Ecuaciones Diferenciales I – Videos: Método de valores y vectores propios para sistemas lineales homogéneos con coeficientes constantes. Valores propios complejos

Introducción

En la entrada anterior comenzamos el estudio del método de valores y vectores propios para resolver sistemas de ecuaciones lineales homogéneas con coeficientes constantes, de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Vimos que si somos capaces de encontrar $n$ vectores propios de la matriz $\textbf{A}$ linealmente independientes, entonces las funciones de la forma $e^{\lambda t}\textbf{v}$, donde $\lambda$ es un valor propio con vector propio asociado $\textbf{v}$, son soluciones linealmente independientes, y por tanto la combinación lineal de estas será la solución general del sistema. También estudiamos el caso cuando $\textbf{A}$ tiene todos sus valores propios reales y distintos.

En esta entrada nos dedicaremos a estudiar el caso cuando $\textbf{A}$ tiene valores propios complejos. Dado que $e^{\lambda t}\textbf{v}$ es una solución compleja al sistema, entonces la solución general sería una función con valores complejos. Sin embargo nosotros queremos soluciones con valores reales, por lo que debemos hallar una forma de generar soluciones de esta forma.

Lo primero será ver que las partes real e imaginaria de una solución compleja al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ serán soluciones reales al mismo sistema. Además este par de soluciones serán linealmente independientes. Así, seremos capaces de encontrar un conjunto linealmente independiente de $n$ soluciones reales al sistema mediante el método de valores y vectores propios que nos ayuda a encontrar soluciones de la forma $e^{\lambda t}\textbf{v}$.

Finalizaremos la entrada con tres ejemplos, uno de ellos el problema del oscilador armónico, el cual revisamos en el siguiente video y que tiene asociado una ecuación diferencial de segundo orden. Resolveremos el mismo problema pero ahora mediante un sistema de ecuaciones homogéneo.

Método de valores y vectores propios. Raíces complejas del polinomio característico

Encontramos dos soluciones reales al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ dada una solución compleja de la forma $e^{\lambda t}\textbf{v}$ donde $\lambda$ es un valor propio complejo con vector propio asociado $\textbf{v}$. Las soluciones reales serán las partes real e imaginaria de la solución compleja. Además las dos soluciones reales serán linealmente independientes.

El oscilador armónico y más ejemplos

En el primer video resolvemos un par de ejemplos de sistemas cuya matriz asociada tiene valores propios complejos. En el segundo video resolvemos el problema del oscilador armónico sin fricción y sin fuerzas externas mediante un sistema de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Supongamos que $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ es un sistema lineal homogéneo con coeficientes constantes de 4 ecuaciones, y supongamos que $\lambda$, $\bar{\lambda}$, $\mu$ y $\bar{\mu}$ son los valores propios complejos de $\textbf{A}$ con vectores propios $\textbf{v}$, $\bar{\textbf{v}}$, $\textbf{w}$ y $\bar{\textbf{w}}$, respectivamente. Prueba que si $\textbf{Y}_{1}(t)$, $\textbf{Z}_{1}(t)$ son las partes real e imaginaria de $e^{\lambda t}\textbf{v}$, y si $\textbf{Y}_{2}(t)$, $\textbf{Z}_{2}(t)$ son las partes real e imaginaria de $e^{\mu t}\textbf{w}$ entonces $\textbf{Y}_{1}(t)$, $\textbf{Z}_{1}(t)$, $\textbf{Y}_{2}(t)$ y $\textbf{Z}_{2}(t)$ son soluciones linealmente independientes al sistema.
  • Supongamos que $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ es un sistema lineal homogéneo con coeficientes constantes de 3 ecuaciones. ¿Es posible que la matriz $\textbf{A}$ tenga tres valores propios complejos?
  • Demuestra que la matriz $\begin{pmatrix} a & b\\ -b & a\end{pmatrix}$, con $b\neq0$ tiene valores propios complejos.
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} -1 & 2\\ -1 & -1\end{pmatrix}\textbf{X}.$$
  • Resuelve el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 2 & -6\\ 2 & 1\end{pmatrix}\textbf{X} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 0 \end{pmatrix}.$$

Más adelante

En la próxima entrada concluimos el estudio al método de valores y vectores propios estudiando el caso cuando $\textbf{A}$ es una matriz diagonalizable con valores propios repetidos, y también el caso cuando $\textbf{A}$ no es diagonalizable, es decir, cuando $\textbf{A}$ no tiene $n$ vectores propios linealmente independientes, por lo que no se pueden generar $n$ soluciones linealmente independientes al sistema en la forma que lo hemos venido haciendo. En este caso debemos introducir un concepto nuevo, que es el de vector propio generalizado, y modificar el método de valores y vectores propios para encontrar las $n$ soluciones linealmente independientes al sistema.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.