Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Ecuaciones Diferenciales I – Videos: Geometría de soluciones a sistemas de dos ecuaciones de primer orden. Plano fase y campo vectorial asociado

Por Eduardo Vera Rosales

Introducción

Bienvenidos a la última unidad del curso de Ecuaciones Diferenciales Ordinarias. En la unidad anterior estudiamos sistemas de ecuaciones diferenciales de primer orden de la forma $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}.$$ En particular, estudiamos a profundidad sistemas de ecuaciones lineales de primer orden con coeficientes constantes, los cuales se pueden escribir de forma abreviada como $$\dot{\textbf{X}}=\textbf{A}\textbf{X}$$ donde $\textbf{A}$ es una matriz cuadrada cuyas entradas son los coeficientes del sistema. Mediante el método de valores y vectores propios logramos hallar la solución general a tales sistemas dependiendo de la forma de la matriz $\textbf{A}$ y sus valores propios.

En esta unidad continuaremos estudiando sistemas de ecuaciones y sus soluciones pero desde un punto de vista cualitativo. En particular, nos enfocaremos en sistemas de dos ecuaciones de primer orden y en su plano fase, el cual es un dibujo que nos da la información suficiente para saber cómo se comportan las soluciones. Nos limitaremos inicialmente a estudiar ecuaciones lineales con coeficientes constantes, pero en próximas entradas analizaremos sistemas no lineales, los cuales no hemos resuelto de manera analítica (los métodos son complejos para abordar en un primer curso), pero podremos estudiarlos cualitativamente.

Comenzaremos en esta entrada definiendo el plano fase y el campo vectorial asociado al sistema, el cual nos ayudará a dibujar las curvas que representan a las soluciones del sistema, y veremos algunos ejemplos que nos ayudarán a entender tales conceptos.

¡Vamos a comenzar!

Plano fase de un sistema de dos ecuaciones de primer orden

Definimos el concepto de sistema de ecuaciones autónomo (cuyas ecuaciones no dependen explícitamente de la variable independiente $t$), asociamos a cada solución del sistema una curva en el plano $x(t) – y(t)$, y definimos el plano fase asociado al sistema.

Campo vectorial asociado al sistema

Definimos el campo vectorial asociado a un sistema de dos ecuaciones y estudiamos la relación que guarda con las curvas del plano fase del sistema.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\textbf{X}.$$ ¿Cuál es el campo vectorial asociado al sistema? Dibuja a mano algunos vectores del campo vectorial, y algunas curvas solución en el plano fase. ¿Puedes dibujarlas todas con la información obtenida?
  • Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}\textbf{X}.$$ Dibuja algunas curvas solución en el plano fase. En la siguiente imagen puedes ver el campo vectorial asociado.
Campo vectorial asociado al problema
Campo vectorial asociado al sistema del problema. Elaboración propia
  • Resuelve el sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\textbf{X}+\begin{pmatrix} 0 \\ 1\end{pmatrix}.$$ Dibuja algunas curvas solución en el plano fase. En la siguiente imagen puedes ver el campo vectorial asociado.
Campo vectorial asociado al problema
Campo vectorial asociado al sistema del problema. Elaboración propia
  • En el primer video vimos que cada solución a un sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ determina una curva en el plano fase. Considera ahora una curva solución en el plano fase. ¿Determina una única solución al sistema? Es decir, ¿esta curva representa a una única solución al sistema?
  • Considera el sistema $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}\textbf{X}.$$ Determina si el siguiente dibujo puede representar al campo vectorial asociado.
Campo vectorial. Elaboración propia

Más adelante

Una vez que hemos definido el plano fase de un sistema de dos ecuaciones $\dot{\textbf{X}}=\textbf{F}(x,y)$, vamos a comenzar a estudiar el comportamiento de las curvas solución. Para esto debemos estudiar los puntos de equilibrio, que serán aquellos puntos $(x,y)$ tales que $\textbf{F}(x,y)=(0,0)$. De dichos puntos va a depender el comportamiento del plano fase entero, por lo que estudiaremos su estabilidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Teoría de los Conjuntos I: Axioma del par y axioma de unión

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada abordaremos algunos axiomas de construcción: el axioma de unión y el axioma del par. Estos, junto al esquema de comprensión nos permitirán construir un montón de conjuntos nuevos. A partir de esta entrada, utilizaremos con mayor frecuencia el conjunto vacío, hasta ahora, el único conjunto que conocemos.

Axioma del par

El primer axioma que nos permitirá construir nuevos conjuntos es el axioma del par.

Axioma del par. Sean $a$ y $b$ conjuntos arbitrarios, existe $c$ un conjunto cuyos únicos elementos son $a$ y $b$.

El axioma del par nos permite construir pares no ordenados. Dados los conjuntos $a$ y $b$ resulta que $\set{a,b}=\set{b,a}$. En el caso de que $a=b$, tenemos que $c=\set{a,a}=\set{a}$, a este último conjunto le llamaremos conjunto unitario de $a$.

Ejemplo.

Consideremos al conjunto vacío. Por el axioma del par, tenemos que $\set{\emptyset}$ es conjunto. Luego, como $\set{\emptyset}$ es conjunto si volvemos a aplicar el axioma del par tendremos que $\set{\set{\emptyset}}$ es conjunto. Si aplicamos iteradamente el axioma del par tendremos que $\set{\dots \set{\emptyset}\dots}$ es conjunto.

$\square$

Si observas con cuidado hemos construido muchos conjuntos que constan de un solo elemento. Por lo que podemos preguntarnos si el axioma del par nos permite construir nuevos conjuintos o todos los que hemos obtenido son el mismo. La respuesta es que no. La proposición que sigue nos ayudará a probar que $\emptyset$ es distinto de $\set{\emptyset}$.

Proposición. $\emptyset\not= \set{\emptyset}$.

Demostración.

Para probar que $A\not=B$ basta ver que $A\not\subseteq B$ o $B\not\subseteq A$.

Para mostrar que $\set{\emptyset}\not\subseteq\emptyset$ tenemos que exhibir un conjunto $x\in\set{\emptyset}$ tal que $x\notin\emptyset$. Tenemos que $\set{\emptyset}$ es un conjunto que tiene como único elemento al conjunto $\emptyset$, es decir, $\emptyset\in\set{\emptyset}$. Luego, como $\emptyset\notin\emptyset$, se sigue que $\set{\emptyset}\not\subseteq\emptyset$.

$\square$

En la tarea moral será tu turno de probar que $\set{\emptyset}\not=\set{\set{\emptyset}}$, $\set{\set{\emptyset}}\not=\set{\set{\set{\emptyset}}}$,…

Es importante poder ir simplificando nuestra notación. Como ya tenemos dos conjuntos que son distintos, les pondremos un nombre especial.

Definición. Llamaremos $0$ a $\emptyset$ y $1$ a $\{\emptyset\}$.

Aquí estamos usando los símbolos $0$ y $1$, que seguramente conoces mejor como números que como conjuntos. En los ejercicios de esta entrada definiremos también quiénes son $2$, $3$ y $4$. Pero, ¡no te apresures! Todavía no podemos definir a todos todos los naturales como conjuntos. Esto lo formalizaremos hasta la tercera unidad.

Por ahora podemos preguntarnos de que manera podemos definir al $3$ y $4$ pues el axioma del par solo nos permite construir conjuntos de a lo más dos elementos, como se muestra en el siguiente ejemplo.

Ejemplo.

Consideremos $\emptyset$ y $\set{\emptyset}$ conjuntos. Por axioma del par tenemos que $\set{\emptyset, \set{\emptyset}}$ es conjunto.

Ahora, podemos considerar a los conjuntos $\set{\emptyset}$ y $\set{\emptyset, \set{\emptyset}}$, tenemos que $\set{\set{\emptyset}, \set{\emptyset, \set{\emptyset}}}$ es conjunto.

Luego, $\set{\set{\emptyset, \set{\emptyset}}, \set{\set{\emptyset}, \set{\emptyset, \set{\emptyset}}}}$ también lo es.

De manera que, podemos construir conjuntos más y más complejos con el axioma del par pero siempre tendrán a lo más dos conjuntos como elementos.

$\square$

Axioma de la unión

Axioma de la unión. Para cualquier conjunto $A$, existe un conjunto $U$ tal que $x\in U$ si y sólo si existe $y\in A$ tal que $x\in y$.

Ejemplo.

Consideremos los conjuntos $\emptyset$ y $\set{\emptyset}$, luego por axioma del par tenemos que $A=\set{\emptyset,\set{\emptyset}}$ es conjunto. Veamos quién es $U$ para el conjunto $A$. Resulta que en este caso, $U=\set{\emptyset}$.

En efecto: si $x\in U$ entonces $x\in y$ para algún $y\in A$. Luego, los únicos elementos de $A$ son $\emptyset$ y $\set{\emptyset}$. Así, $x\in\emptyset$ o $x\in\set{\emptyset}$.

Si $x\in\emptyset$ entonces $x\in\set{\emptyset}$ por vacuidad. La otra posibilidad es que $x\in\set{\emptyset}$. En ambos casos, $x\in\set{\emptyset}$ y, por tanto, $U\subseteq\set{\emptyset}$.

Luego, si $x\in\set{\emptyset}\in A$ se sigue por definición de $U$ que $x\in U$. Así, $\set{\emptyset}\subseteq U$. De esta manera podemos concluir que $U=\set{\emptyset}$.

$\square$

Si ponemos atención al ejemplo anterior, va a resultar que los elementos del conjunto $U$ son los elementos de los elementos de $A$. $A$ tiene como elementos a $\emptyset$ y $\set{\emptyset}$, el conjunto vacío no tiene elementos por lo que el único elemento de $U$ es el elemento de $\set{\emptyset}$ que es $\emptyset$.

El axioma de la unión nos va a permitir construir conjuntos con más de dos elementos. Veamos el siguiente ejemplo.

Ejemplo.

Consideremos a los conjuntos $\set{\emptyset, \set{\emptyset}}$ y $\set{\set{\set{\emptyset}}}$. Por axioma del par, $A= \set{\set{\emptyset, \set{\emptyset}}, \set{\set{\set{\emptyset}}}}$ es conjunto. Luego, $U$ para el conjunto $A$ es $U=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$. Veamos que se dan ambas contenciones.

$\subseteq$] Sea $x\in U$, entonces existe $y\in A$ tal que $x\in y$. En este caso, los únicos elementos de $A$ son $\set{\emptyset, \set{\emptyset}}$ y $\set{\set{\set{\emptyset}}}$, por lo que $x\in \set{\emptyset, \set{\emptyset}}$ o $x\in \set{\set{\set{\emptyset}}}$.

  • Si $x\in \set{\emptyset, \set{\emptyset}}$, entonces $x=\emptyset$ o $x=\set{\emptyset}$. En el caso de que $x=\emptyset$, se sigue que $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$ y en caso de que $x=\set{\emptyset}$ ocurre también que $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$.
  • Si $x\in \set{\set{\set{\emptyset}}}$, entonces $x=\set{\set{\emptyset}}$ y $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$.

Así, $U\subseteq \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$.

$\supseteq$] Sea $x\in \set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}$. Entonces $x=\emptyset$ o $x=\set{\emptyset}$ o $x=\set{\set{\emptyset}}$.

  • Si $x=\emptyset$, entonces $x\in \set{\emptyset, \set{\emptyset}}$ y, dado que $\set{\emptyset, \set{\emptyset}}\in A$, se sigue por definición de $U$ que $x\in U$.
  • Si $x=\set{\emptyset}$, entonces $x\in \set{\emptyset, \set{\emptyset}}$ y nuevamente $x\in U$ por definición, ya que $\set{\emptyset,\set{\emptyset}}\in A$.
  • Si $x=\set{\set{\emptyset}}$, entonces $x\in \set{\set{\set{\emptyset}}}$ y como $\set{\set{\set{\emptyset}}}\in A$, $x\in U$.

Por lo tanto, $\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}}\subseteq U$.

$\square$

Definición. Sea $A$ un conjunto, el conjunto que nos otorga el axioma de la unión es único debido al axioma de extensión. Le llamaremos unión de $A$ y lo denotaremos como $\bigcup A$.

La definición de unión se puede particularizar a cuando queremos unir solamente dos conjuntos. Esto lo ponemos en una definición especial pues se usa muy frecuentemente.

Definición. Sean $A$ y $B$ conjuntos. Definimos al conjunto $A\cup B=\bigcup\set{A,B}$.

En la siguiente observación mostramos que $A\cup B$ se puede describir por medio de la colección $\set{x:x\in A\vee x\in B}$.

Observación. $x\in A\cup B$ si y sólo si $x\in A$ o $x\in B$.

Demostración.

Sea $x\in A\cup B$. Entonces, $x\in z$ para algún $z\in\set{A,B}$. Si $z=A$, entonces $x\in A$ y, si $z=B$, entonces, $x\in B$. Si ahora suponemos que $x\in A$ o $x\in B$, $x\in z$ para algún $z\in\set{A,B}$, por lo que $x\in A\cup B$.

$\square$

Ejemplo.

Consideremos ahora a los conjuntos $A= \set{\set{\emptyset}, \set{\set{\emptyset}}}$ y $B= \set{\set{\set{\emptyset}}}$ construidos con el axioma de par. Tenemos que $A\cup B= \bigcup \set{\set{\set{\emptyset}, \set{\set{\emptyset}}}, \set{\set{\set{\emptyset}}}}= \set{\set{\emptyset}, \set{\set{\emptyset}}}$.

$\square$

A continuación vamos a demostrar que los elementos de un conjunto $S$ se quedan contenidos en la unión de $S$.

Proposición. Sea $A$ un conjunto tal que $A\in S$, entonces $A\subseteq \bigcup S$.

Demostración.
Supongamos que $A\in S$ y sea $x\in A$, tenemos que $x\in \bigcup S$. En efecto, para $x\in A$ arbitrario existe $y\in S$ tal que $x\in y$, a saber $y=A$. Por lo tanto, $A\subseteq S$.

$\square$

Ejemplo.

Consideremos al conjunto $S=\set{\emptyset, \set{\emptyset, \set{\emptyset}}}$. Resulta que $\bigcup S=\set{\emptyset, \set{\emptyset}}$.

Los elementos de $S$ son $\emptyset$ y $\set{\emptyset, \set{\emptyset}}$ en este ejemplo se cumple que $\emptyset\subseteq \bigcup S$ y $\set{\emptyset, \set{\emptyset}}\subseteq\bigcup S$.

$\square$

Tarea moral

  • Demuestra que $\set{\emptyset}\not=\set{\set{\emptyset}}$, $\set{\set{\emptyset}}\not=\set{\set{\set{\emptyset}}}$,…
  • Sean $A$ y $B$ conjuntos, prueba que $A=B$ si y sólo si $\set{A}=\set{B}$.
  • Prueba que $\set{\set{\emptyset, \set{\emptyset}}, \set{\set{\emptyset}}}$ es conjunto.
  • Calcula $\bigcup\set{\set{\emptyset, \set{\emptyset}}, \set{\set{\emptyset}}}$.
  • Definimos $2=1\cup \{1\}$, $3=2\cup \{2\}$ y $4=3\cup \{3\}$.
    • Justifica mediante los axiomas que $2,3,4$ en efecto son conjuntos.
    • Verifica que $4=\{0,1,2,3\}$.
    • Muestra que $0,1,2,3,4$ son todos ellos conjuntos diferentes entre sí.

Más adelante…

En la siguiente entrada continuaremos con el axioma del conjunto potencia, el cual nos permitirá hablar acerca del conjunto de subconjuntos de un conjunto. Con este axioma y los que hemos visto en las entradas anteriores tendremos las herramientas suficientes para abordar el álgebra de conjuntos y probar algunas contenciones importantes entre conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Paradoja de Russell

Por Gabriela Hernández Aguilar

Introducción

En esta entrada tendremos un acercamiento a una de las grandes controversias que tuvó la teoría de los conjuntos: la paradoja de Russell, también llamada paradoja del barbero. Es importante que prestes especial atención al esquema de comprensión que vimos en la entrada anterior, pues a partir de la paradoja de Rusell y el esquema de comprensión estudiaremos al contradictorio «conjunto de todos los conjuntos».

La paradoja del barbero

«En un lejano poblado de un antiguo emirato había un barbero llamado As-Samet diestro en afeitar cabezas y barbas, maestro en escamondar pies y en poner sanguijuelas. Un día el emir se dio cuenta de la falta de barberos en el emirato, y ordenó que los barberos solo afeitaran a aquellas personas que no pudieran hacerlo por sí mismas. Cierto día el emir llamó a As-Samet para que lo afeitara y él le contó sus angustias:

-En mi pueblo soy el único barbero. No puedo afeitar al barbero de mi pueblo, ¡que soy yo!, ya que si lo hago, entonces puedo afeitarme por mí mismo, por lo tanto ¡no debería afeitarme!. Pero, si por el contrario no me afeito, entonces algún barbero debería afeitarme, ¡pero yo soy el único barbero de allí!

El emir pensó que sus pensamientos eran tan profundos, que lo premió con la mano de la más virtuosa de sus hijas. Así, el barbero As-Samet vivió para siempre feliz y barbón.»

López Mateos, Manuel (1978). Los Conjuntos. México D.F.: Publicaciones del Departamento de Matemáticas, Facultad de Ciencias, UNAM.

Si analizamos la historia anterior, As-Samet estaba metido en verdaderos problemas debido al mandato del emir. Dado que As-Samet era barbero, podía afeitarse a sí mismo, entonces el barbero no debía afeitarlo. Sin embargo, decir que él mismo se puede afeitar es igual a decir que el barbero lo puede afeitar y eso desobedece el mandato, por lo tanto no debe afeitarse. Ahora, como no se puede afeitar a sí mismo, entonces el barbero debe afeitarlo, es decir, él debe afeitarse, y eso también desobedece el mandato. Por lo tanto, As-Samet debe afeitarse si y sólo si As-Samet no debe afeitarse, lo cual es un absurdo. ¡Qué gran lío!

Formalización de la paradoja del barbero

Vimos en la entrada anterior que el esquema de comprensión nos permite construir conjuntos a partir de elementos en un conjunto con una propiedad. A continuación definiremos a una colección y veremos que hay colecciones que no son conjuntos.

Definición: Dada $P(x)$ una propiedad, definimos a la colección determinada por $P$ como todos los conjuntos que satisfacen a la propiedad $P$. A dicha colección la denotaremos mediante $\set{x:P(x)}$.

Ahora que hemos definido a una colección, vamos a ver un ejemplo de que no toda colección será un conjunto. Para ello, presentaremos esta paradoja dando una propiedad «$P(x): x\notin x$» que se interpreta como $x$ no se pertenece a sí mismo. Definimos $B$ como la colección $B=\set{x:P(x)}$, tenemos lo siguientes casos:

  • Si $B\in B$, entonces $P(B)$ se cumple, es decir, $B\notin B$.
  • Si $B\notin B$, entonces $P(B)$ no se satisface, es decir, no es cierto que $B\notin B$, por lo que $B\in B$.

Ahora, si juntamos los casos anteriores tendremos que $B\in B$ si y sólo si $B\notin B$, lo cual es una contradicción. Por lo tanto, es imposible que $B$ sea un conjunto.

La colección de todos los conjuntos

La idea anterior es problemática, pero informal: no hemos dicho por qué sí nos lleva a problemas dentro de nuestro sistema axiomático. El problema se originaría de suponer que hay un conjunto de todos los conjuntos.

Proposición. El conjunto de todos los conjuntos no existe.

Demostración. (Por reducción al absurdo).

Supongamos que el conjunto de todos los conjuntos sí existe. Sea $V$ dicho conjunto y consideremos «$P(x): x\notin x$», tenemos que $A=\set{x\in V: x\notin x}$ es un conjunto por el esquema de comprensión. De modo que $A\in V$ pues $V$ tiene a todos los conjuntos, además $P(A)$ puede o no ser verdadero, evaluemos los dos casos posibles.

  • Si $P(A)$ es verdadero, entonces $A\notin A$ y por lo tanto, $A\in A$.
  • Si $P(A)$ es falso, entonces $A\in A$ y por lo tanto, $A\notin A$.

Por lo tanto, $A\in A$ si y sólo si $A\notin A$ lo cuál es una contradicción. Dado que esta vino de suponer que $V$ es un conjunto, concluimos que el conjunto de todos los conjuntos no existe.

$\square$

Denotaremos a $V$ como la colección de todos los conjuntos.

La conclusión que obtenemos es que para dar un conjunto requerimos más que una propiedad, necesitamos también que los elementos que satisfagan dicha propiedad sean elementos de algo que previamente ya sabemos es un conjunto. Este problema lo soluciona el esquema de comprensión.

Tarea moral

Con los temas que hemos visto hasta este momento demuestra o explica los siguientes ejercicios:

  • ¿Cómo podemos averiguar si dos conjuntos son diferentes?
  • Explica con tus palabras porqué $\set{x:x\notin x}$ no es un conjunto.
  • Escribe colecciones que consideres que son conjuntos. Más adelante tendrás el conocimiento necesario para determinar si dichas colecciones son o no conjuntos.

Más adelante…

En la siguiente entrada abordaremos axiomas de construcción: el axioma del par y el axioma de unión. Estos, junto con el esquema de comprensión nos proporcionarán las herramientas necesarias para construir nuevos conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral II: Criterio de la divergencia y de acotación

Por Miguel Ángel Rodríguez García

En la sección anterior vimos unas series especiales llamadas series geométricas, donde, dependiendo del valor de $r$ la serie converge o diverge, además, vimos algunas propiedades de las series, lo cual usaremos en adelante. En esta sección veremos algunos teoremas sobre los criterios de divergencia o convergencia de series. Comencemos con anunciando el teorema del criterio de Cauchy.

Criterios de convergencia

Teorema. (Criterio de Cauchy)

La sucesión $\left \{a_{n} \right \}$ es sumable (convergente) si y solo si $\forall \space m, \space n \space \epsilon \space \mathbb{N}$

$$\lim_{m, n \to \infty}(a_{m+1}+a_{m+2}+….+a_{n})=0$$

Para $n>m \geq N$

Demostración:

Utilizando el criterio de Cauchy para sucesiones, como $\left \{a_{n} \right \}$ es sumable $\Leftrightarrow \lim_{n \to \infty} S_{n}$ converge $\Leftrightarrow \forall \space \epsilon >0, \space \exists \space N \space \epsilon \space \mathbb{N}$ tal que si $m, \space n \geq N \Rightarrow |S_{n}-S_{m}|<\varepsilon$

$$\Leftrightarrow |(a_{1}+a_{2}+….+a_{n})-(a_{1}+a_{2}+….+a_{m})|<\varepsilon$$

Como $n>m$, entonces:

$$ =|(a_{1}+a_{2}+….+a_{m}+a_{m+1}+….+a_{n})-(a_{1}+a_{2}+….+a_{m})|\Leftrightarrow |a_{m+1}+….+a_{n}|<\varepsilon$$

$\forall \space n>m$

En particular:

$$\Leftrightarrow |a_{m+1}+….+a_{n}-0|<\varepsilon \Leftrightarrow \lim_{m, n \to \infty}(a_{m+1}+….+a_{n})=0$$

Por tanto, la serie $a_{n}$ es convergente.

$\square$

Teorema. Si la serie $\sum_{n=1}^{\infty}a_{n}$ es convergente, entonces $\lim_{n \to \infty}a_{n}=0$.

Demostración:

Puesto que la serie $\sum_{n=1}^{\infty}a_{n}$ es convergente, la sucesión $\left \{ a_{n} \right \}$ es convergente $\Rightarrow \lim_{n \to \infty}S_{n}$ converge a un numero $L$.

$$\Rightarrow \lim_{n \to \infty}S_{n+1}=L$$

Pero: $$\lim_{n \to \infty}a_{n+1}=\lim_{n \to \infty}\left [ (a_{1}+a_{2}+….+a_{n+1})-(a_{1}+a_{2}+….+a_{n}) \right ]=\lim_{n \to \infty}(S_{n+1}-S_{n})$$

$$\lim_{n \to \infty}(S_{n+1})-\lim_{n \to \infty}(S_{n})=L-L=0$$

$$\therefore \lim_{n \to \infty}a_{n+1}=0$$

Como $a_{n+1}$ converge, entonces también lo hace $a_{n}$.

$$\therefore \lim_{n \to \infty}a_{n} =0$$

$\square$

Nota: En general, el inverso de este teorema no es valido, si $lim_{n \to \infty}a_{n}=0$ no se puede concluir que $\sum_{n=1}^{\infty}a_{n}$ es convergente.

Criterio de la divergencia

Teorema. (La prueba o criterio de la divergencia):

Si $\lim_{n \to \infty}a_{n}$ no existe o si $\lim_{n \to \infty}a_{n}\neq 0$ entonces la serie $\sum_{n=1}^{\infty}a_{n}$ diverge.

La demostración se infiere del teorema anterior porque si la serie no es divergente, entonces es convergente y, por tanto, $\lim_{n \to \infty}a_{n}= 0$.

$\square$

Veamos unos ejemplos.

Ejemplos

  • $$\sum_{n=1}^{\infty }\frac{n}{4n+1}$$

Tomando el límite, obtenemos lo siguiente:

$$\lim_{n\rightarrow \infty }\frac{1}{4+\frac{1}{n}}=\frac{1}{4}\neq 0$$

Por el criterio de la divergencia:

$$\sum_{n=1}^{\infty}\frac{n}{4n+1} \space diverge$$

  • $$\sum_{n=1}^{\infty} \frac{n!}{2n!+1}$$

Tomamos el límite y multiplicamos por el factor $\frac{\frac{1}{n!}}{\frac{1}{n!}}$, por lo que se tiene que:

$$\lim_{n \to \infty} \frac{n!}{2n!+1}=\lim_{n \to \infty } \frac{\frac{n!}{n!}}{2\frac{n!}{n!}+\frac{1}{n!}}=\lim_{n \to \infty} \frac{1}{2+\frac{1}{n!}}=\frac{1}{2}\neq 0$$

$$\therefore \sum_{i=1}^{\infty}\frac{n!}{2n!+1} \space diverge$$

Existe otro criterio de convergencia llamado el criterio de acotación

Series con términos no negativos

Teorema. (Criterio de acotación)

Una sucesión no negativa $\left \{ a_{n} \right \}$ es sumable, $\Leftrightarrow$ sus sumas parciales $\left \{S_{n} \right \}$ está acotada.

Demostración:

$\Rightarrow \lrcorner $

Si $\left \{ a_{n} \right \}$ es sumable $\Leftrightarrow \lim_{n \to \infty } S_{n}=L$ converge por el teorema visto anteriormente.

Habiamos visto en cálculo 1 que si, converge $S_{n}$ $\Rightarrow S_{n}$ esta acotada.

$\Leftarrow \lrcorner$

Supongamos que $\left \{ S_{n} \right \}$ está acotado, observemos que:

$$S_{n+1}=S_{n}+a_{n+1} \geq S_{n}$$

Ya que:

$$a_{n+1}\geq 0$$

$$\Rightarrow S_{n} \leq S_{n+1} \space\forall \space n \space \epsilon \space \mathbb{N}$$

$\therefore S_{n}$ es creciente y además, está acotado por hipótesis, por cálculo I, si una sucesión es creciente y acotada, entonces se tiene que:

$\Rightarrow \left \{ S_{n} \right \}$ es convergente $\Rightarrow \left \{ a_{n} \right \}$ es sumable.

$\square$

Teorema. Sea $k \space \epsilon \space \mathbb{N}$ fijo. La serie$\sum_{n=k}^{\infty}a_{n}$ converge$\space \Leftrightarrow\sum_{n=0}^{\infty } a_{n}$ converge.

Demostración:

Como la serie converge por hipótesis, entonces:

$$\sum_{n=k}^{\infty }a_{n} \Leftrightarrow \lim_{n \to \infty }(a_{k}+a_{k+1}+…+a_{n}) \Leftrightarrow$$

$$a_{0}+a_{1}+…+a_{k-1}+\lim_{k \to \infty }(a_{k}+a_{k+1}+…+a_{n}) \Leftrightarrow$$

$$\lim_{n \to \infty }(a_{0}+a_{1}+…+a_{k}+a_{k+1}+…a_{n}) \space \space converge$$

$$\Leftrightarrow \sum_{n=0}^{\infty }a_{n} \space \space converge$$

$\square$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Diga si la siguientes series convergen o divergen.

  1. $$\sum_{i=1}^{\infty}\frac{1}{\sqrt{n}}$$
  2. $$\sum_{i=1}^{\infty}\frac{n^{2}}{5n^{2}+4}$$
  3. $$\sum_{i=1}^{\infty} \frac{-n}{2n+5}$$
  4. $$\sum_{n=0}^{\infty}e^{-2n}$$
  5. $$\sum_{n=1}^{\infty}ln\left ( \frac{1}{n} \right )$$

Más adelante…

En esta sección vimos dos teoremas importantes de criterios de convergencia, el criterio de la divergencia, en el cual nos dice que si el límite de la sucesión es diferente de cero o no existe, entonces la serie diverge, y el criterio de acotación que nos dice la reciprocidad entre una sucesión convergente y la acotación de sus sumas parciales. En la siguiente sección veremos otros dos criterios de acotación, el criterio de comparación y comparación del límite.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series Geométricas

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos la definición de sumas parciales y series infinitas, también vimos en que caso se dice que una serie converge o diverge, en esta sección veremos unas series especiales llamadas series geométricas, además, veremos algunas propiedades importantes de las series.

Series geométricas

Las series geométricas son series de la forma:

$$\sum_{n=0}^{\infty }cr^{n}=cr^{0}+cr^{1}+cr^{2}+….+cr^{n}+….$$

Donde $c$ es una constante.

Veamos el teorema siguiente que nos dice en que casos las series geométricas convergen o divergen.

Teorema. Sea $r \space \epsilon \space \mathbb{R}$ entonces la serie:

$$\sum_{n=0}^{\infty }cr^{n}$$

Diverge si $|r|\geq 1$ y converge al valor $\frac{1}{1-r}$ si $|r|<1$.

Demostración: Para demostrar este teorema supongamos que $c=1$, dividamos la demostración por los casos siguientes:

  • Caso $1)$: Si $r=1$.

Vemos que:

$$\sum_{n=0}^{\infty } 1(r)^{n}=\sum_{n=0}^{\infty } 1$$

Entonces:

$$S_{0}=1,$$

$$S_{1}=2,$$

$$….,$$

$$S_{n}=n+1$$

Tomando el límite:

$$\lim_{n \to \infty} S_{n}=\lim_{n \to \infty}n+1\rightarrow \infty$$

Ya que sabemos que:

$$\lim_{n \to \infty} n \to \infty$$

Por tanto, la serie diverge si $r=1$.

$$\therefore \sum_{n=0}^{\infty }1^{n} \rightarrow \infty$$

  • Caso $2)$: Si $r=-1$.

Entonces tenemos que la serie es:

$$\sum_{n=0}^{\infty }r^{n}=\sum_{n=0}^{\infty }(-1)^{n}$$

Ya habíamos visto en un ejemplo de la entrada de series y series infinitas que: $$\sum_{n=0}^{\infty }(-1)^{n}$$

Es una serie oscilante. Por tanto:

$$\sum_{n=0}^{\infty }(-1)^{n}=\sum_{n=0}^{\infty }S_{n} \space \space \space \nexists \lim$$.

Es decir, el límite no existe y, por tanto, diverge.

  • Caso $3)$: Si $r\neq 1$ y $r\neq -1$.

Entonces tenemos que:

$$\sum_{n=0}^{\infty }r^{n}=1+r+r^{2}+….+r^{n}+…$$

Las sumas parciales los calculamos como:

$$S_{n}=1+r+r^{2}+….+r^{n}$$

$$\Rightarrow r\space S_{n}=r+r^{2}+….+r^{n+1}$$

$$\Rightarrow S_{n}-rS_{n}=1-r^{n+1}$$

$$\Rightarrow S_{n}(1-r)=1-r^{n+1}$$

$$\Rightarrow S_{n}=\frac{1-r^{n+1}}{1-r}$$

$$\therefore \sum_{n=0}^{\infty }r^{n}=\lim_{n \to \infty}S_{n}=\lim_{n \to \infty}\frac{1-r^{n+1}}{1-r}=\frac{1}{1-r}\lim_{n \to \infty}(1-r^{n+1}) \tag{1}$$

Para resolver este límite, nuevamente veamos que pasa en cada uno de los siguientes casos:

  • Caso cuando $|r|> 1$:

$$\Rightarrow r>1 \space \space ó \space \space r<-1$$

Si $r>1$:

$$\lim_{n \to \infty} r^{n+1} \to \infty$$

Si $r<-1$:

$$\lim_{n \to \infty}r^{n+1} \space \space \space \nexists$$

$$\therefore \frac{1}{1-r}\lim_{n \to \infty}(1-r^{n+1}) \to \infty$$

Es decir, la serie diverge si $|r|>1$.

  • Caso cuando $|r|<1$:

$$\Rightarrow -1<r<1$$

$$ \Rightarrow \lim_{n \to \infty}r^{n+1}=0$$

Entonces, de la relación $(1)$ se tiene que:

$$\Rightarrow \frac{1}{1-r}\lim_{n \to \infty}(1-r^{n+1})= \frac{1}{1-r} \cdot (1) =\frac{1}{1-r}$$

$$\therefore \sum_{n=0}^{\infty}r^{n}=\frac{1}{1-r}$$

Es decir, la serie converge si $|r|<1$.

$$ \therefore \sum_{n=0}^{\infty }r^{n}= \frac{1}{1-r} $$

Converge si $|r|<1$ y diverge si $|r|\geq 1$.

$\square$

Veamos unos ejemplos.

Ejemplos

Diga si las siguientes series convergen o divergen.

  • $$\sum_{n=0}^{\infty}\left (\frac{1}{2} \right )^{n}$$

Vemos que es una serie geométrica, en este caso $r=\frac{1}{2}$, por lo que, por el teorema anterior, tenemos que:

$$\frac{1}{1-r}=\frac{1}{1-\frac{1}{2}}=2$$

  • $$\sum_{n=0}^{\infty}2^{n}$$

Vemos que $|2|>1$, por el teorema anterior, la serie diverge.

Ahora veamos algunas propiedades de las series que nos serán de utilidad en el resto del curso.

Teorema. Sea $\left \{ a_{n} \right \}$ y $\left \{ b_{n} \right \}$ sucesiones tales que si $\sum_{n=k}^{\infty} a_{n} $ converge y $\sum_{n=k}^{\infty}b_{n}$ converge, entonces:

$1)$ $$\sum_{n=k}^{\infty} (a_{n}+b_{n})=\sum_{n=k}^{\infty} a_{n}+\sum_{n=k}^{\infty} b_{n}$$

$2)$ $$\sum_{n=k}^{\infty} (a_{n}-b_{n})=\sum_{n=k}^{\infty} a_{n}-\sum_{n=k}^{\infty}b_{n}$$

$3)$ $$\sum_{n=k}^{\infty} Ca_{n}=C \sum_{n=k}^{\infty}a_{n} \space \space \forall \space C\space \epsilon \space \mathbb{R}$$

Demostración:

Sea $\left \{ S_{n} \right \}$, $\left \{ t_{n} \right \}$, $\left \{ w_{n} \right \}$ las sucesiones de las sumas parciales de $a_{n}$, $b_{n}$ y $a_{n}+b_{n}$ respectivamente, por hipótesis $a_{n}$ y $b_{n}$ convergen, por lo que:

$$\sum_{n=k}^{\infty} \left \{ a_{n} \right \} \Rightarrow \lim_{n \to \infty} S_{n} \space \space converge$$

$$\sum_{n=k}^{\infty} \left \{ b_{n} \right \} \Rightarrow \lim_{n \to \infty} t_{n} \space \space converge$$

Demostremos la primera propiedad $1)$.

$$\sum_{n=k}^{\infty} (a_{n}+b_{n})=\sum_{n=k}^{\infty} a_{n}+\sum_{n=k}^{\infty} b_{n}$$

Por hipótesis tenemos que:

$$\sum_{n=k}^{\infty} (a_{n}+b_{n})=\lim_{n \to \infty}w_{n}=\lim_{n \to \infty}(a_{k}+b_{k}+a_{k+1}+b_{k+1}+…..+a_{n}+b_{n})$$

$$=\lim_{n \to \infty} [(a_{k}+a_{k+1}+….+a_{n})+(b_{k}+b_{k+1}+….+b_{n})]=\lim_{n \to \infty} (S_{n}+t_{n})$$

$$=\lim_{n \to \infty}S_{n}+\lim_{n \to \infty}t_{n}=\sum_{n=k}^{\infty} a_{n}+\sum_{n=k}^{\infty} b_{n}$$

$$\therefore \sum_{n=k}^{\infty} (a_{n}+b_{n})=\sum_{n=k}^{\infty} a_{n}+\sum_{n=k}^{\infty} b_{n}$$

$\square$

Demostremos la propiedad $3)$.

$$ \sum_{n=k}^{\infty} Ca_{n}=C \sum_{n=k}^{\infty}a_{n} $$

Sea $\left \{ Y_{n} \right \}$ la sucesión de sumas parciales de $Ca_{n}$

$$\Rightarrow \sum_{n=k}^{\infty}C a_{n}=\lim_{n \to \infty} Y_{n}=\lim_{n \to \infty} [Ca_{k}+Ca_{k+1}+….+Ca_{n}]$$

$$=\lim_{n \to \infty}C(a_{k}+a_{k+1}+….+a_{n})=\lim_{n \to \infty} C S_{n}$$

Y como $S_{n}$ converge, entonces por propiedad de los límites tenemos que:

$$C\lim_{n \to \infty}S_{n}=C\sum_{n=k}^{\infty}a_{n}$$

$$\therefore \sum_{n=k}^{\infty} Ca_{n}=C \sum_{n=k}^{\infty}a_{n}$$

Para la propiedad $2)$ se puede demostrar utilizando las propiedades $1)$ y $3)$, dejándose como ejercicio moral.

Observación: Si $\sum_{n=k}^{\infty} a_{n}$ y $\sum_{n=k}^{\infty} b_{n}$ no convergen, entonces no siempre se cumple que:

$$\sum_{n=k}^{\infty} (a_{n}+b_{n})=\sum_{n=k}^{\infty}a_{n}+\sum_{n=k}^{\infty}b_{n}$$

Veamos un ejemplo:

  • $$\sum_{n=0}^{\infty} 7\left ( -\frac{3}{4} \right )^{n}$$

Utilizamos la propiedad $3$, se obtiene que:

$$\sum_{n=0}^{\infty} 7\left ( -\frac{3}{4} \right )^{n}=7\sum_{n=0}^{\infty} \left ( -\frac{3}{4} \right )^{n}$$

Vemos que es una serie geométrica, entonces sea $r=-\frac{3}{4}$, por el teorema de la serie geométrica tenemos:

$$7 \sum_{n=0}^{\infty}\left ( -\frac{3}{4} \right )^{n}=7\frac{1}{1+\frac{3}{4}}=7(\frac{4}{7})=4$$

Series geométricas que no empiezan en $n=0$

Ahora veamos las series geométricas donde la serie no comienza en $n=0$, veamos el teorema siguiente que nos dice en que caso estas series convergen o divergen.

Teorema. Sea $\sum_{n=m}^{\infty}r^{n}$ con $m \neq 0$ entonces: $$\sum_{n=m}^{\infty}r^{n}=\frac{r^{m}}{1-r}$$

Si $|r|<1$

Demostración:

La demostración a este teorema es muy similar a la demostración del primer teorema que vimos en esta sección, por lo que solo veremos el caso cuando $|r|<1$, entonces:

$$\sum_{n=m}^{\infty}r^{n}=\lim_{n \to \infty}\sum_{n=m}^{n}r^{n}=\lim_{n \to \infty}(r^{m}+r^{m+1}+….+r^{m+n})=\lim_{n \to \infty}r^{m}(1+r+…..+r^{n})=r^{m}\frac{1}{1-r}$$

$$\therefore \sum_{n=m}^{\infty}r^{n}=\frac{r^{m}}{1-r}$$

Es decir, la serie converge si $|r|<1$

$\square$

Veamos un ejemplo:

Diga si la siguiente serie converge o diverge.

  • $$\sum_{n=4}^{\infty}\frac{1}{2^{n}}$$

Vemos que es una serie geométrica que no empieza con $n=0$, por lo que $r=\frac{1}{2}<1$ entonces por el teorema anterior obtenemos:

$$\sum_{n=4}^{\infty}\frac{1}{2^{n}}=\frac{(\frac{1}{2})^{4}}{1-\frac{1}{2}}=\frac{1}{8}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que: $$\sum_{n=k}^{\infty} (a_{n}-b_{n})=\sum_{n=k}^{\infty} a_{n}-\sum_{n=k}^{\infty}b_{n}$$.

Diga si la siguientes series convergen o divergen.

  1. $$\sum_{n=0}^{\infty}\frac{2+3^{n}}{5^{n}}$$
  2. $$\sum_{n=1}^{\infty}2^{2n}3^{1-n}$$
  3. $$\sum_{n=1}^{\infty}\frac{10^{n}}{(-9)^{n-1}}$$
  4. $$\sum_{n=1}^{\infty}\frac{1}{n}$$

Más adelante…

En esta sección vimos las series geométricas para el caso cuando $n=0$ y $n \neq 0$, así como los casos en donde estas series convergen y divergen. También vimos algunas propiedades importantes de las series que nos serán útiles en el estudio de estas. Veremos en las siguientes secciones criterios de convergencia y divergencia de las series, en la siguiente entrada comenzaremos a estudiar el criterio de la divergencia y de acotación.

Entradas relacionadas