Archivo del Autor: Leonardo Ignacio Martínez Sandoval

Leonardo Ignacio Martínez Sandoval

Acerca de Leonardo Ignacio Martínez Sandoval

Hola. Soy Leonardo Martínez. Soy Profesor de Tiempo Completo en la Facultad de Ciencias de la UNAM. Hice un doctorado en Matemáticas en la UNAM, un postdoc en Israel y uno en Francia. Además, me gusta colaborar con proyectos de difusión de las matemáticas como la Olimpiada Mexicana de Matemáticas.

Álgebra Lineal I: Determinantes de matrices y transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.

Determinantes de transformaciones lineales

Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.

Si tomamos un espacio vectorial $V$ de dimensión finita $n\geq 1$ sobre un campo $F$, una transformación lineal $T:V\to V$ y una forma $n$-lineal $f:V^n\to F$, se puede mostrar que la transformación $$T_f:V^n\to F$$ dada por $$T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))$$ también es una forma $n$-lineal. Además, se puede mostrar que si $f$ es alternante, entonces $T_f$ también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n\geq 1$ sobre el campo $F$. Para cualquier transformación lineal $T:V\to V$ existe un único escalar $\det T$ en $F$ tal que $$f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)$$ para cualquier forma $n$-lineal alternante $f:V^n\to F$ y cualquier elección $x_1,\ldots,x_n$ de vectores en $V$.

Demostración. Fijemos una base $B=(b_1,\ldots,b_n)$ cualquiera de $V$. Llamemos $g$ a la forma $n$-lineal alternante $\det_{(b_1,\ldots,b_n)}$. Por la discusión de arriba, la asignación $T_g:V^n\to F$ dada por $$(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))$$ es una forma $n$-lineal y alternante.

Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que $$T_g = T_g(b_1,\ldots,b_n) \cdot g.$$ Afirmamos que $\det T:= T_g(b_1,\ldots, b_n)$ es el escalar que estamos buscando.

En efecto, para cualquier otra forma $n$-lineal alternante $f$, tenemos por el mismo teorema que $$f=f(b_1,\ldots,b_n) \cdot g.$$ Usando la linealidad de $T$ y la igualdad anterior, se tiene que

\begin{align*}
T_f &= f(b_1,\ldots,b_n)\cdot T_g\\
&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\
&= \det T \cdot f.
\end{align*}

Con esto se prueba que $\det T$ funciona para cualquier forma lineal $f$. La unicidad sale eligiendo $(x_1,\ldots,x_n)=(b_1,\ldots,b_n)$ y $f=g$ en el enunciado del teorema, pues esto forza a que $$\det T = g(T(b_1),\ldots,T(b_n)).$$

$\square$

Ahora sí, estamos listos para definir el determinante de una transformación lineal.

Definición. El escalar $\det T$ del teorema anterior es el determinante de la transformación lineal $T$.

Para obtener el valor de $\det T$, podemos entonces simplemente fijar una base $B=(b_1,\ldots,b_n)$ y el determinante estará dado por $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).$$ Como el teorema también prueba unicidad, sin importar que base $B$ elijamos este número siempre será el mismo.

Ejemplo 1. Vamos a encontrar el determinante de la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(2z,2y,2x).$$ Para ello, usaremos la base canónica de $\mathbb{R}^3$. Tenemos que
\begin{align*}
T(1,0,0)&=(0,0,2)=2e_3\\
T(0,1,0)&=(0,2,0)=2e_2\\
T(0,0,1)&=(2,0,0)=2e_1.
\end{align*}

De acuerdo al teorema anterior, podemos encontrar al determinante de $T$ como $$\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).$$

Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas $1$ y $3$ su signo cambia en $-1$. Usando la $3$-linealidad en cada entrada, podemos sacar un factor $2$ de cada una. Así, tenemos:
\begin{align*}
\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\
&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\
&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\
&=-8.
\end{align*}

Concluimos entonces que el determinante de $T$ es $-8$.

$\triangle$

Ejemplo 2. Vamos ahora a encontrar el determinante de la transformación $T:\mathbb{R}_n[x]\to \mathbb{R}_n[x]$ que deriva polinomios, es decir, tal que $T(p)=p’$. Tomemos $q_0=1,q_1=x,\ldots,q_n=x^n$ la base canónica de $\mathbb{R}_n[x]$.

Notemos que, $T(1)=0$, de modo que los vectores $T(1),\ldots,T(x^n)$ son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que $$\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.$$ Concluimos entonces que $\det T = 0$.

$\triangle$

Determinantes de matrices

La expresión $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))$$ para una transformación lineal $T$ también nos permite poner al determinante en términos de las entradas de la matriz de $T$ con respecto a la base $B$. Recordemos que dicha matriz $A_T=[a_{ij}]$ tiene en la columna $i$ las coordenadas de $b_i$ en la base $B$. En otras palabras, para cada $i$ se cumple que $$T(b_i)=\sum_{j=1}^n a_{ji}b_i.$$

Usando esta notación, obtenemos que $$\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ de manera que podemos expresar a $\det T$ en términos únicamente de su matriz en la base $B$.

Esto nos motiva a definir el determinante de una matriz en general.

Definición. Para una matriz $A$ en $M_n(F)$ de entradas $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$ A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}
\end{align*}

Ejemplo. Si queremos calcular el determinante de una matriz en $M_2(F)$, digamos $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$ debemos considerar dos permutaciones: la identidad y la transposición $(1,2)$.

La identidad tiene signo $1$ y le corresponde el sumando $ad$. La transposición tiene signo $-1$ y le corresponde el sumando $bc$. Así, $$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.$$

$\triangle$

Retomando la discusión antes de la definición, tenemos entonces que $\det T = \det A_T$, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de $T$ depende de la base elegida, pero como vimos, el determinante de $T$ no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.

Teorema. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. El determinante de $A$ y el de $P^{-1}AP$ son iguales.

Determinantes de matrices triangulares

Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.

Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.

Solución. En una matriz triangular superior tenemos que $a_{ij}=0$ si $i>j$. Vamos a estudiar la expresión $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si una permutación $\sigma$ no es la identidad, entonces hay un entero $i$ que no deja fijo, digamos $\sigma(i)\neq i$. Tomemos a $i$ como el mayor entero que $\sigma$ no deja fijo. Notemos que $\sigma(i)$ tampoco queda fijo por $\sigma$ pues $\sigma(\sigma(i))=\sigma(i)$ implica $\sigma(i)=i$, ya que $\sigma$ es biyectiva, y estamos suponiendo $\sigma(i)\neq i$. Por la maximalidad de $i$, concluimos que $\sigma(i)<i$.Entonces el sumando correspondiente a $\sigma$ es $0$ pues tiene como factor a la entrada $a_{i\sigma(i)}=0$.

En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es $1$. De esta forma,
\begin{align*}
\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\
&=a_{11}\cdot \ldots \cdot a_{nn}.
\end{align*}

$\square$

Más adelante…

En esta entrada planteamos cómo se define el concepto de matriz para transformaciones lineales y cómo esta definición se extiende naturalmente a la definición del determinante de una matriz, recordando que a cada transformación lineal se le puede asociar una matriz y viceversa.

En las siguientes entradas vamos a ver qué propiedades que cumplen los determinantes y aprenderemos diferentes técnicas para calcularlos. A lo largo de la unidad, desarrollaremos bastante práctica en el cálculo y la manipulación de los determinantes, ya sea el determinante de un conjunto de vectores, de una transformación lineal o de una matriz.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transformación $T_f$ definida en la entrada es $n$-lineal y alternante.
  • Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal $T:\mathbb{R}^n \to \mathbb{R}^n$ dada por $$T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).$$
  • Calcula por definición el determinante de las matrices $$\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}$$ y $$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.$$
  • Calcula por definición el determinante de la matriz $$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}$$ y compáralo con el de la matriz de $3\times 3$ del inciso anterior. ¿Qué notas?
  • Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Algoritmo de la división, teorema del factor y teorema del residuo

Por Leonardo Ignacio Martínez Sandoval

Introducción

Tal vez te hayas dado cuenta de que ya hablamos de suma, producto y resta de polinomios, pero aún no hemos hablado de la división. Una razón es que no todos los polinomios tienen inverso multiplicativo. Sin embargo, los polinomios sí tienen un algoritmo de la división parecido al que estudiamos para el conjunto $\mathbb{Z}$ de enteros. A partir de él podemos extender varios de los conceptos aritméticos de $\mathbb{Z}$ a $\mathbb{R}[x]$: divisibilidad, máximo común divisor, factorización, etc. Luego, estos aspectos se pueden conectar a evaluación de polinomios mediante el un teorema clave: el teorema del factor.

Como recordatorio, hasta ahora, ya construimos el anillo $\mathbb{R}[x]$ de polinomios con coeficientes reales y vimos que era un dominio entero. También, vimos que una copia de $\mathbb{R}$ vive en $\mathbb{R}[x]$, con lo justificamos pasar de la notación de sucesiones, a la notación usual de polinomios usando el símbolo $x$ y sus potencias. En la entrada anterior también hablamos del grado de un polinomio (cuando no es el polinomio cero), de la evaluación de polinomios y de raíces.

Algoritmo de la división

Recordemos que en $\mathbb{Z}$ tenemos un algoritmo de la división que dice que para enteros $a$ y $b\neq 0$ existen únicos enteros $q$ y $r$ tales que $a=qb+r$ y $0\leq r < |b|$.

En $\mathbb{R}[x]$ hay un resultado similar. Pero hay que tener cuidado al generalizar. En $\mathbb{R}[x]$ no tenemos una función valor absoluto que nos permita decir que encontramos un «residuo más chiquito». Para la versión polinomial del algoritmo de la división tenemos que usar una función que diga «qué tan grande es un polinomio»: el grado.

Teorema (algoritmo de la división en $\mathbb{R}[x]$). Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$, donde $g(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $q(x)$ y $r(x)$ en $\mathbb{R}[x]$ tales que $$f(x)=q(x)g(x)+r(x),$$ en donde $r(x)$ es el polinomio cero, o $\deg(r(x))<\deg(g(x))$.

Demostración. Probaremos la parte de existencia. La parte de unicidad queda como tarea moral. Para probar la existencia, haremos inducción fuerte sobre el grado de $f(x)$. Sin embargo, antes de poder hacer esto, necesitamos hacer el caso en el que $f(x)$ no tiene grado, es decir, cuando es el polinomio cero.

Si $f(x)$ es el polinomio cero, entonces $q(x)=0$ y $r(x)=0$ son polinomios que funcionan, pues $0=0\cdot g(x)+0$, para cualquier polinomio $g(x)$.

Asumamos entonces a partir de ahora que $f(x)$ no es el polinomio cero. Hagamos inducción sobre el grado de $f(x)$. Si $f(x)$ es de grado $0$, entonces es un polinomio de la forma $f(x)=a$ para $a$ en $\mathbb{R}$. Hay dos casos de acuerdo al grado de $g(x)$:

  • Si $g(x)$ es de grado $0$, es de la forma $g(x)=b$ para un real no cero y podemos tomar $q(x)=a/b$ y $r(x)=0$.
  • Si $g(x)$ es de grado mayor a $0$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$. Esta es una elección válida pues se cumple \begin{align*}\deg(r(x))&=\deg(f(x))\\& =0\\& <\deg(g(x)).\end{align*}.

Esto termina la demostración de la base inductiva.

Supongamos que el resultado es cierto para cuando $f(x)$ tiene grado menor a $n$ y tomemos un caso en el que $f(x)$ tiene grado $n$. Hagamos de nuevo casos con respecto al grado de $g(x)$, al que llamaremos $m$. Si $m>n$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$, que es una elección válida pues $$\deg(r(x))=n<m.$$

En el caso de que $m\leq n$, escribamos explícitamente a $f(x)$ y a $g(x)$ en términos de sus coeficientes como sigue: \begin{align*}f(x)&=a_0+\ldots+a_nx^n\\g(x)&=b_0+\ldots+b_mx^m.\end{align*}

Consideremos el polinomio $$h(x):=f(x)-\frac{a_n}{b_m}x^{n-m}g(x).$$ Notemos que en $h(x)$ el coeficiente que acompaña a $x^n$ es $a_n-\frac{a_nb_m}{b_m}=0$, así que el grado de $h(x)$ es menor al de $f(x)$ y por lo tanto podemos usar la hipótesis inductiva para escribir $$h(x)=t(x)g(x)+u(x)$$ con $u(x)$ el polinomio $0$ o $\deg(u(x))<\deg(g(x))$. De esta forma,
\begin{align*}
f(x)&=t(x)g(x)+u(x)+\frac{a_n}{b_m}x^{n-m}g(x)\\
&=\left(t(x)+\frac{a_n}{b_m}x^{n-m}\right)g(x)+u(x).
\end{align*}

Así, eligiendo $q(x)=t(x)+\frac{a_n}{b_m}x^{n-m}$ y $r(x)=u(x)$, terminamos la hipótesis inductiva.

$\square$

Aplicando el algoritmo de la división de forma práctica

Veamos ahora un ejemplo de cómo se puede aplicar este teorema anterior de forma práctica. A grandes rasgos, lo que podemos hacer es «ir acumulando» en $q(x)$ a los términos $\frac{a_n}{b_m}x^{n-m}$ que van apareciendo en la inducción, y cuando $h(x)$ se vuelve de grado menor a $q(x)$, lo usamos como residuo. Hagamos un ejemplo concreto.

Ejemplo. Tomemos $f(x)=x^5+x^4+x^3+x^2+2x+3$ y $g(x)=x^2+x+1$. Vamos a aplicar iteradamente las ideas de la demostración del teorema anterior para encontrar los polinomios $q(x)$ y $r(x)$ tales que $$f(x)=q(x)g(x)+r(x),$$ con $r(x)$ el polinomio $0$ o de grado menor a $g(x)$.

Como el grado de $f(x)$ es $5$, el de $g(x)$ es $2$ y $5>2$, lo primero que hacemos es restar $x^{5-2}g(x)=x^3g(x)$ a $f(x)$ y obtenemos:

$$h_1(x)=f(x)-x^3g(x)=x^2+2x+3.$$

Hasta ahora, sabemos que $q(x)=x^3+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_1(x)=x^2+2x+3$. Como el grado de $h_1(x)$ es $2$, el de $g(x)$ es $2$ y $2\geq 2$, restamos $x^{2-2}g(x)=1\cdot g(x)$ a $h_1(x)$ y obtenemos.

$$h_2(x)=h_1(x)-g(x)=x+2.$$

Hasta ahora, sabemos que $q(x)=x^3+1+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_2(x)=x+2$. Como el grado de $h_2(x)$ es $1$, el de $g(x)$ es $2$ y $2>1$, entonces el cociente es $0$ y el residuo es $h_2(x)=x+2$.

De esta forma, concluimos que $$q(x)=x^3+1$$ y $$r(x)=x+2.$$

En conclusión,
\begin{align*}
x^5+ & x^4+x^3+x^2+2x+3\\
&= (x^3+1)(x^2+x+1) + x+2.
\end{align*}

Esto se puede verificar fácilmente haciendo la operación polinomial.

$\triangle$

Hay una forma más visual de hacer divisiones de polinomios «haciendo una casita». Puedes ver cómo se hace esto en el siguiente video en Khan Academy, y los videos que le siguen en la lista.

Divisibilidad en polinomios

Cuando trabajamos en $\mathbb{Z}$, estudiamos la noción de divisibilidad. Si en el algoritmo de la división obtenemos que $r(x)$ es el polinomio $0$, entonces obtenemos una noción similar para $\mathbb{R}[x]$.

Definición. Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$. Decimos que $g(x)$ divide a $f(x)$ si existe un polinomio $q(x)$ tal que $f(x)=q(x)g(x)$.

Ejemplo 1. El polinomio $x^3-1$ divide al polinomio $x^4+x^3-x-1$, pues $$x^4+x^3-x-1 = (x^3-1)(x+1).$$

$\triangle$

Ejemplo 2. Si $g(x)$ es un polinomio no cero y constante, es decir, de la forma $g(x)=a$ para $a\neq 0$ un real, entonces divide a cualquier otro polinomio en $\mathbb{R}[x]$. En efecto, si $$f(x)=a_0+a_1x+\ldots + a_nx^n$$ es cualquier polinomio y tomamos el polinomio $$q(x)=\frac{a_0}{a}+\frac{a_1}{a}x+\ldots + \frac{a_n}{a}x^n,$$ entonces $f(x)=g(x)q(x)$.

$\triangle$

El último ejemplo nos dice que los polinomios constantes y no cero se comportan «como el $1$ se comporta en los enteros». También nos dice que cualquier polinomio tiene una infinidad de divisores. Eso nos pone en aprietos para definir algo así como los «polinomios primos» en términos del número de divisores. En la siguiente sección hablaremos de cómo hacer esta definición de manera adecuada.

Polinomios irreducibles

Cuando trabajamos con enteros, vimos que es muy útil poder encontrar la factorización en términos de números primos. En polinomios no tenemos «polinomios primos», pero tenemos un concepto parecido.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante, y no es posible escribirlo como producto de dos polinomios no constantes en $\mathbb{R}[x]$.

Ejemplo. El polinomio $$x^4+x^2+1$$ no es irreducible en $\mathbb{R}[x]$ pues $$x^4+x^2+1=(x^2+x+1)(x^2-x+1).$$

Los polinomios $x^2+x+1$ y $x^2-x+1$ sí son irreducibles en $\mathbb{R}[x]$. Más adelante veremos por qué.

$\triangle$

La razón por la cual quitamos a los polinomios constantes es parecida a la cual en $\mathbb{Z}$ no consideramos que $1$ sea primo: ayuda a enunciar algunos teoremas más cómodamente.

Hay unos polinomios que fácilmente se puede ver que son irreducibles: los de grado $1$.

Proposición. Los polinomios de grado $1$ en $\mathbb{R}[x]$ son irreducibles.

Demostración. Si $f(x)$ es un polinomio de grado $1$, entonces no es constante. Además, no se puede escribir a $f(x)$ como el producto de dos polinomios no constantes pues dicho producto tiene grado al menos $2$.

$\square$

Hay otros polinomios en $\mathbb{R}[x]$ que no son de grado $1$ y que son irreducibles. Por ejemplo, con la teoría que tenemos ahora te debe ser fácil mostrar de tarea moral que $x^2+1$ es irreducible en $\mathbb{R}[x]$.

La razón por la que siempre insistimos en que la irreducibilidad sea en $\mathbb{R}[x]$ es por que a veces un polinomio no se puede factorizar en polinomios con coeficientes reales, pero sí con coeficientes complejos. Aunque $x^2+1$ sea irreducible en $\mathbb{R}[x]$, si permitimos coeficientes complejos se puede factorizar como $$x^2+1=(x+i)(x-i).$$

Más adelante seguiremos hablando de irreducibilidad. Por ahora, nos enfocaremos en los polinomios de grado $1$.

Teorema del factor

Una propiedad clave de los polinomios de grado $1$ es que, es lo mismo que $x-a$ divida a un polinomio $p(x)$, a que $a$ sea una raíz de $p(x)$.

Teorema (del factor). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El polinomio $x-a$ divide a $p(x)$ si y sólo si $p(a)=0$.

Demostración. De acuerdo al algoritmo de la división, podemos escribir $$p(x)=(x-a)q(x)+r(x),$$ en donde $r(x)$ es $0$ o un polinomio de grado menor estricto al de $x-a$. Como el grado de $x-a$ es $1$, la única posibilidad es que $r(x)$ sea un polinomio constante $r(x)=r$. Así, $p(x)=(x-a)q(x)+r$, con $r$ un real.

Si $p(a)=0$, tenemos que $$0=p(a)=(a-a)q(a)+r=r,$$ de donde $r=0$ y entonces $p(x)=(x-a)q(x)$, lo que muestra que $x-a$ divide a $p(x)$.

Si $x-a$ divide a $p(x)$, entonces $p(x)=(x-a)q(x)$, de donde $p(a)=(a-a)q(a)=0$, por lo que $a$ es raíz de $p(x)$.

$\square$

Ejemplo. Consideremos el polinomio $p(x)=x^3-6x^2+11x-6$. ¿Podremos encontrar algunos polinomios lineales que lo dividan? A simple vista, notamos que la suma de sus coeficientes es $1-6+11-6=0$. Esto nos dice que $p(1)=0$. Por el teorema del factor, tenemos que $x-1$ divide a $p(x)$. Tras hacer la división, notamos que $$p(x)=(x-1)(x^2-5x+6).$$

Veamos si podemos seguir factorizando polinomios lineales que no sean $x-1$. Si un polinomio $x-a$ divide a $p(x)$, por el teorema del factor debemos tener $$0=p(a)=(a-1)(a^2-5a+6).$$ Como $a\neq 1$, entonces $a-1\neq 0$, de modo que tiene que pasar $$a^2-5a+6=0,$$ en otras palabras, hay que encontrar las raíces de $x^2-5x+6$.

Usando la fórmula general cuadrática, tenemos que las raíces de $x^2-5x+6$ son
\begin{align*}
x_1&=\frac{5+\sqrt{25-24}}{2}=3\\
x_2&=\frac{5-\sqrt{25-24}}{2}=2.
\end{align*}

Usando el teorema del factor, concluimos que tanto $x-2$ como $x-3$ dividen a $p(x)$. Hasta ahora, sabemos entonces que $$p(x)=(x-1)(x-2)(x-3)h(x),$$ donde $h(x)$ es otro polinomio. Pero $(x-1)(x-2)(x-3)$ ya es un polinomio de grado $3$, como $p(x)$ y su coeficiente de $x^3$ es $1$, como el de $p(x)$. Concluimos que $h(x)=1$ y entonces $$p(x)=(x-1)(x-2)(x-3).$$

$\triangle$

Teorema del residuo

En realidad, la técnica que usamos para el teorema del factor nos dice algo un poco más general. Cuando escribimos $$p(x)=(x-a)q(x)+r$$ y evaluamos en $a$, obtenemos que $p(a)=r$. Reescribimos esta observación como un teorema.

Teorema (del residuo). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El residuo de dividir $p(x)$ entre $x-a$ es $p(a)$.

Problema. Encuentra el residuo de dividir el polinomio $p(x)=x^8-x^5+2x^3+2x$ entre el polinomio $x+1$.

Solución. Se podría hacer la división polinomial, pero esto es largo y no nos piden el polinomio cociente, sólo el residuo. Así, podemos resolver este problema más fácilmente usando el teorema del residuo.

Como $x+1=x-(-1)$, el residuo de la división de $p(x)$ entre $x+1$ es $p(-1)$. Este número es
\begin{align*}
p(-1)&=(-1)^8-(-1)^5+2(-1)^3+2(-1)\\
&=1+1-2-2\\
&=-2.
\end{align*}

$\square$

Más adelante…

Los teoremas que hemos visto en esta entrada serán las principales herramientas algebraicas que tendremos en el estudio de los polinomios así como en la búsqueda de las raíces de los polinomios y en resolver la pregunta sobre su irreductibilidad.

El algoritmo de la división nos servirá (como nos sirvió en $\mathbb{Z}$ para poder precisar el algoritmo de Euclides y definir el máximo común divisor de dos polinomios.

Por ahora, en la siguiente entrada, nos encargaremos de practicar lo aprendido y resolver ejercicios sobre raíces y residuos de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que el polinomio $x$ no tiene inverso multiplicativo.
  2. Demuestra la parte de unicidad del algoritmo de la división.
  3. Muestra que el polinomio $x^2+1$ es irreducible en $\mathbb{R}[x]$. Sugerencia. Procede por contradicción. Una factorización tiene que ser de la forma $x^2+1=p(x)q(x)$ con $p$ y $q$ de grado $1$.
  4. Factoriza en términos lineales al polinomio $p(x)=x^3-12x^2+44x-48$. Sugerencia. Intenta enteros pequeños (digamos de $-3$ a $3$) para ver si son raíces. Uno de ellos funciona. Luego, usa el teorema del factor para expresar a $p(x)$ como un polinomio lineal por uno cuadrático. Para encontrar el resto de factores lineales, encuentra las raíces del cuadrático.
  5. Encuentra el residuo de dividir el polinomio $x^5-x^4+x^3-x^2+x-1$ entre el polinomio $x-2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Determinantes de vectores e independencia lineal

Por Leonardo Ignacio Martínez Sandoval

Introducción

En este cuarto y último bloque del curso comenzamos hablando de transformaciones multilineales y de permutaciones. Luego, nos enfocamos en las transformaciones multilineales antisimétricas y alternantes. Con la teoría que hemos desarrollado hasta ahora, estamos listos para definir determinantes de vectores, de transformaciones lineales y de matrices.

En esta entrada comenzaremos con la definición de determinantes de vectores. En la siguiente entrada hablaremos acerca de determinantes de matrices y de transformaciones lineales. Después de definir determinantes, probaremos varias de las propiedades que satisfacen. Posteriormente, hablaremos de varias técnicas que nos permitirán calcular una amplia variedad de determinantes para tipos especiales de matrices.

Determinantes de vectores

Para empezar, definiremos qué es el determinante de un conjunto de vectores en un espacio de dimensión finita con respecto a una base.

Definición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$ y $x_1,\ldots,x_n$ vectores de $V$. Cada uno de los $x_i$ se puede escribir como $$x_i=\sum_{j=1}^n a_{ji}b_j.$$

El determinante de $x_1,\ldots,x_n$ con respecto a $(b_1,\ldots,b_n)$ es $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ y lo denotamos por $\det_{(b_1,\ldots,b_n)} (x_1,\ldots,x_n)$.

Observa que estamos sumando tantos términos como elementos en $S_n$. Como existen $n!$ permutaciones de un conjunto de $n$ elementos, entonces la suma de la derecha tiene $n!$ sumandos.

Ejemplo. Consideremos la base $b_1=1$, $b_2=1+x$ y $b_3=1+x+x^2$ del espacio vectorial $\mathbb{R}_2[x]$ de polinomios con coeficientes reales y grado a lo más $2$. Tomemos los polinomios $v_1=1$, $v_2=2x$ y $v_3=3x^2$. Vamos a calcular el determinante de $v_1, v_2, v_3$ con respecto a la base $(b_1,b_2,b_3)$.

Para hacer eso, lo primero que tenemos que hacer es expresar a $v_1, v_2, v_3$ en términos de la base. Hacemos esto a continuación:
\begin{align*}
v_1&= 1\cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3\\
v_2&= -2\cdot b_1 + 2 \cdot b_2 + 0 \cdot b_3\\
v_3&= 0 \cdot b_1 – 3 \cdot b_2 +3 b_3.
\end{align*}

De aquí, obtenemos
\begin{align*}
a_{11}&=1, a_{21}=0, a_{31}=0,\\
a_{12}&=-2, a_{22}=2, a_{32}=0,\\
a_{13}&=0, a_{23}=-3, a_{33}=3.
\end{align*}

Si queremos calcular el determinante, tenemos que considerar las $3!=3\cdot 2 \cdot 1 = 6$ permutaciones en $S_3$. Estas permutaciones son

\begin{align*}
\sigma_1 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 2 & 3\end{pmatrix}\\
\sigma_2 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 3 & 2\end{pmatrix}\\
\sigma_3 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 1 & 3\end{pmatrix}\\
\sigma_4 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 1\end{pmatrix}\\
\sigma_5 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 2 & 1\end{pmatrix}\\
\sigma_6 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 1 & 2\end{pmatrix}.
\end{align*}

Los signos de $\sigma_1,\ldots,\sigma_6$ son, como puedes verificar, $1$, $-1$, $-1$, $1$, $-1$ y $1$, respectivamente.

El sumando correspondiente a $\sigma_1$ es
\begin{align}
\text{sign}(\sigma_1) &a_{1\sigma_1(1)}a_{2\sigma_1(2)}a_{3\sigma_1(3)}\\
&= 1 \cdot a_{11}a_{22}a_{33}\\
&=1\cdot 1\cdot 2 \cdot 3 = 6.
\end{align}

El sumando correspondiente a $\sigma_2$ es
\begin{align}
\text{sign}(\sigma_2) &a_{1\sigma_2(1)}a_{2\sigma_2(2)}a_{3\sigma_2(3)}\\
&= (-1) \cdot a_{11}a_{23}a_{32}\\
&=(-1) \cdot 1\cdot (-3) \cdot 0 = 0.
\end{align}

Continuando de esta manera, se puede ver que los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son $$+6,-0,-0,+0,-0,+0,$$ respectivamente de modo que el determinante es $6$.

$\triangle$

La expresión de determinante puede parecer algo complicada, pero a través de ella podemos demostrar fácilmente algunos resultados. Consideremos como ejemplo el siguiente resultado.

Proposición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$. El determinante de $B$ con respecto a sí mismo es $1$.

Demostración. Cuando escribimos a $b_i$ en términos de la base $b$, tenemos que $$b_i=\sum_{j=1}^n a_{ji} b_j.$$ Como la expresión en una base es única, debemos tener $a_{ii}=1$ y $a_{ji}=0$ si $j\neq i$. Ahora, veamos qué le sucede al determinante $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si $\sigma$ es una permutación tal que $\sigma(i)\neq i$ para alguna $i$, entonces en el producto del sumando correspondiente a $\sigma$ aparece $a_{i\sigma(i)}=0$, de modo que ese sumando es cero. En otras palabras, el único sumando no cero es cuando $\sigma$ es la permutación identidad.

Como el signo de la identidad es $1$ y cada $a_{ii}$ es $1$, tenemos que el determinante es
\begin{align*}
\sum_{\sigma \in S_n} \text{sign}&(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)} \\
&=a_{11}\cdot\ldots\cdot a_{nn}\\
&= 1\cdot\ldots\cdot 1 \\
& = 1.
\end{align*}

$\square$

El determinante es una forma $n$-lineal alternante

La razón por la cual hablamos de transformaciones $n$-lineales antisimétricas y alternantes antes de hablar de determinantes es que, en cierto sentido, los determinantes de vectores son las únicas transformaciones de este tipo. Los siguientes resultados formalizan esta intuición.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ sobre $F$. Entonces la transformación $\det_{(b_1,\ldots,b_n)}:V^n \to F$ es una forma $n$-lineal y alternante.

Demostración. La observación clave para demostrar este resultado es que $\det_{(b_1,\ldots,b_n)}$ se puede reescribir en términos de la base dual $b_1^\ast, \ldots, b_n^\ast$. En efecto, recuerda que $b_i^\ast$ es la forma lineal que «lee» la coordenada de un vector $v$ escrito en la base $B$. De esta forma,

\begin{align*}
\det_{(b_1,\ldots,b_n)}&(v_1,\ldots,v_n)\\
&=\sum_{\sigma\in S_n}\left(\text{sign}(\sigma) \prod_{j=1}^n b_j^\ast(v_{\sigma(j)})\right)\\
\end{align*}

Para cada permutación $\sigma$, el sumando correspondiente es una forma $n$-lineal, pues es producto de $n$ formas lineales evaluadas en los distintos vectores. Así que $\det_{(b_1,\ldots,b_n)}$ es suma de formas $n$-lineales y por lo tanto es forma $n$-lineal.

Para mostrar que el determinante es alternante, tenemos que mostrar que es igual a $0$ cuando algún par de sus entradas son iguales. Supongamos que $i\neq j$ y que $v_i=v_j$. Tomemos $\tau$ a la transposición que intercambia a $i$ y a $j$. Cuando se compone una permutación con una transposición, su signo cambia. Así, para cualquier permutación $\sigma$, tenemos que $\sigma\tau$ tiene signo diferente.

Además, para cualquier $\sigma$ tenemos que $$a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}$$ y $$a_{1\sigma\tau(1)}\cdot\ldots\cdot a_{n\sigma\tau(n)}$$ son iguales, pues $v_i=v_j$. Combinando ambas ideas, podemos emparejar a cada sumando del determinante con otro con el cual sume cero. Esto muestra que el determinante es $0$.

$\square$

Usando la teoría que desarrollamos en la entrada anterior, tenemos el siguiente corolario.

Corolario. La forma $n$-lineal $\det_{(b_1,\ldots,b_n)}$ es antisimétrica.

Los determinantes de vectores son las «únicas» formas $n$-lineales alternantes

Ya vimos que el determinante es una forma $n$-lineal alternante. Veamos ahora por qué decimos que es «la única». El siguiente resultado dice que cualquier otra forma $n$-lineal alternante varía de $\det_{(b_1,\ldots,b_n)}$ únicamente por un factor multiplicativo.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$. Si $f:V^n \to F$ es cualquier forma $n$-lineal y alternante, entonces $$f=f(b_1,\ldots,b_n)\det_{(b_1,\ldots,b_n)}.$$

Demostración. Para mostrar la igualdad del teorema, que es una igualdad de transformaciones, tenemos que ver que es cierta al evaluar en cualesquiera vectores $x_1,\ldots,x_n$. Escribamos a cada $x_i$ en términos de la base $B$: $$x_i=\sum_{j=1}^n a_{ij}b_j.$$

Usando la $n$-linealidad de $f$ en cada una de las entradas, tenemos que
\begin{align*}
f(x_1,\ldots,x_n)&=\sum_{i=1}^n a_{1i} f(b_i,x_2,\ldots,x_n)\\
&=\sum_{i,j=1}^n a_{1i}a_{2i} f(b_i,b_j,x_3,\ldots,x_n)\\
&=\ldots\\
&=\sum_{i_1,\ldots,i_n = 1}^n a_{1i_1}\ldots a_{ni_n} f(b_{i_1},\ldots,b_{i_n}).
\end{align*}

Aquí hay muchos términos, pero la mayoría de ellos son $0$. En efecto, si $b_{i_k}=b_{i_l}$, como $f$ es alternante tendríamos que ese sumando es $0$. Así, los únicos sumandos que pueden ser no cero son cuando la elección de subíndices es una permutación, es decir cuando existe $\sigma$ en $S_n$ tal que para $i_k=\sigma(k)$.

Por lo tanto, podemos simplificar la expresión anterior a
$$f(x_1,\ldots,x_n)=\sum_{\sigma \in S_n}a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_{\sigma(1)},\ldots,b_{\sigma(n)}).$$

Como $f$ es alternante, entonces es antisimétrica. De este modo, podemos continuar la igualdad anterior como
\begin{align*}
&=\sum_{\sigma \in S_n} \text{sign}(\sigma) a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_1,\ldots,b_n)\\
&=f(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots, x_n).
\end{align*}

Esto es justo lo que queríamos probar.

$\square$

Los determinantes de vectores caracterizan bases

Como consecuencia del último teorema de la sección anterior, los determinantes de vectores caracterizan totalmente a los conjuntos de vectores que son bases. A continuación enunciamos esto formalmente.

Corolario. En un espacio vectorial $V$ de dimensión $n$ son equivalentes las siguientes tres afirmaciones para vectores $x_1,\ldots,x_n$ de $V$:

  1. El determinante de $x_1,\ldots,x_n$ con respecto a toda base es distinto de $0$.
  2. El determinante de $x_1,\ldots,x_n$ con respecto a alguna base es distinto de $0$.
  3. $x_1,\ldots,x_n$ es una base de $V$.

Demostración. La afirmación (1) es más fuerte que la (2) y por lo tanto la implica.

Ahora, probemos que la afirmación (2) implica la afirmación (3). Como $x_1,\ldots,x_n$ son $n$ vectores y $n$ es la dimensión de $V$, para mostrar que forman una base basta mostrar que son linealmente independientes. Anteriormente, vimos que cualquier forma alternante manda vectores linealmente dependientes a $0$. Como la hipótesis de (2) es que existe alguna forma alternante que no se anula en $x_1,\ldots, x_n$, entonces deben ser linealmente independientes y por lo tanto formar una base.

Finalmente, probemos que (3) implica (1). Tomemos $B=(b_1,\ldots,b_n)$ otra base de $V$. Como $\det_{(x_1,\ldots,x_n)}$ es una forma $n$-lineal, podemos aplicar el teorema anterior y evaluar en $x_1,\ldots,x_n$ para concluir que
\begin{align*}
\det_{(x_1,\ldots,x_n)}&(x_1,\ldots,x_n)&\\
&=\det_{(x_1,\ldots,x_n)}(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots,x_n).
\end{align*}

El término de la izquierda es igual a $1$, de modo que ambos factores a la derecha deben ser distintos de $0$.

$\square$

Ejemplo. En el ejemplo que dimos de polinomios vimos que el determinante de $1$, $2x$ y $3x^2$ con respecto a la base $1$, $1+x$ y $1+x+x^2$ es igual a $6$. De acuerdo al teorema anterior, esto implica que $1$, $2x$ y $3x^2$ es un conjunto linealmente independiente de polinomios, y de hecho una base.

Además, el teorema anterior también implica que sin importar que otra base $B$ de $\mathbb{R}_2[x]$ tomemos, el determinante de $1$, $2x$ y $3x^2$ con respecto a $B$ también será distinto de $0$.

$\triangle$

Más adelante…

A lo largo de esta entrada estudiamos la definición de determinantes para un conjunto de vectores y enunciamos sus principales propiedades. En las siguientes entradas vamos a hablar cómo se define el determinante para matrices y para transformaciones lineales. Después de las definiciones, pasaremos a estudiar cómo se calculan los determinantes y veremos cómo se aplican a diferentes problemas de álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cuántos sumandos tendrá el determinante de $5$ vectores en un espacio vectorial de dimensión $5$ con respecto a cualquier base? Da el número de manera explícita.
  • Verifica que en el primer ejemplo de determinantes de esta entrada, en efecto los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son los que se enuncian.
  • Encuentra el determinante de los vectores $(3,1)$ y $(2,4)$ con respecto a la base $((5,1), (2,3))$ de $\mathbb{R}^2$.
  • Muestra que los vectores $(1,4,5,2)$, $(0,3,2,1)$, $(0,0,-1,4)$ y $(0,0,0,1)$ son linealmente independientes calculando por definición su determinante con respecto a la base canónica de $\mathbb{R}^4$.
  • Usa un argumento de determinantes para mostrar que los vectores $(1,4,3)$, $(2,-2,9)$, $(7,8,27)$ de $\mathbb{R}^3$ no son linealmente independientes. Sugerencia. Calcula su determinante con respecto a la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Inmersión de R en R[x], grado y evaluación de polinomios

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada comenzaremos mostrando que podemos usar «la notación de siempre» para los polinomios, usando un símbolo $x$ y potencias. Después de eso, hablaremos del grado de un polinomio y de cómo se comporta con las operaciones que hemos definido. Finalmente, haremos una distinción importante entre los polinomios, y las funciones que inducen.

Como recordatorio, en la entrada anterior definimos a los polinomios y sus operaciones de suma y multiplicación. Para ello, construimos a los polinomios como sucesiones en las que casi todos los términos son $0$. Vimos que bajo estas operaciones se obtiene un dominio entero, es decir, un anillo conmutativo con unidad multiplicativa en donde se vale la regla de cancelación.

Regresando a la notación con $x$ y potencias

Ya dimos cimientos sólidos para construir al anillo de polinomios con coeficientes reales y sus operaciones. Es momento de regresar a la «notación usual» usando $x$ y sus potencias, pues será más práctica en lo que viene.

Para empezar, notemos que a cada real $r$ podemos asociarle el polinomio $(r,\overline{0})$. Esta es una asociación en la que las operaciones de suma y producto de $\mathbb{R}$ se corresponden con las de $\mathbb{R}[x]$.

Observa además que tras esta asociación, el real $0$ es el polinomio $(\overline{0})$ y el real $1$ es el polinomio $(1,\overline{0})$, así que la asociación respeta los neutros de las operaciones. De manera similar se puede mostrar que la asociación respeta inversos aditivos y multiplicativos.

Por esta razón, para un real $r$ podemos simplemente usar el símbolo $r$ para el polinomio $(r,\overline{0})$, y todas las operaciones siguen siendo válidas. Para expresar a cualquier otro polinomio, nos bastará con introducir un símbolo más, y potencias.

Definición. Definimos $x$ como el polinomio $\{0,1,\overline{0}\}$. Para cada natural $n$ definimos $x^n$ como el polinomio $\{a_n\}$ tal que $a_j=1$ si $j=n$ y $a_j=0$ para $j\neq n$.

Ejemplo 1. La definición de arriba implica $x^0=1$ y $x^1=x$. El polinomio $x^3$ es el polinomio $$(0,0,0,1,\overline{0}).$$

$\triangle$

Ejemplo 2. Hagamos la multiplicación de los polinomios $x^2$ y $x^3$. Estos son, por definición, $(0,0,1,\overline{0})$ y $(0,0,0,1,\overline{0})$. Hagamos esta multiplicación con el método de la tabla:

$0$$0$$1$
$0$$0$$0$$0$
$0$$0$$0$$0$
$0$$0$$0$$0$
$1$$0$$0$$1$
Multiplicación de $x^2$ y $x^3$.

El producto es el polinomio $(0,0,0,0,0,1,\overline{0})$, que por definición es el polinomio $x^5$.

$\triangle$

En general, para $m$ y $n$ enteros no negativos se tiene que $x^mx^n = x^{m+n}$, como puedes verificar de tarea moral.

Ya que tenemos al símbolo $x$ y sus potencias, necesitaremos también agregar coeficientes para poder construir cualquier polinomio.

Definición. Dados un polinomio $a:=\{a_n\}$ y un real $r$, definimos al polinomio $ra$ como la sucesión $$ra:=\{ra_n\},$$ es decir, aquella obtenida de multiplicar cada elemento de $a$ por $r$.

Ejemplo 3. Si tomamos al polinomio $$a=\left(0,\frac{1}{2},0,\frac{1}{3},\overline{0}\right)$$ y al real $r=6$, tenemos que $$6a=\left(0,3,0,2,\overline{0}\right).$$

Observa que $3x$ es el polinomio $(0,3,\overline{0})$, que $2x^3$ es el polinomio $(0,0,0,2,\overline{0})$ y que la suma de los dos es precisamente el polinomio $6a$, de modo que podemos escribir $$6a=3x+2x^3.$$

Si tomamos cualquier polinomio $a$ y al real $ 0$, tenemos que $$0a=\{0,0,0,0,\ldots\}=(\overline{0}),$$ es decir, $0a$ es el polinomio cero.

$\triangle$

La siguiente proposición es sencilla y su demostración queda como tarea moral.

Proposición. Para cualquier polinomio $a=\{a_n\}$ en $\mathbb{R}[x]$, los reales $a_0,a_1,\ldots$ son los únicos reales tales que $$a=a_0+a_1x+a_2x^2+a_3x^3+\ldots.$$

Todo lo que hemos discutido en esta sección permite que ahora sí identifiquemos formalmente al polinomio $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ con la expresión $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots$$

y que realicemos las operaciones en $\mathbb{R}[x]$ «como siempre», es decir, sumando coeficientes de términos iguales y multiplicando mediante la distribución y reagrupamiento. Así, a partir de ahora ya no usaremos la notación de sucesiones y simplemente escribiremos a los polinomios con la notación de $x$ y sus potencias. También, favoreceremos llamarles a los polinomios $p(x),q(x),r(x),\ldots$ en vez de $a,b,c,\ldots$.

Ejercicio. Realiza la operación $6(\frac{1}{2}+x)(1+3x^2)$.

Solución. Por asociatividad, podemos hacer primero la primer multiplicación, que da $3+6x$. Luego, multiplicamos este polinomio por el tercer término. Podemos usar las propiedades de anillo para distribuir y agrupar, o bien, podemos seguir usando el método de la tabla.

Cuando hacemos lo primero, queda
\begin{align*}
(3+6x)(1+3x^2)&=3+9x^2+6x+18x^3\\
&=3+6x+9x^2+18x^3.
\end{align*}

Si hacemos lo segundo, tendríamos que hacer la siguiente tabla (¡cuidado con dejar el cero correspondiente al término $x$ del segundo factor!)

$3$$6$
$1$$3$$6$
$0$$0$$0$
$3$$9$$18$
Multiplicación de dos polinomios

Leyendo por diagonales, el resultado es $$3+6x+9x^2+18x^3,$$ tal y como calculamos con el primer método.

$\triangle$

Grado de polinomios

Vamos a definir «grado» para todo polinomio que no sea el polinomio $0$. Es muy importante recordar que el polinomio $0$ no tiene grado.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es de grado $n$ si es de la forma $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ para reales $a_0,\ldots,a_n$ y $a_n\neq 0$. Al grado de $p(x)$ lo denotamos por $\deg(p(x))$.

Por la discusión de la sección anterior, el grado está bien definido. En términos de la sucesión correspondiente al polinomio, su grado es el mayor entero que sea subíndice de una entrada no cero.

Ejemplo 1. El grado del polinomio $p(x)=3$ es $0$. De hecho, todo polinomio que viene de un real tiene grado $0$. Excepto el polinomio $0$.

El grado del polinomio $q(x)=1+2x^3+3x^7$ es $7$.

Sin embargo, el polinomio $r(x)=0$ no tiene grado, pues es el polinomio $0$.

Notemos que el polinomio $s(x)=2+4x$ se escribe como $(2,4,\overline{0})$ en notación de sucesión. La entrada $0 $ es $2$, la entrada $1$ es $4$ y el resto de las entradas son $0$. El grado de $s(x)$ es $1$, que es precisamente la posición de la última entrada distinta de $0$ en su notación de sucesión.

$\triangle$

El siguiente resultado habla de cómo interactúa el grado con operaciones de polinomios.

Proposición. Si $p(x)$ y $q(x)$ son polinomios en $\mathbb{R}[x]$ distintos de cero, entonces:

  • El grado del producto cumple $$\deg(p(x)q(x)) = \deg(p(x))+\deg(q(x)).$$
  • El grado de la suma cumple $$\deg(p(x)+q(x))\leq \max(\deg(p(x)),\deg(q(x))).$$
  • Si $\deg(p(x))>\deg(q(x))$, entonces $$\deg(p(x)+q(x))=\deg(p(x)).$$

Demostración. Supongamos que los grados de $p(x)$ y $q(x)$ son, respectivamente, $m$ y $n$, y que $p(x)$ y $q(x)$ son
\begin{align*}
p(x)&=a_0+a_1x+\ldots+a_mx^m\\
q(x)&=b_1+b_1x+\ldots+b_nx^n.
\end{align*}
La demostración de la primera parte ya la hicimos en la entrada anterior. En la notación que estamos usando ahora, vimos que el coeficiente de $x^{m+n}$ en $p(x)q(x)$ es justo $a_mb_n\neq 0$, y que este es el término de mayor exponente.

Para la segunda y tercera partes, podemos asumir que $m\geq n$. Tenemos que $p(x)+q(x)$ es $$\left(\sum_{i=0}^n (a_i+b_i)x^i\right) + a_{n+1}x^{n+1}+\ldots+a_mx^m.$$ De aquí, se ve que el máximo exponente que podría aparecer es $m$, lo cual prueba la segunda parte.

Para la tercer parte, cuando $m>n$ tenemos que el coeficiente de $x^m$ es $a_m\neq 0$, y que es el término con mayor exponente. Así, el grado de la suma es $m$.

$\square$

La hipótesis adicional del tercer punto es necesaria, pues en la suma de dos polinomios del mismo grado, es posible que «se cancele» el término de mayor grado.

Ejemplo 2. El producto de los polinomios $1+x+x^2+x^3$ y $1-x$ es $1-x^4$. Esto concuerda con lo que esperábamos de sus grados. El primero tiene grado $3$, el segundo grado $1$ y su producto grado $4=3+1$.

La suma de los polinomios $1+\pi x^3 + \pi^2 x^5$ y $1-\pi x^3$ es $2+\pi^2x^5$, que es un polinomio de grado $5$, como esperaríamos por la tercer parte de la proposición.

La suma de los polinomios $4x^5+6x^7$ y $6x^5+4x^7$ es $10x^5+10x^7$. Es de grado $7$, como esperaríamos por la segunda parte de la proposición.

Sin embargo, en la suma de polinomios el grado puede disminuir. Por ejemplo, los polinomios $1+x^3-x^7$ y $1+x^2+x^7$ tienen grado $7$, pero su suma es el polinomio $2+x^2+x^3$, que tiene grado $3$.

$\triangle$

Evaluación de polinomios e introducción a raíces

Es importante entender que hay una diferencia entre un polinomio, y la función que induce. Por la manera en que definimos a los polinomios, «en el fondo» son sucesiones, incluso con la nueva notación de $x$ y potencias. Sin embargo, cualquier polinomio define una función.

Definición. Si tenemos un polinomio $$p(x)=a_0+a_1x+\ldots+a_nx^n$$ en $\mathbb{R}$, éste define una función aplicar $p$ que es una función $f_p:\mathbb{R}\to \mathbb{R}$ dada por $$f_p(r)=a_0+a_1r+a_2r^2+\ldots+a_nr^n$$ para todo $r\in \mathbb{R}$.

Ejemplo 1. El polinomio $p(x)=3x^2+4x^3$ induce a la función $f_p:\mathbb{R}\to \mathbb{R}$ tal que $f_p(r)=3r^2+4r^3$. Tenemos, por ejemplo, que $$f_p(1)=3\cdot 1^2 + 4\cdot 1^3 = 7$$ y que $$f_p(2)=3\cdot 2^2 + 4\cdot 2^3=44.$$

$\triangle$

Como las reglas de los exponentes y la multiplicación por reales funciona igual en $\mathbb{R}$ que en $\mathbb{R}[x]$, la evaluación en un real $r$ obtiene exactamente lo mismo a que si simplemente reemplazamos $x$ por $r$ y hacemos las operaciones. Por ello, usualmente no distinguimos entre $p(x)$ y $f_p$, su función evaluación, y para un real $r$ usamos simplemente $p(r)$ para referirnos a $f_p(r)$.

De manera totalmente análoga, podemos pensar a $p(x)$ como una función $p:\mathbb{C}\to \mathbb{C}$. También, como comentamos al inicio, podemos definir a los polinomios con coeficientes complejos, es decir a $\mathbb{C}[x]$, y pensarlos como funciones.

Es momento de introducir una definición clave para lo que resta del curso.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ o $\mathbb{C}[x]$ y sea $r$ un real o complejo. Decimos que $r$ es una raíz de $p(x)$ si $p(r)=0$.

Ejemplo 2. El polinomio $p(x)=3$ no tiene raíces, pues para cualquier real o complejo $r$ se tiene $p(r)=3\neq 0$. Por otro lado, cualquier real o complejo es raíz del polinomio $z(x)=0$.

El polinomio $q(x)=x^2+1$ no tiene raíces en $\mathbb{R}$ pues $q(r)\geq 1$ para cualquier real $r$. Pero sí tiene raíces en $\mathbb{C}$, pues $$q(i)=i^2+1=-1+1=0.$$

El polinomio $s(x)=x(x-1)(x-1)=x^3-2x^2+x$ tiene como únicas raíces a $ 0$ y $1$, lo cual se puede verificar fácilmente antes de hacer la multiplicación. Esto debería darnos la intuición de que conocer a las raíces de un polinomio nos permite factorizarlo y viceversa. Esta intuición es correcta y la formalizaremos más adelante.

$\triangle$

Cuando hablamos de los números complejos, vimos cómo obtener las raíces de los polinomios de grado $2$, y de los polinomios de la forma $x^n-a$ en $\mathbb{C}$. La mayor parte de lo que haremos de aquí en adelante en el curso será entender a las raíces reales y complejas de más tipos de polinomios.

Más adelante…

Ya que hemos formalizado la notación estándar que conocemos de los polinomios, su estudio podrá ser más cómodo, hacemos énfasis en que casi todas las definiciones que dimos en esta sección se apoyaros simplemente en un uso adecuado de la notación; por lo que no hay que perder de vista que en el fondo, los polinomios siguen siendo sucesiones de números, y que el símbolo $x$ solo es una forma de representar la sucesión $(0,1,\overline{0})$.

Aun así, hemos justificado que este cambio de notación no tiene nada que envidiar a la notación original, por lo que en las siguientes entradas, ocuparemos la notación más familiar, lo cual será una pieza clave, para hacer más legibles las demostraciones en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Pasa el polinomio $(0,0,0,0,4,0,3,\overline{0})$ a notación con $x$ y potencias. Luego, pasa el polinomio $1-x^3+x^6-x^9$ a notación de sucesión. Suma ambos polinomios y exprésalos en notación con $x$. Multiplícalos usando distribución y agrupamiento. Multiplícalos usando una tabla.
  2. Prueba usando la definición de multiplicación y de $x^n$ que para $m$ y $n$ enteros no negativos se tiene que $x^{m+n}= x^m x^n$.
  3. Toma $P_1(x),\ldots,P_m(x)$ polinomios en $\mathbb{R}[x]$ de grado $n_1,\ldots,n_m$ respectivamente. ¿Cuál es el grado de $P_1(x)+\ldots+P_m(x)$? ¿Y el grado de $P_1(x)\cdot \ldots \cdot P_m(x)$?
  4. Usando distribución y agrupamiento, muestra que para cada entero positivo $n$ se cumple que $$(1-x)(1+x+x^2+\ldots+x^{n-1})=1-x^n.$$
  5. Justifica que si $r(x)$ es un polinomio y $f_r$ es la función aplicar $r$, entonces para cualesquiera polinomios $p(x)$ y $q(x)$, se tiene que $f_p+f_q=f_{p+q}$ y que $f_pf_q=f_{pq}$.

Para practicar la aritmética de polinomios, puedes ir a la sección correspondiente de Khan Academy.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Transformaciones multilineales antisimétricas y alternantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos de la importancia que tiene poder diagonalizar una matriz: nos ayuda a elevarla a potencias y a encontrar varias de sus propiedades fácilmente. En esa entrada discutimos a grandes rasgos el caso de matrices en $M_2(\mathbb{R})$. Dijimos que para dimensiones más altas, lo primero que tenemos que hacer es generalizar la noción de determinante de una manera que nos permita probar varias de sus propiedades fácilmente. Es por eso que introdujimos a las funciones multilineales y dimos una introducción a permutaciones. Tras definir las clases de transformaciones multilineales alternantes y antisimétricas, podremos finalmente hablar de determinantes.

Antes de entrar con el tema, haremos un pequeño recordatorio. Para $d$ un entero positivo y $V$, $W$ espacios vectoriales sobre un mismo campo, una transformación $d$-lineal es una transformación multilineal de $V^d$ a $W$, es decir, una tal que al fijar cualesquiera $d-1$ coordenadas, la función que queda en la entrada restante es lineal.

Con $[n]$ nos referimos al conjunto $\{1,2,\ldots,n\}$. Una permutación en $S_n$ es una función biyectiva $\sigma:[n]\to [n]$. Una permutación invierte a la pareja $i<j$ si $\sigma(i)>\sigma(j)$. Si una permutación $\sigma$ invierte una cantidad impar de parejas, decimos que es impar y que tiene signo $\text{sign}(\sigma)=-1$. Si invierte a una cantidad par de parejas (tal vez cero), entonces es par y tiene signo $\text{sign}(\sigma)=1$.

Transformaciones $n$-lineales antisimétricas y alternantes

Tomemos $d$ un entero positivo, $V$, $W$ espacios vectoriales sobre el mismo campo y $\sigma$ una permutación en $S_d$. Si $T:V^d\to W$ es una transformación $d$-lineal, entonces la función $(\sigma T):V^d\to W$ dada por $$(\sigma T)(v_1,\ldots,v_d)=T(v_{\sigma(1)},v_{\sigma(2)},\ldots,v_{\sigma(d)})$$ también lo es. Esto es ya que sólo se cambia el lugar al que se lleva cada vector. Como $T$ es lineal en cualquier entrada (al fijar las demás), entonces $\sigma T$ también.

Definición. Decimos que $T$ es antisimétrica si $\sigma T = \text{sign}(\sigma) T$ para cualquier permutación $\sigma$ en $S_d$. En otras palabras, $T$ es antisimétrica si $\sigma T=T$ para las permutaciones pares y $\sigma T = -T$ para las permutaciones impares.

Definición. Decimos que $T$ es alternante si $T(v_1,\ldots,v_d)=0$ cuando hay dos $v_i$ que sean iguales.

Ejemplo. Consideremos la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc.$$ Afirmamos que ésta es una transformación $2$-lineal alternante y antisimétrica. La parte de mostrar que es $2$-lineal es sencilla y se queda como tarea moral.

Veamos primero que es una función alternante. Tenemos que mostrar que si $(a,b)=(c,d)$, entonces $T((a,b),(c,d))=0$. Para ello, basta usar la definición: $$T((a,b),(a,b))=ab-ab=0.$$

Ahora veamos que es una función antisimétrica. Afortunadamente, sólo hay dos permutaciones en $S_2$, la identidad $\text{id}$ y la permutación $\sigma$ que intercambia a $1$ y $2$. La primera tiene signo $1$ y la segunda signo $-1$.

Para la identidad, tenemos $(\text{id}T)((a,b),(c,d))=\sigma((a,b),(c,d))$, así que $(\text{id}T)=T=\text{sign}(\text{id})T$, como queremos.

Para $\sigma$, tenemos que $\sigma T$ es aplicar $T$ pero «con las entradas intercambiadas». De este modo:
\begin{align*}
(\sigma T)((a,b),(c,d))&=T((c,d),(a,b))\\
&=cb-da\\
&=-(ad-bc)\\
&=-T((a,b),(c,d)).
\end{align*}

Esto muestra que $(\sigma T) = -T = \text{sign}(\sigma)T$.

$\square$

Equivalencia entre alternancia y antisimetría

Resulta que ambas definiciones son prácticamente la misma. Las transformaciones alternantes siempre son antisimétricas. Lo único que necesitamos para que las transformaciones antisimétricas sean alternantes es que en el campo $F$ en el que estamos trabajando la ecuación $2x=0$ sólo tenga la solución $x=0$. Esto no pasa, por ejemplo, en $\mathbb{Z}_2$. Pero sí pasa en $\mathbb{Q}$, $\mathbb{R}$ y $\mathbb{C}$.

Proposición. Sean $V$ y $W$ espacios vectoriales sobre un campo donde $2x=0$ sólo tiene la solución $x=0$. Sea $d$ un entero positivo. Una transformación $d$-lineal $T:V^d\to W$ es antisimétrica si y sólo si es alternante.

Demostración. Supongamos primero que $T$ es antisimétrica. Mostremos que es alternante. Para ello, supongamos que para $i\neq j$ tenemos que $x_i=x_j$.

Tomemos la permutación $\sigma:[d]\to [d]$ tal que $\sigma(i)=j$, $\sigma(j)=i$ y $\sigma(k)=k$ para todo $k$ distinto de $i$ y $j$. A esta permutación se le llama la transposición $(i,j)$. Es fácil mostrar (y queda como tarea moral), que cualquier transposición tiene signo $-1$.

Usando la hipótesis de que $T$ es antisimétrica con la transposición $(i,j)$, tenemos que
\begin{align*}
T(x_1,&\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n)\\
&=-T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n),
\end{align*}

en donde en la segunda igualdad estamos usando que $x_i=x_j$. De este modo, $$2T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0,$$ y por la hipótesis sobre el campo, tenemos que $$T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0.$$ Así, cuando dos entradas son iguales, la imagen es $0$, de modo que la transformación es alternante.

Hagamos el otro lado de la demostración. Observa que este otro lado no usará la hipótesis del campo. Supongamos que $T$ es alternante.

Como toda permutación es producto de transposiciones y el signo de un producto de permutaciones es el producto de los signos de los factores, basta con mostrar la afirmación para transposiciones. Tomemos entonces $\sigma$ la transposición $(i,j)$. Tenemos que mostrar que $\sigma T = \text{sign}(\sigma) T = -T$.

Usemos que $T$ es alternante. Pondremos en las entradas $i$ y $j$ a la suma de vectores $x_i+x_j$, de modo que $$T(x_1,\ldots,x_i+x_j,\ldots,x_i+x_j,\ldots,x_n)=0.$$ Usando la $n$-linealidad de $T$ en las entradas $i$ y $j$ para abrir el término a la izquierda, tenemos que
\begin{align*}
0=T(x_1&,\ldots,x_i,\ldots,x_i,\ldots,x_n) + \\
&T(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)+\\
&T(x_1,\ldots,x_j,\ldots,x_j,\ldots,x_n).
\end{align*}

Usando de nuevo que $T$ es alternante, el primero y último sumando son cero. Así, \begin{align*}
T(x_1&,\ldots, x_i,\ldots,x_j,\ldots,x_n)\\
&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n).
\end{align*}

En otras palabras, al intercambiar las entradas $i$ y $j$ se cambia el signo de $T$, que precisamente quiere decir que $(\sigma T) = \text{sign}(\sigma)T$.

$\square$

Las transformaciones alternantes se anulan en linealmente dependientes

Una propiedad bastante importante de las transformaciones alternantes es que ayudan a detectar a conjuntos de vectores linealmente dependientes.

Teorema. Sea $T:V^d\to W$ una transformación $d$-lineal y alternante. Supongamos que $v_1,\ldots,v_d$ son linealmente dependientes. Entonces $$T(v_1,v_2,\ldots,v_d)=0.$$

Demostración. Como los vectores son linealmente dependientes, hay uno que está generado por los demás. Sin perder generalidad, podemos suponer que es $v_d$ y que tenemos $$v_d=\alpha_1v_1+\ldots+\alpha_{d-1}v_{d-1}$$ para ciertos escalares $\alpha_1,\ldots, \alpha_{d-1}$.

Usando la $d$-linealidad de $T$, tenemos que
\begin{align*}
T\left(v_1,v_2,\ldots,v_{d-1},v_d\right)&=T\left(v_1,\ldots,v_{d-1},\sum_{i=1}^{d-1} \alpha_i v_i\right)\\
&=\sum_{i=1}^{d-1} \alpha_i T(v_1,\ldots,v_{d-1}, v_i).
\end{align*}

Usando que $T$ es alternante, cada uno de los sumandos del lado derecho es $0$, pues en el $i$-ésimo sumando tenemos que aparece dos veces el vector $v_i$ entre las entradas de $T$. Esto muestra que $$T(v_1,\ldots,v_d)=0,$$ como queríamos mostrar.

$\square$

Introducción a definiciones de determinantes

En la siguiente entrada daremos tres definiciones de determinante. Una es para un conjunto de vectores. Otra es para transformaciones lineales. La última es para matrices. Todas ellas se motivan entre sí, y las propiedades de una nos ayudan a probar propiedades de otras. En esa entrada daremos las definiciones formales. Por ahora sólo hablaremos de ellas de manera intuitiva.

Para definir el determinante para un conjunto de vectores, empezamos con un espacio vectorial $V$ de dimensión $n$ y tomamos una base $B=(b_1,\ldots,b_n)$. Definiremos el determinante con respecto a $B$ de un conjunto de vectores $(v_1,v_2,\ldots,v_n)$ , al cual denotaremos por $\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$de $V$ de la manera siguiente.

A cada vector $v_i$ lo ponemos como combinación lineal de elementos de la base: $$v_i=\sum_{j=1}^n a_{ji}b_j.$$ El determinante $$\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)$$ es $$\sum_{\sigma \in S(n)} \text{sign}(\sigma) a_{1\sigma(1)} \cdot a_{2\sigma(1)}\cdot \ldots\cdot a_{n\sigma(n)}.$$

Observa que esta suma tiene tantos sumandos como elementos en $S_n$, es decir, como permutaciones de $[n]$. Hay $n!$ permutaciones, así que esta suma tiene muchos términos incluso si $n$ no es tan grande.

Veremos que para cualquier base $B$, el determinante con respecto a $B$ es una forma $d$-lineal alternante, y que de hecho las únicas formas $d$-lineales alternantes en $V$ «son determinantes», salvo una constante multiplicativa.

Luego, para una transformación $T:V\to V$ definiremos al determinante de $T$ como el determinante $$\det_{(b_1,\ldots,b_n)}(T(b_1),\ldots,T(b_n)),$$ y veremos que esta definición no depende de la elección de base.

Finalmente, para una matriz $A$ en $M_n(F)$, definiremos su determinante como el determinante de la transformación $T_A:F^n\to F^n$ tal que $T_A(X)=AX$. Veremos que se recupera una fórmula parecida a la de determinante para un conjunto de vectores.

Los teoremas que veremos en la siguiente entrada nos ayudarán a mostrar más adelante de manera muy sencilla que el determinante para funciones o para matrices es multiplicativo, es decir, que para $T:V\to V$, $S:V\to V$ y para matrices $A,B$ en $M_n(F)$ se tiene que

\begin{align*}
\det(T\circ S)&=\det(T)\cdot \det(S)\\
\det(AB)&=\det(A)\cdot \det(B).
\end{align*}

También mostraremos que los determinantes nos ayudan a caracterizar conjuntos linealmente independientes, matrices invertibles y transformaciones biyectivas.

Más Adelante…

En esta entrada hemos definido las clases de transformaciones lineales alternantes y antisimétricas; esto con la finalidad de introducir el concepto de determinantes. Además hemos dado una definición intuitiva del concepto de determinante.

En las siguientes entrada estudiaremos diferentes definiciones de determinante: para un conjunto de vectores, para una transformación lineal y finalmente para una matriz. Veremos cómo el uso de determinantes nos ayuda a determinar si un conjunto es linealmente independiente, si una matriz es invertible o si una transformación es biyectiva; además de otras aplicaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba que la función $T:(\mathbb{R}^2)^2\to\mathbb{R}$ dada por $$T((a,b),(c,d))=ad-bc$$ es $2$-lineal. Para esto, tienes que fijar $(a,b)$ y ver que es lineal en la segunda entrada, y luego fijar $(c,d)$ y ver que es lineal en la primera.
  • Muestra que las transposiciones tienen signo $-1$. Ojo: sólo se intercambia el par $(i,j)$, pero puede ser que eso haga que otros pares se inviertan.
  • Muestra que cualquier permutación se puede expresar como producto de transposiciones.
  • Muestra que la suma de dos transformaciones $n$-lineales es una transformación $n$-lineal. Muestra que al multiplicar por un escalar una transformación $n$-lineal, también se obtiene una transformación $n$-lineal.
  • ¿Es cierto que la suma de transformaciones $n$-lineales alternantes es alternante?

Al final del libro Essential Linear Algebra with Applications de Titu Andreescu hay un apéndice en el que se habla de permutaciones. Ahí puedes aprender o repasar este tema.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»