AC^2) = AA’^2 +BB’^2 + CC’^2$.
  6. Sea $\triangle ABC$ con medianas $AA’$, $BB’$ y $CC’$, sean $m = AA’ + BB’ + CC’$ y $s = AB + BC + CA$, muestra que $\frac{3}{2}s > m > \frac{3}{4}s$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 65-71.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 80-84.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 14.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Clasificación de matrices por similaridad

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En las notas anteriores hemos desarrollado el Teorema de Jordan, y ahora veremos cómo podemos clasificar matrices por similaridad.

Sección

Supongamos que $A$ es una matriz similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$

Entonces el polinomio característico de $A$ es $$\chi_{A}(X) = \prod_{i=1}^{d}\chi_{J_{k_{i}}} (\lambda_{i})(X).$$

Ahora, dado que $J_{n}$ es nilpotente tenemos $\chi_{J_{k_{i}}}(X) = X^{n}$ y así $$\chi_{J_{n}(\lambda)}(X) = (X – \lambda)^{n}.$$

Se sigue que $$\chi_{A}(X) = \prod_{i=1}^{d} (X – \lambda_{i})^{k_{i}}$$ y así necesariamente $\lambda_{1}, \ldots, \lambda_{d}$ son todos eigenvalores de $A$. Nota que no asumimos que $\lambda_{1}, \ldots, \lambda_{d}$ sean distintos a pares, por lo que no podemos concluir de la igualdad anterior que $k_{1}, \ldots, k_{d}$ sean las multiplicidades algebráicas de los eigenvalores de $A$. Esto no es verdad en general: varios bloques de Jordan correspondientes a un dado eigenvalor pueden aparecer. El problema de la unicidad se resuelve completamente por el siguiente:

Teorema: Supongamos que una matriz $A \in M_{n}(F)$ es similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$ para algunos enteros positivos $k_{1}, \ldots, k_{d}$ que suman $n$ y algunas $\lambda_{1}, \ldots, \lambda_{d} \in F$. Entonces

  1. Cada $\lambda_{i}$ es un eigenvalor de $A$.
  2. Para cada eigenvalor $\lambda$ de $A$ y cada entero positivo $m$, el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$ is $$N_{m}(\lambda) = rango(A – \lambda I_{n})^{m+1} – 2 rango(A – \lambda I_{n})^{m} + rango(A – \lambda I_{n})^{m-1}$$ y depende sólo en la clase de similaridad de $A$.

Demostración. Ya vimos el inciso 1. La prueba del inciso 2 es muy similar a la solución del Problema __. Más precisamente, sea $B = A – \lambda I_{n}$ y observa que $B^{m}$ es similar a $\begin{pmatrix} (J_{k_{1}}(\lambda_{1}) – \lambda I_{k_{1}})^{m} & 0 & \cdots & 0 \\ 0 & (J_{k_{2}}(\lambda_{2}) – \lambda I_{k_{2}})^{m} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (J_{k_{d}}(\lambda_{d}) – \lambda I_{k_{d}})^{m}\end{pmatrix}$, por lo que $\displaystyle rango(B^{m}) = \sum_{i=1}^{d} rango(J_{k_{i}} (\lambda_{i}) – \lambda I_{k_{i}})^{m}$.

Ahora, el rango de $(J_{n}(\lambda) – \mu I_{n})^{m}$ es

  • $n$ si $\lambda \neq \mu$, como en este caso $$J_{n}(\lambda) – \mu I_{n} = J_{n} + (\lambda – \mu) I_{n}$$ es invertible,
  • $n-m$ para $\lambda = \mu$ y $m \leq n$, como se sigue del Problema __.
  • 0 para $\lambda = \mu$ y $m > n$, dado que $J^{n}_{n} = O_{n}$.

De ahí, si $N_{m}(\lambda)$ es el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$, entonces $$rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} (k_{i} – m) + \sum_{\lambda_{i} \neq \lambda} k_{i},$$ luego sustrayendo esas igualdades para $m-1$ y $m$ se tiene que $$rango(B^{m-1}) – rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} 1$$ y finalmente \begin{align*} rango(B^{m-1}) – 2rango(B^{m}) + rango(B^{m+1}) = \\ (rango(B^{m-1}) – rango(B^{m})) – (rango(B^{m}) – rango(B^{m+1})) = \\ \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} = m}} 1 = N_{m}(\lambda) \end{align*} como queríamos.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuáles son las posibles formas canónicas de Jordan de una matriz cuyo polinomio característico es $(X-1)(X-2)^{2}$?
  2. Considera una matriz $A \in M_{6}(\mathbb{C}) de rango 4 cuyo polinomio mínimo es $X(X-1)(X-2)^{2}$.
    1. ¿Cuáles son los eigenvalores de $A$?
    2. ¿$A$ es diagonalizable?
    3. ¿Cuáles son las posibles formas canónicas de Jordan de $A$?

Más adelante…

En la siguiente nota veremos algunos ejemplos de cómo funciona todo esto.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»