Archivo de la etiqueta: teoría de conjuntos

Álgebra Superior I: Intersecciones, uniones y complementos de conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

Habiendo establecido los axiomas de la teoría de conjuntos, ahora vamos a empezar a trabajar con ellos. En particular en esta entrada nos intereseran tres operaciones: La intersección, la unión y el complemento de conjuntos.

Pensando en conjuntos

Para empezar a hablar de las operaciones que usaremos, pues primero debemos de ponernos de acuerdo a qué nos referiremos y qué queremos construir cuando hablamos de operaciones. Para estos fines, nos interesa qué podemos hacer con los conjuntos y cómo se relacionan los unos a los otros. Por ejemplo: ¿Habrá algunos elementos que pertenezcan a dos conjuntos a la vez? o ¿Qué pasa con el con elementos que sí están en unos conjuntos y en otros no? Pues veremos algunas operaciones, sin embargo hay que ver la idea intuitiva detrás de algunos de ellos.

Será bueno que de igual manera tengas los axiomas a la mano, pues serán útiles para la definición de algunas de estas operaciones:

Axioma 1Existe un conjunto.
Axioma 2Podemos hacer conjuntos a partir de proposiciones que cumplen o no cumplen elementos de algún conjunto.
Axioma 3Si $X$ y $Y$ son conjuntos, entonces $\{X,Y\}$ es un conjunto.
Axioma 4Dos conjuntos son iguales si todos sus elementos son iguales.
Axioma 5Existe un conjunto que tiene como elementos a todos los elementos que pertenecen a algún elemento de $X$.
Axioma 6Para cada conjunto $X$, existe su conjunto potencia $\mathcal P (X)$ cuyos elementos son los subconjuntos de $X$.

Intersección

Supongamos que tenemos dos conjuntos $X,Y$ de números enteros positivos del 1 al 20. $X$ es el conjunto de los números pares y $Y$ es el conjunto de los números primos. Entonces $X$ lo podemos ver como:

Mientras que $Y$ se podría ver como:

Nota que hay un elemento en común con ambos conjuntos, pues $2$ es el único par primo, es decir hay un punto de intersección que es el $2$:

En este caso diremos que $2$ se encuentra en la intersección de $X$ con $Y$, pues está en ambos conjuntos. Con esto en mente definiremos la intersección:

Definición. Sean $X$ y $Y$ dos conjuntos, entonces el conjunto intersección de $X$ y $Y$, $X \cap Y$ es: $$X\cap Y = \{x \in X : x \in Y\} $$

En nuestro ejemplo anterior, $X=\{2,4,6,8,10,12,14,16,18,20\}, Y=\{2,3,5,7,11,13,17,19\}$, y $X \cap Y = \{2\}$ pues es el único par primo.

Como puedes ver, gráficamente el área que representa la intersección entre dos conjuntos es:

Ahora vamos a ver algunas propiedades como: la conmutatividad y la asociatividad .

Proposición. La intersección es conmutativa, es decir: $$X \cap Y = Y \cap X .$$

Demostración. Recuerda que por el axioma 4, tenemos que demostrar dos cosas: primero que $X \cap Y \subset Y \cap X$ y después que $Y \cap X \subset X \cap Y$. Vas a ver una similitud en demostrar este tipo de proposiciones de igualdad de conjuntos a las demostraciones que usan el «si y solo si», pues primero tendremos que demostrar la contención de «ida» y después la del «regreso». Y esto tiene sentido, pues demostrar la igualdad entre conjuntos es demostrar la doble implicación de que un elemento pertenezca a alguno de los dos conjuntos, pues habría que demostrar:

$$\forall x \big( x \in X \cap Y \Leftrightarrow x \in Y \cap X) .$$

Así que empezamos nuestra demostración probando una contención.

$\subset)$ Consideremos $x \in X\cap Y$. Para demostrar que $X \cap Y \subset Y \cap X$, habría que demostrar que cada elemento del primer conjunto se encuentra en el segundo, así que hay que demostrar que $ x \in Y \cap X$. Para ello, nota que $$X \cap Y = \{x \in X: x \in Y\} = \{x \in X: P(x)\}$$ son los elementos de $X$ que cumplen la proposición $P(x):x \in Y$. Entonces sabemos que $x \in Y$. Por otro lado, sabemos que la proposición $Q(x): x \in X$ se cumple, entonces $x$ pertenece al conjunto

$$x \in \{y \in Y: Q(y)\} = \{y \in Y: y \in X\} = Y \cap X$$

puesto que $x$ pertenece a $Y$ y cumple $Q(x)$. De esta forma $X \cap Y \subset Y \cap X$.

$\supset )$ Nota que para demostrar la otra contención, únicamente deberíamos copiar la demostración anterior cambiando de lugar $X$ con $Y$, es decir que nuestra demostración sería muy parecida a la primera contención que hicimos. Lo podríamos poner tal cual haciendo los cambios mencionados, sin embargo puede ser redundante. En este caso diremos que «La demostración de este caso es análoga a la anterior», que significa: para hacer esta demostración tendríamos un razonamiento muy parecido a la anterior sin ningún modificación interesante, pues seguiríamos los mismos pasos. Muchas veces verás este tipo de oraciones en demostraciones, siendo una herramienta para ahorrar palabras y no ser redundante, pues el razonamiento para hacer alguna demostración (en este caso la segunda contención), sigue un razonamiento casi idéntico a algo ya hecho (en este caso la primera contención).

De esta manera, al ser esta contención análoga a la anterior, $Y \cap X \subset X \cap Y$

$\square$

Proposición. La intersección es asociativa, es decir $$X \cap (Y \cap Z) = (X \cap Y) \cap Z$$.

Demostración. Podríamos hacer esta demostración como la anterior donde hicimos la conmutatividad, sin embargo emplearemos otro razonamiento en donde cada uno de los pasos es válido. Para ello nota que queremos demostrar que $$X \cap (Y \cap Z) = (X \cap Y) \cap Z$$ y que $$(X \cap Y) \cap Z = X \cap (Y \cap Z)$$. Y para esto debemos de demostrar que $$\big( x \in X \cap (Y \cap Z) \big) \Leftrightarrow \big(x \in (X \cap Y) \cap Z\big).$$

Ahora nota que

\begin{align*}
x \in X \cap (Y \cap Z)& \Leftrightarrow (x \in X) \land \big((x \in Y)\land(x \in Z) \big)\\
& \Leftrightarrow \big((x \in X) \land (x \in Y)\big) \land (x \in Z) \ \ \ (\text{Por la asociatividad de la disyunción}) \\
& \Leftrightarrow x \in (X \cap Y) \cap Z \\
\end{align*}

De esta manera hicimos una cadena de equivalencias lógicas válidas, empezamos con un elemento en el conjunto $X \cap (Y \cap Z)$ y demostramos que ese elemento estaba en $(X \cap Y) \cap Z$ y viceversa. Esto lo hicimos con el conocimiento que ya sabíamos, y como antes ya habíamos demostrado que la disyunción es asociativa, entonces cada paso lógico es válido y con esto demostramos la igualdad entre conjuntos.

$\square$

Unión

Ahora en vez de fijarnos en donde dos conjuntos se intersectan, pensemos en cuando dos conjuntos se unen. Para esto, considera el siguiente ejemplo. Digamos que $X = \{ 1,2,3,4,5\}$ y $Y = \{4, 5,6,7 \}$ son conjuntos de números enteros.

Los conjuntos $X,Y$ son los siguientes:

El siguiente paso es construir el conjunto que tiene como elementos a los elementos de ambos conjuntos ¿Recuerdas el axioma 4? Este nos hablaba de un conjunto que contiene a todos los elementos que son elementos del mismo conjunto. Suena confuso pero este axioma junto al axioma 3 justifican la existencia de este conjunto. Veamos como lo podemos construir:

Por el axioma 3, existe el conjunto $\{X,Y\}$, es decir que existe el conjunto $A = \{\{1,2,3,4,5\}\{4,5,6,7\}\}$.

Después, como existe este conjunto $A$, por el axioma 4, existe un conjunto cuyos elementos son elementos que pertenecen a elementos de $\{X,Y\}$, entonces para dicho conjunto que llamaremos $X \cup Y$, sus elementos son $$X \cup Y = \{x: x \in X \lor x \in Y\}$$.

Entonces el conjunto unión de $X$ y $Y$ $X \cup Y = \{1,2,3,4,5,6,7\}$, pues es el conjunto que contiene a todos los elementos de ambos conjuntos.

Definición. El conjunto unión de dos conjuntos $X,Y$ es el conjunto: $$X \cup Y = \{x: x \in X \lor x \in Y\} $$

De manera gráfica, podemos ver la unión como:

Ahora enunciaremos las proposiciones que demostramos para la intersección, pero ahora usando la unión:

Proposición. La unión es conmutativa.

Demostración. Considera a $X$ y $Y$ dos conjuntos, entonces

\begin{align*}
x \in X \cup Y & \Leftrightarrow (x \in X) \lor (x \in Y)\\
& \Leftrightarrow (x \in Y) \lor (x \in X) \ \ \ (\text{Por la conmutatividad de la conjunción}) \\
& \Leftrightarrow x \in Y \cup X
\end{align*}

$\square$

Proposición. La unión es asociativa.

Para esta última no daremos demostración, sin embargo es una demotración parecida a su contraparte de la intersección.

Una vez que hemos establecido estas dos operaciones, solo falta una más por revisar ahora. Si la intersección es la disyunción y la unión es la conjunción, la siguiente que definiremos es la negación.

Complemento de conjuntos

Cuando estemos hablando de conjuntos, muchas veces estaremos dentro de un contexto de conjuntos, o un Conjunto universal, dentro del cual siempre estaremos trabajando. Por ejemplo, si estamos en cálculo de una variable, todos los conjuntos o casi todos sobre los que estemos trabajando serán conjuntos de números reales. Nota ahora que cuando estuvimos dando los ejemplos de conjuntos paraexplicar la unión y la intersección, decíamos que $X,Y$ eran conjuntos de números enteros. Es decir, estábamos acordando que nuestro conjunto universal eran los números enteros $\mathbb{Z}$.

Muchas veces el contexto sobre el conjunto universal sobre el que estamos trabajando no será especificado y se puede inferir, pues si estamos trabajando por ejemplo con números reales, no es posible que un conjunto tenga números complejos, por ejemplo.

Ahora con esto acordado, vamos a ver que cualquier conjunto $X$ en un conjunto universal $U$ se puede escribir de la siguiente manera: $$ X = \{x \in U: x \in X\}.$$

Es decir, podemos escribir al conjunto $X$ como los elementos del conjunto universal que están en $X$. Así, definiremos el complemento de $X$ o $X^c$ como: $$X^c = \{x \in U:x \not \in X\}. $$

Definición. Sea $X$ un conjunto sobre el conjunto universal $U$, entonces definimos el complemento de $X$ como $$X^c = \{x \in U: x\not \in X\}^* $$

Por ejemplo, considera $X = \{2,4,6,8,10\}$ al conjunto de los números pares dentro del conjunto de los números enteros del 1 al 10. Entonces en este caso $U = \{1,2,3,4,5,6,7,8,9,10\}$ y su complemento es $X^c = \{1,3,5,7,9\}$.

Gráficamente, podemos ver al complemento como:

Algunas de las cosas que podemos decir del complemento son:

Proposición. Sea $X$ un conjuntos dentro del conjunto universal $U$. Entonces:

  1. $X \cup X^c = U$
  2. $U^c = \emptyset$

Demostración.

  1. Esta proposición nos quiere decir que un conjunto junto al complemento «llenan» todo el espacio. Para esto, nota que
    \begin{align*}
    x \in X^c \cup X & \Leftrightarrow x \in X^c \lor x \in X \\
    & \Leftrightarrow x \in \{x \in U : x \in X \lor x \not \in X\}
    \end{align*}
    Ahora nota que $P(x): x \in X \lor x \not \in X$ es una tautología, es decir, cualquier elemento de $U$ cumple dicha definición, así,
    \begin{align*}
    x \in X^c \cup X & \Leftrightarrow x \in X^c \lor x \in X \\
    & \Leftrightarrow x \in \{x \in U : x \in X \lor x \not \in X\}\\
    & \Leftrightarrow x \in U
    \end{align*}
  2. Nota primero que ya hemos dicho que $\emptyset$ es subconjunto de cualquier conjunto, así se tiene la contención $\emptyset \subset U$. Para la otra contención, supón que no sucede que $U \subset \emptyset$. Entonces se tiene que existe un elemento $x\in U$ que cumple:$$ x\in \{x \in U: x \not \in U\}. $$ Donde se tendría que $x \in U \land x \not \in U$, lo cual es imposible. Entonces $U \subset \emptyset$. De esta manera se tiene la igualdad entre conjuntos.

$\square$

Nota

*: En la literatura, también puedes encontrar escrito el complemento de un conjunto $A$ escrito como $\bar A$ en lugar de $A^c$

Más adelante…

Ahora ya hemos visto tres operaciones básicas en la teoría de conjuntos, junto a la definición del conjunto universal, que recuerda: no siempre verás implícitamente y puede ser un conjunto que dependa del contexto. En la siguiente entrada veremos dos operaciones más que se pueden definir en términos de las que vimos ahora, así como otras propiedades de las operaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $N = \{1,2,3,4,6,9,10,15,20,30\}$ y $X = \{x \in \mathbb{Z}: x= 2n, n \in N \}$, encuentra:
    • $X \cap N$
    • $X \cup N$
  2. Demuestra que la unión es asociativa.
  3. Demuestra que la unión de subconjuntos de un conjunto $X$ siempre está contenida en $X$.
  4. Demuestra que si $Y \subset X $ y $Z \subset X$ entonces $Y \cup Z \subset X$
  5. Demuestra que si $X \subset Y$ son dos conjuntos, entonces:
    • $X \cap Y = X$
    • $X \cup Y = Y$
  6. Demuestra que:
    • $X^c \cap X^c = \emptyset$
    • $\emptyset^c = U$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Conjuntos y elementos

Por Guillermo Oswaldo Cota Martínez

Introducción

Hasta ahora hemos hablado de una parte muy particular de la matemática, la Lógica. Esta te ayudará a entender a lo largo de los cursos de matemáticas, pues es uno de los lenguajes que muchas veces verás escrito y con la que las y los matemáticos nos comunicamos. Pero esta solo es lo que muchos considerarían, la mitad del lenguaje. Ahora introduciremos la noción de la otra mitad del lenguaje, esta es llamada la «teoría de los conjuntos».

Desarmando y armando

Para entender un poco más de esta otra parte del lenguaje, vamos a ayudarnos nuevamente de nuestros amigos Blorgs. Para recordar, los Blorgs son unos seres imaginarios que viven en otro planeta. Estos se dividen en tres especies: Los Blargs, Blergs y Blurgs. Cada uno vive en terrenos distintos y come cosas distintas en diferentes días. Así como tienen sus amigos de distintas especies.

Ahora, veamos un poco cómo es que se vería la isla Blorg, que estaría dividida según las regiones en donde vive cada especie:

Como pudiste observar, cada uno de los Blorgs vive en regiones distintas, como los Blergs viven en las montañas y los Blurgs en bosques, nunca encontrarás un blurg viviendo donde viven los Blergs. Pero cada uno de ellos es un blorg, puesto que blorg es el «conjunto» que describe a la criatura. Es decir «todo blerg es un blorg», pero «no todo blorg es un blerg». La primera idea de la palabra conjunto que vamos a tener es: una colección de objetos. En este caso, podríamos decir que todos los Blergs, Blargs y Blurgs forman el conjunto de los Blorgs.

Por ejemplo, cuando empezamos a hablar de demostraciones, siempre usábamos la frase «Consideremos a $x$ un blorg …» o «Sea $x$ un blerg …», a lo que nos referimos es que dentro del conjunto de los Blorgs, «seleccionábamos» a algun blorg. Por ejemplo, cuando decíamos «Sea $x$ un blorg», podríamos referirnos a este:

O este:

O aquel:

Incluso este:

Lo que nos importaba al momento de hacer las demostraciones, era verificar que sin importar cuál blorg nos «tomaramos», la proposición se cumplía. Y quizá teníamos que verificar algunas particularidades dependiendo de su especie, pero lo importante es que cada uno de estos blorgs que considerábamos, «pertenecía» al conjunto de los Blorgs.

Hemos dicho una palabra fundamental en la teoría de conjuntos, y esta es la noción de pertenecer. Como vimos anteriormente, vamos a decir que un conjunto es una colección de objetos. En este caso el conjunto son los Blorgs y cada blorg es un objeto de dicho conjunto. Así que vamos a decir, en este caso que si $x$ es un blorg y $B$ es el conjunto de los Blorgs, entonces $$x \in B.$$ Y se lee «$x$ pertenece a $B$».

Describiendo conjuntos

Existen dos forma de describir o enunciar a los conjuntos: por extensión y por comprensión. Un conjunto descrito por extensión es aquel en donde decimos explícitamente todos sus elementos, mientras que al describirlo por comprensión, los describimos mediante alguna propiedad que tengan en común.

Por ejemplo, imagina que existen tres Blargs: blargmino, blargastacia y blargencio. Entonces podríamos describir por extensión al conjunto de los Blargs por:

$$\text{Blargs} = \{ \text{ blargmino, blargastacia , blargencio }\}$$.

Pero recordemos que todos los Blargs son Blorgs amarillos, así que igual podríamos describir al conjunto de los Blargs por comprensión:

$$ \text{Blargs} = \{ x \text{ tal que } x \text{ es un blorg amarillo} \} .$$

Este «tal que» se refiere a que $x$ cumple con ser un blorg amarillo. Sin embargo en la práctica no vas a ver escrito esto, y en su lugar se usa la siguiente notación:

$$ \text{Blargs} = \{ x \in B : x \text{ es amarillo} \} .$$

Como podrás ver, hicimos dos reemplazos, el primero de la frase «tal que», y esto nos sirve para ahorrarnos un poco la escritura. El otro simplemente es decir en un inicio a qué conjunto pertenece $x$. Recuerda que $B$ es el conjunto de los Blorgs, así que decimos que los Blargs son los objetos $x$ pertenecientes al conjunto de los Blorgs, tal que $x$ es amarillo. De esta forma simplificamos la escritura escribiendo la pertenencia de conjunto de los objetos.

Cualquiera de las dos formas de describir a un conjunto es correcta, sin embargo es más usual trabajar con la segunda, puesto que si quisiéramos describir al conjunto $X$ de todos los números enteros del 1 al 20, sería poco cómodo escribir:

$$X = \{ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\} $$

Y en su lugar, es más fácil escribir:

$$X = \{ x \in \mathbb{Z} : 1 \leq x \leq 20\}. $$

Donde $\mathbb{Z}$ representa a los números enteros.*

Una cosa además de notar de los conjuntos, es que solo nos importan los elementos diferentes entre sí, esto quiere decir que si queremos describir al conjunto de los números primos menores a 15: $\{2,3,5,7,13\}$, si ya lo hemos descrito una vez, no hace falta volverlo a describir, es decir es redundante decir que el conjunto se conforma por $\{2,2,3,2,5,7,2,13\}$ pues la redundancia del número $2$ ya la hemos escrito en la descripción del conjunto, esto quiere decir que $\{2,2,3,2,5,7,2,13\}$ y $ \{2,3,5,7,13\}$ describen al mismo conjunto, pues la colección que representan es la misma.

Conjuntos y lógica

Si te das cuenta, estamos diciendo cómo es un conjunto en relación a cómo cumple una propiedad. Esto lo podemos traducir a términos de lógica proposicional. Por ejemplo, consideremos $$P(x)= x \text{ es amarillo}.$$

Al escribir

$$\{x \in B: P(x) \}, $$

estaremos describiendo al conjunto de los $x \in B$ para los cuales $P(x)$ es verdadera. Observa que

$$\{x \in B: P(x) \}, $$

describe al mismo conjunto que

$$ \{ x \in B : x \text{ es amarillo} \} .$$

Entonces, es el mismo conjunto que describe a los Blargs:

$$ \text{Blargs} = \{ x \in B : P(x) \} .$$

Esto nos permitirá usar conectores, proposiciones e incluso cuantificadores para describir conjuntos. Y realmente es aquí donde reluce la lógica proposicional que hemos estudiado. Pues el poder escribir conjuntos como elementos que cumplen cierta condición, da más forma a la lógica. Hay quienes dicen que no puede existir la lógica sin los conjuntos y viceversa, pues a lo que antes llamábamos «Universo de Discurso», realmente se refiere a un conjunto.

La importancia de la teoría de conjuntos

Quizá a estas alturas te preguntarás: ¿Por qué estos dos temas grandes que hemos visto (lógica y conjuntos) son algo que se ve en un primer curso de preparación matemática? Pues bien, esto no es coincidencia. En otras materias introductorias a la carrera de matemáticas como Cálculo Diferencial e Integral I, Geometría Moderna I o Geometría Analítica I empiezan a generar resultados, demostraciones, proposiciones, teoremas y demás material basándose en estas dos. Pues al hablar por ejemplo en las primeras notas de cálculo, se ve este tipo de proposiciones:

Proposición: El neutro aditivos es único en $\mathbb{R}$.

Lo que nos traduce este enunciado y su significado es la lógica y la teoría de conjuntos (que vamos a ir desarrollando en las próximas entradas) independientemente de que tengamos claros los conceptos de neutro aditivo (en el sentido del cáclulo diferencial) o del conjunto de los números reales ($\mathbb{R}$). Aún sin saber esos conceptos, la lógica y conjuntos nos dicen lo siguiente:

La teoría de conjuntos nos dice: Estamos trabajando en el conjunto $\mathbb{R}$.

La lógica nos dice: Si $x \in \mathbb{R}$ ($x$ está en el conjunto dentro del que estamos trabajando) es un neutro aditivo, entonces es único.

De esta forma, si $P(x)= x$ es un neutro aditivo, entonces:

$$\exists ! x \in \mathbb{R} (P(x)). $$

Y con nuestro conocimiento de las demostraciones, podríamos reescribir esto como:

$$\forall x,y \in \mathbb{R} \big((P(x)\land P(y)) \Rightarrow (x=y)\big) .$$

Nota que la gran diferencia al considerar a la teoría de los conjuntos, es el ingrediente de saber sobre qué conjunto estamos hablando. Ya que no es lo mismo decir

$$\exists ! x \in \mathbb{R} (P(x)). $$

A decir:

$$\exists ! x \in \mathbb{R}^2 (P(x)). $$

Y este solo es un ejemplo de cómo afecta la teoría de conjuntos en la comprensión de proposiciones, enunciados y teoremas. Nos ayudará a poner contexto, a encontrar propiedades de elementos dentro del mismo conjunto y comprender su relación los unos con los otros.

Notas

*Comúnmente los número enteros se denotan por $\mathbb{Z}$, esta

convención viene de la notación que matemáticos alemanes en el siglo XVIII como Gauss y Euler usaban para referirse a «die Zahlen», cuya traducción del alemán es «los números».

Más adelante…

Hasta ahora hemos hablado de las primeras nociones básicas de la teoría de conjuntos. Aún faltan un par de conceptos por ver y estos son la contención y el conjunto potencia. Estos resolverán algunas dudas como ¿Qué relación tienen el conjunto de los Blargs y los Blorgs? a su vez, estos nos ayudarán a axiomatizar la teoría de los conjuntos,que como recordarás, ayudarán a ponernos de acuerdo las reglas de los conjuntos para empezar a sacar resultados de ellos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Describe por comprensión al conjunto de los Blergs.
  2. Describe al conjunto de los números del 10 al 10,000.
  3. Considera al conjunto $$\{ x \in B : P(x) \land \neg Q(x)\}.$$ Donde $$ P(x) = x \text{ come peces}$$ y $$ Q(x) = x \text{ vive en el mar}.$$ ¿A qué especie de Blorgs pertenece este conjunto?
  4. ¿Qué conjunto genera la proposición $ P (x) := \exists n \in \mathbb{N}\big( x = 2n + 1 \big)$ donde $x$ es un número entero ?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral I: Repaso. Teoría de Conjuntos. (Parte 2)

Por Karen González Cárdenas

Introducción

En la entrada anterior vimos qué significa ser un conjunto y cuál es la notación que se utiliza para denotarlos. Además de un par de conceptos: pertenencia a un conjunto y subconjunto.

Retomaremos todo lo antes mencionado para ahora presentar las llamadas Operaciones con conjuntos. Éstas estarán presentes no sólo en este curso, sino también en varios de los textos de matemáticas que consultarás a lo largo de tu vida académica.

Operaciones con conjuntos

A lo largo de esta entrada haremos uso de una representación gráfica de los conjuntos llamada Diagramas de Venn para poder visualizar cada una de las operaciones que definiremos a continuación.

Ejemplo de diagrama de Venn

Definición (Unión): Sean $A$ y $B$ dos conjuntos. Decimos que la unión de $A$ con $B$ está definida como:

\[ A \cup B:=\left\{ x\mid x\in A \vee x\in B\right\} \text{.}\]

Esto quiere decir que está conformada por los elementos que se encuentran en $A$ o los que se encuentran en $B$. En el siguiente diagrama queda representada por la zona sombreada de azul.

Notación: Utilizamos el símbolo matemático $\vee$ para sustituir a la disyunción «o».

Observación. En este caso al hacer uso de la «o» estamos considerando que esta es inclusiva, lo que quiere decir que es válido que $x$ se encuentre tanto en $A$ como en $B$.

A continuación mostraremos un ejemplo para hacer más clara la definición.

Ejemplo: Supongamos que tenemos los siguientes conjuntos:

\[ A=\left\{0,1, 2, 3, 4\right\} \text{,}\]
\[ B=\left\{0, a,b,c,d,e\right\} \text{.}\]

Si nosotros queremos obtener $A \cup B$, al aplicar la definición anterior tenemos:

\[ A \cup B=\left\{0,1, 2, 3, 4,0,a,b,c,d,e \right\} \text{.} \]

Observamos que al realizar la unión de este par de conjuntos «unimos sus elementos en un sólo conjunto llamado $A \cup B$». Veamos que el 0 es un elemento tanto de $A$ como de $B$, por lo que sólo será necesario escribirlo una vez y así nos queda:

\[ A \cup B=\left\{0,1, 2, 3, 4,a,b,c,d,e \right\} \text{.}\]

Definición (Intersección): Sean $A$ y $B$ dos conjuntos. Decimos que la intersección de $A$ con $B$ está definida como:

\[ A \cap B:=\left\{ x\mid x\in A \wedge x\in B\right\} \text{.}\]

Esto quiere decir que está conformada por los elementos que se encuentran en $A$ y los que se encuentran en $B$. En otras palabras, la intersección está conformada por los elementos en común de $A$ y $B$.

Notación: Utilizamos el símbolo matemático $\wedge$ para sustituir a la conjunción «y».

En el diagrama anterior queda representada por la zona sombreada de verde.

Ejemplo: Retomamos los siguientes conjuntos:

\[ A=\left\{0,1, 2, 3, 4\right\} \text{,}\]
\[ B=\left\{0, a,b,c,d,e\right\} \text{.}\]

Si nosotros queremos obtener $A \cap B$, al aplicar la definición anterior tenemos:

\[ A \cap B=\left\{0 \right\}\text{.} \]

Definición (Diferencia): Sean $A$ y $B$ dos conjuntos. Decimos que la diferencia de $A$ con $B$ está definida como:

\[ A \setminus B:=\left\{ x\mid x\in A \wedge x\notin B\right\}\text{.} \]

Esto quiere decir que está conformada por los elementos que se encuentran en $A$ y que no se encuentran en $B$.

Ejemplo: Retomamos los conjuntos:

\[ A=\left\{0,1, 2, 3, 4\right\} \text{,}\]
\[ B=\left\{0, a,b,c,d,e\right\} \text{.}\]

Si nosotros queremos obtener $A \setminus B$, al aplicar la definición anterior tenemos:

\[ A \setminus B=\left\{1,2,3,4 \right\} \text{.}\]

Vemos que le hemos quitado los elementos a $A$ que tenía en común con $B$. Por lo que el diagrama nos quedaría como:

Teorema: Sean $A$, $B$ y $C$ conjuntos. Tenemos que:

  1. Propiedades conmutativas:
    • \[A \cup B = B \cup A\quad \text{.}\]
    • \[A \cap B = B \cap A\quad\text{.}\]
  2. Propiedades asociativas:
    • \[A \cup (B\cup C) = (A \cup B)\cup C \quad \text{.}\]
    • \[A \cap (B\cap C) = (A \cap B)\cap C \quad\text{.}\]
  3. Propiedades distributivas:
    • \[A \cap (B\cup C) = (A \cap B)\cup (A\cap C)\quad\text{.}\]
    • \[A \cup (B\cap C) = (A \cup B)\cap (A\cup C) \quad\text{.}\]
  4. \[ A\cup A= A \quad\text{.}\] \[A\cap A= A \quad\text{.}\]
  5. \[ A\subseteq A\cup B \quad\text{.} \] \[ A\cap B \subseteq A \quad\text{.}\]
  6. \[ A\cup \emptyset = A \quad\text{.}\] \[A\cap \emptyset= \emptyset\quad\text{.}\]
    • Nota.-$\emptyset$ denota al conjunto vacío: es aquel que no posee elementos.
  7. \[A \setminus (B\cap C) = (A \setminus B)\cup (A\setminus C) \quad\text{.} \]

Demostración:

1.Probaremos la igualdad $A \cup B = B \cup A$, haciendo uso de la definición de igualdad de conjuntos, así tenemos:

$A \cup B = B \cup A$ si y sólo si $A\cup B\subseteq B \cup A$ y $B\cup A\subseteq A\cup B$

Comencemos con $A\cup B\subseteq B \cup A$. Sea $x\in A\cup B$, por la definición de subconjunto queremos probar que $x\in B\cup A$.

Por definición de unión se sigue que $x \in B$ o $x\in A$.

Caso 1: Que $x \in B$.

Como $x \in B$ entonces $x \in B$ o $x \in A$. Así, por la definición de unión concluimos que: $x\in B\cup A$.

Caso 2: Que $x \in A$.

Ahora como $x \in A$ entonces $x \in A$ o $x \in B$. Y como el conectivo «o» es conmutativo tenemos: $x \in A$ entonces $x \in B$ o $x \in A$. Así, por la definición de unión concluimos que: $x\in B\cup A$.

Del Caso 1 y Caso 2 concluimos que: $x\in B\cup A$. Por lo tanto, $A\cup B\subseteq B \cup A$.

Ahora probemos la segunda contención: $B\cup A\subseteq A\cup B$. Sea $x\in B\cup A$, así lo que queremos probar es $x\in A\cup B$.

Por definición de unión se sigue que $x \in B$ o $x\in A$.

Caso 3: Que $x \in B$.

Como $x \in B$ entonces $x \in B$ o $x \in A$, y como el conectivo «o» es conmutativo tenemos $x \in B$ entonces $x \in A$ o $x \in B$. Así, por la definición de unión concluimos que $x\in A\cup B$.

Caso 4: Que $x \in A$.

Ahora como $x \in A$ entonces $x \in A$ o $x \in B$. Así, por la definición de unión concluimos que $x\in A\cup B$.

Del Caso 3 y Caso 4 concluimos que: $x\in B\cup A$. Por lo tanto, $B\cup A\subseteq A\cup B$.

Por lo que finalmente probamos: $A\cup B = B \cup A$. La igualdad $A \cap B = B \cap A$ se dejará como ejercicio al lector.

2. Ejercicio de Tarea moral.

3. Probaremos sólo la igualdad $A \cup (B\cap C) = (A \cup B)\cap (A\cup C)$.

Comenzaremos con probar la siguiente contención: $A \cup (B\cap C)\subseteq (A \cup B)\cap (A\cup C)$. Así tomemos $x\in A \cup (B\cap C)$, queremos demostrar que $x\in (A \cup B)\cap (A\cup C)$.

Caso 1: Que $x\in A$
Así tenemos que se cumple:
\begin{align}
x \in A\vee x\in B &\Rightarrow x\in A\cup B
\end{align}
Y también sucede que:
\begin{align}
x \in A\vee x\in C &\Rightarrow x\in A\cup C
\end{align}
En (1) y (2) aplicamos la propiedad de adición para la disyunción y la definición de la unión. Por lo que concluimos, al aplicar la definición de la intersección en (3):
\begin{align}
x\in A\cup B \wedge x\in A\cup C \Rightarrow x\in (A\cup B) \cap (A\cup C)
\end{align}

Caso 2: Que $x \in B\cap C$
Así por definición de intersección, tenemos que:
\begin{align}
x\in B \wedge x\in C &\Rightarrow (x\in B \wedge x\in C) \vee x\in A\\
&\Rightarrow (x\in B \vee x\in A) \wedge (x\in C \vee x \in A)\\
&\Rightarrow x\in B\cup A \wedge x\in C\cup A\\
&\Rightarrow x\in A\cup B \wedge x\in A\cup C\\
&\Rightarrow x\in (A\cup B) \cap (A\cup C)\\
\end{align}
Aplicamos en (4) la propiedad aditiva de la disyunción; para (5) usamos las Leyes distributivas de los conectivos disyunción y conjunción; para (6) y (7) aplicamos la unión y su propiedad conmutativa. Finalizamos aplicando en (8) la definición de intersección.


Por (3) y (8) de los Casos 1 y 2, podemos concluir que: $A \cup (B\cap C)\subseteq (A \cup B)\cap (A\cup C)$.

Ahora probaremos la contención: $(A \cup B)\cap (A\cup C)\subseteq A \cup (B\cap C)$.
Tomamos $ x\in (A \cup B)\cap (A\cup C)$. Así por definición de intersección, tenemos que:
\begin{align}
x\in (A \cup B) \wedge x \in (A\cup C) &\Rightarrow (x\in A \vee x\in B) \wedge (x \in A\vee x\in C)\\
&\Rightarrow x\in A \vee (x \in B \wedge x\in C)\\
&\Rightarrow x\in A \vee x \in B\cap C\\
&\Rightarrow x\in A \cup (B \cap C)
\end{align}
Vemos que (9) se sigue de la definición de unión. En (10) utilizamos las leyes distributivas de la disyunción con la conjunción; para (11) aplicamos la definición de intersección para $B$ y $C$.
Y por último en (12) aplicamos la definición de unión para $A$ y $B\cup C$.

Así concluimos que: $A \cup (B\cap C) = (A \cup B)\cap (A\cup C) \text{.}$

4. Tarea moral
5. Tarea moral
6. Tarea moral
7. Tarea moral


$\square$

Notación: El símbolo «$\Rightarrow$» se lee como «entonces».

Más adelante

Ahora que hemos terminado con el repaso de los conceptos básicos de Teoría de Conjuntos, en la siguiente entrada veremos el método de demostración llamado: Inducción matemática, el cuál será utilizado frecuentemente en los diferentes cursos a lo largo de tu preparación profesional.

Tarea moral

  • Realiza la demostración de la siguiente Ley distributiva: $A \cap (B\cup C) = (A \cap B)\cup (A\cap C)$.
  • Prueba que $A \setminus (B\cap C) = (A \setminus B)\cup (A\setminus C)$.
  • Determina si las siguientes afirmaciones son verdaderas o falsas, argumenta tu respuesta:
    • Si $x\in A$ y $A\subseteq B$, sucede que $x\in B$.
    • Si $x\in A$ y $A\in B$, sucede que $x\in B$.
    • Si tenemos $A$ y $B$ conjuntos, sucede siempre que $A\setminus B = B \setminus A$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Conjuntos transitivos

Por Roberto Manríquez Castillo

Introducción

En las últimas cuatro entradas hemos visto al conjunto de números naturales como elementos del conjunto $\mathbb{N}$. Sin embargo, no debemos olvidar que los números naturales son también conjuntos. Y al ser conjuntos, cada uno de los naturales tiene unos ciertos elementos que los caracterizan de forma unívoca.

Pensando en esto, recordemos el ejercicio 5 de la Tarea moral de las notas sobre la Construcción de los naturales:

Problema. Muestra que si $n\neq 0$, entonces $n=\{0,1,2,…,n-1\}$.

En otras palabras, como conjunto, cada natural consiste exactamente de los números naturales anteriores. Antes de empezar a leer esta entrada, y si aún no lo has hecho, te invitamos a intentar este problema. Aunque comenzaremos la siguiente sección dando una prueba, es bueno que intentes familiarizarte por tu cuenta con lo que será necesario hacer pues dicho resultado será importante para la teoría que veremos en esta entrada.

Dos propiedades de los números naturales

Para empezar, y por la importancia de la aseveración, probamos justo el ejercicio comentado en la introducción. Primero, notemos que como en la hipótesis se pide que $n\neq0$, entonces tiene sentido hablar del número $n-1$. Aunque no hemos definido a la resta en los números naturales, podemos definir a esta expresión como el único número $m$ tal que $\sigma(m)=n$

Teorema. Si $n\neq 0$, entonces $n=\{0,1,2,…,n-1\}$.

Demostración. Procedamos por inducción sobre $n$. Como el resultado es a partir de $1$, la base inductiva corresponde al caso $n=1$. Este caso es claro, ya que por definición,
\begin{align*}
1&=\sigma(0)\\&=\sigma(\emptyset)\\&=\emptyset\cup\{\emptyset\}\\&=\{0\}.
\end{align*}

Supongamos que para alguna $n$, se tiene que $n=\{0,1,…,n-1\}$, y probemos que el resultado también es cierto para $\sigma(n)$. Para ello, se usa la siguiente cadena de igualdades, en la cual te invitamos a pensar por qué se da cada igualdad: $$\sigma(n)=n\cup\{n\}=\{0,1,…,n-1\}\cup\{n\}=\{0,1,…,n-1,n\}.$$

Esto termina el paso inductivo y por lo tanto la demostración.

$\square$

Consideremos un número natural y ocupemos este resultado para examinarlo como conjunto. Para no hacer la notación muy larga, veamos como ejemplo al $4$. Por el teorema anterior, tenemos que
\begin{align*}
4&=\{0,1,2,3\}\\&=\{\emptyset,\{0\},\{0,1\},\{0,1,2\}\}.
\end{align*}

Analizando cada elemento del conjunto $4$, podemos ver que cada uno de los elementos (ya expandidos) de nuestro conjunto, es a su vez un subconjunto del $4$. Por ejemplo, uno de los elementos de $4$ es el conjunto $2=\{0,1\}$, que claramente es un subconjunto de $4$. Pensando de forma similar, no debe ser difícil convencerse, al menos de forma intuitiva, que esta propiedad será satisfecha de manera más general en los naturales.

Motivados por lo anterior, enunciamos el teorema siguiente, y damos una prueba formal usando el principio de Inducción.

Teorema. Si $n$ es un número natural y se tiene que $y\in n$, entonces $y\subseteq n$.

En este punto es muy importante recordar que $y\in n$ significa que $y$ es un elemento de $n$, mientras que $y\subseteq n$ significa que $y$ es un subconjunto de $n$, es decir, que todo elemento de $y$ también es elemento de $n$. Pasemos a la demostración.

Demostración. De nuevo procedamos por inducción. Si $n=0$, la proposición $y\in0$ es falsa, ya que $0=\emptyset$. Como el antecedente es falso, la proposición $y\in0\Rightarrow y\subseteq0$, es verdadera, y así probamos el caso base (como $y=\emptyset$, a esto también se le conoce como una prueba por vacuidad).

Supongamos que el resultado es cierto para alguna $n$, es decir que si $y\in n$, entonces $y\subseteq n$. Probemos que también es cierta la afirmación al substituir $n$ por $\sigma(n)$.

Sea $y\in \sigma(n)=n\cup\{n\}$. Por la definición de la unión hay dos casos: o bien $y\in n$, o bien $y\in \{n\}$.

Tratemos el primer caso. Si $y\in n$, entonces por la hipótesis de inducción, tenemos que $y\subseteq n$, pero por definición de $\sigma(n)$ tenemos que $n\subseteq \sigma(n)$. Como la contención de conjuntos es transitiva, concluimos que $y\subseteq \sigma(n)$.

El caso restante es $y\in\{n\}$. En este caso, el único elemento en el conjunto del lado derecho es $n$, así que debe suceder que $y=n$. De aquí es inmediata la contención buscada, pues $y=n\subseteq \sigma(n)$. En cualquier caso, obtenemos lo que que queremos. Así la inducción y la prueba concluyen.

$\square$

Conjuntos transitivos y un ejemplo

Nota que la propiedad de un conjunto $X$ si $y\in X$ entonces $y\subseteq X$, es equivalente a la propiedad de que si $z\in y\in X$ entonces $z\in X$. En general, esta propiedad no se satisface para cualquier conjunto. Es así que motivamos la siguiente definición.

Definición. Se dice que un conjunto $X$ es transitivo, si $Z\in Y\in X$ implica que $Z\in X$.

Los conjuntos transitivos son de suma importancia en la teoría de conjuntos, y probablemente conocerás más de ellos si llevas algún curso de esa materia. Un estudio profundo de estos conjuntos se sale de los fines de nuestro curso, pero podemos decir unas pocas cosas más. Con esta nueva definición podemos reformular el teorema de la sección anterior como sigue.

Teorema. Cada uno de los números naturales es un conjunto transitivo.

Como mencionamos, los conjuntos transitivos parecen ser una clase muy particular de conjuntos. Sin embargo, podemos mencionar otro conjunto transitivo de suma importancia: el conjunto $\mathbb{N}$. Esperamos que así como hicimos con los números naturales, puedas formarte una intuición de por qué esta afirmación es cierta, usando el teorema inicial.

Antes de dar la prueba, consideramos pertinente hacer mención de los límites del principio de inducción. En el teorema anterior, probamos que cada número natural es transitivo, nunca se probó que $\mathbb{N}$, fuese transitivo. De la misma forma, si en algún momento pruebas que una afirmación es cierta para cualquier número natural, esa misma afirmación podría dejar de ser cierta al considerar el caso de todo el conjunto $\mathbb{N}$. Encontraremos ejemplos de esto en entradas posteriores. Ahora sí, enunciamos el teorema.

Teorema: El conjunto $\mathbb{N}$ de números naturales es transitivo.

Demostración. Debemos probar que si $n\in \mathbb{N}$, entonces $n\subseteq \mathbb{N}$. Es decir, que todo número natural es un subconjunto de $\mathbb{N}$. Para esto, usaremos inducción sobre $n$.

Evidentemente la base es cierta ya que $0=\emptyset$ es un subconjunto de todo conjunto, en particular del de los naturales.

Supongamos que para un natural fijo $n$ sucede que $n\subseteq\mathbb{N}$ y a partir de ello probemos que $\sigma(n)$ también es un subconjunto de los naturales.

Para ver que esto es cierto, usamos que $\sigma(n)=n\cup \{n\}$. Esta es una unión de conjuntos, así que basta ver que cada uno está contenido en $\mathbb{N}$. Por un lado, $\{n\}$ está contenido en los naturales, ya que su único elemento es el número $n$, que está en $\mathbb{N}$. Por otro lado, por hipótesis de inducción, $n\subseteq\mathbb{N}$. Concluimos entonces, como queríamos, que $\sigma(n)\subseteq \mathbb{N}$.

$\square$

Nota que el teorema inicial de la sección es un refinamiento de este teorema. No sólo nos dice que los números naturales están contenidos en $\mathbb{N}$. Además, también especifica quiénes son los elementos de $n$.

Más adelante…

El teorema que demostramos al inicio de la entrada tendrá de nuevo mucha importancia en el siguiente tema. Aunque demostramos que cada número $n$ es el conjunto de los $n$ elementos menores que el, necesitamos definir qué significa que un conjunto tenga $n$ elementos. Motivados por esta idea, y por las características de los números naturales, definiremos también la idea de que un conjunto tenga una cantidad infinita de elementos. Veremos que, como podrás intuir, el conjunto $\mathbb{N}$ de todos los números naturales es en verdad un conjunto infinito y que en cierto sentido formal es el «más pequeño» de todos estos conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que $\{2,3\} $ no es un conjunto transitivo ¿Quién es el mínimo conjunto transitivo que lo contiene?
  2. Prueba que si $X$ y $Y$ son transitivos, entonces $X\cap Y$ es transitivo.
  3. Demuestra que si $X$ es transitivo, entonces $\bigcup X$ también es un conjunto transitivo.
  4. Prueba que en general que si $X$ es transitivo, entonces $\sigma (X)$ también es transitivo.
  5. Demuestra que un conjunto es transitivo si y solo si $\bigcup X\subset X$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: La construcción de los naturales

Por Roberto Manríquez Castillo

Introducción

En la entrada pasada presentamos los axiomas de Peano como una formalización de por qué los naturales se comportan como nuestra intuición nos indica. Sin embargo, también vimos que, por si mismos, los axiomas de Peano no nos dicen cómo hacer una construcción de los naturales a partir de conceptos previos. Para intentar lograr esto, introdujimos la definición del sucesor de un conjunto arbitrario y empezamos a iterarla en el conjunto vacío para generar una lista de conjuntos, que relacionamos con los números naturales que conocemos.

Por último, notamos que ocupar esta idea, al menos de forma directa, tiene el problema de dar «pasitos muy chicos», que no nos permitirían acabar nunca de definir a todos los números naturales y, en consecuencia, que no nos dejaría definir en sí el conjunto de los naturales.  Es por eso que en esta entrada acabaremos, de una vez por todas, con el problema de definir con precisión el conjunto de números naturales. Veremos que, en efecto, esta construcción que haremos se apega no sólo a nuestra intuición, sino también a los axiomas de Peano.

Conjuntos inductivos

Antes de empezar con la tarea de definir a los números naturales, recordamos la definición del sucesor de un conjunto.

Definición. Si $A$ es un conjunto, definimos el sucesor de $A$, como $\sigma(A):=A\cup \{A\}$.

El conjunto que queremos definir es el conjunto $\mathbb{N}$ de números naturales. Como mencionamos en las entrada pasada, buscamos de manera formal lograr que \[\mathbb{N}=\{\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…\},\] por lo que $\mathbb{N}$ satisfaría dos propiedades que englobamos en la siguiente definición.

Definición. Diremos que un conjunto $S$ es inductivo si cumple que:

  1. $\emptyset\in S$ y
  2. si $X\in S$, entonces $\sigma(X)\in S$.

Notemos que estas dos propiedades son muy similares a los dos primeros axiomas de Peano.

Hay que remarcar que aunque no sabemos que exista un conjunto tal que sus elementos son $\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…$, en caso de que sí existiera, sería un hecho que tal conjunto sería inductivo.

Otro posible ejemplo de un conjunto inductivo podría verse como \[\{…\sigma(\sigma(\{\{\emptyset\}\})), \sigma(\{\{\emptyset\}\}), \{\{\emptyset\}\},\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…\}.\]

Intuitivamente podemos notar que si $S$ es un conjunto inductivo, entonces, $\mathbb{N}\subset S$, por lo que uno podría aventurarse y definir a los naturales como $$\{x:  x \text{ está en todo conjunto inductivo}\}.$$

Sin embargo, los axiomas que de teoría de conjuntos que tenemos hasta ahora no nos permiten saber si se puede construir un conjunto así.

¿Qué es lo que sí nos permiten hacer los axiomas de teoría de conjuntos? Si tenemos una colección de conjuntos, podemos hacer la intersección de todos ellos. Esto motiva la siguiente proposición acerca de la intersección de conjuntos inductivos.

Proposición. Si $B\neq\emptyset$ es un conjunto tal que todos sus elementos son conjuntos inductivos, entonces $\bigcap {B}$ es también un conjunto inductivo.

Demostración. Como $B\neq\emptyset$, sabemos que la intersección sí es un conjunto. Veamos que este conjunto es inductivo. Antes de hacer esto recordemos que, por definición, los elementos de $\bigcap{B}$ son precisamente, todos los $x$ tales que $x\in Y$ para todo $Y\in B$.

Para ver que $\bigcap B$ es inductivo, necesitamos verificar que cumpla las dos características de la definición:

  1. Veamos primero que $\emptyset\in\bigcap B$.
    Sea $Y\in B$ arbitrario. Como los elementos de $B$ son inductivos, $\emptyset\in Y$, y como $Y$ es arbitrario, podemos concluir que $\emptyset$ está en todos los elementos de $B$. Esta es justo la definición de que $\emptyset\in \bigcap B$.
  2. Veamos ahora que $x\in \bigcap B \Rightarrow \sigma(x)\in \bigcap B$.
    Sea $x\in \bigcap B$ y sea $Y\in B$. Como $x\in\bigcap B$, entonces $x\in Y$ y como $Y$ es inductivo, $\sigma(x)\in Y$. De nuevo, como $Y$ fue arbitrario, se sigue que $\sigma(x)$ está en todos los elementos de B, por lo que $\sigma(x)\in\bigcap B$.

Con esto demostramos que $\bigcap B$ es inductivo.

$\square$

En otras palabras, «la intersección arbitraria de conjuntos inductivos es un conjunto inductivo».

El axioma del infinito y la construcción de los naturales

Por todo lo escrito anteriormente, y meditando el hecho de que si partimos de los primeros axiomas de la teoría de conjuntos, sólo podemos crear conjuntos con una cantidad finita de elementos, parece ser que la existencia de un conjunto como los naturales no puede ser deducida con las herramientas que tenemos. Esto en efecto es así. Por ello, debemos introducir un nuevo axioma de la teoría de conjuntos.

Axioma (del infinito). Existe un conjunto inductivo.

El axioma del infinito no nos garantiza inmediatamente la existencia de $\mathbb{N}$, ya que como se vio en un ejemplo más arriba, $\mathbb{N}$ no es el único conjunto inductivo. Sin embargo, esta es la última pieza que necesitamos para poder dar la construcción de los naturales. Hacemos esto a continuación.

Sea $A$ algún conjunto inductivo (que nos garantiza el axioma del infinito), y consideremos $B=\{X\subset A \mid X \text{ es inductivo}\}$ (¿por qué $B$ es un conjunto?). Notemos que $A\in B$ por lo que $B$ es no vacío, por lo tanto, podemos pensar en su intersección, $\bigcap B$. Como los elementos de $B$ son conjuntos inductivos, por la proposición anterior concluimos que $\bigcap B$ es inductivo. A esta intersección la denotaremos como $\mathbb{N}_{A}$. ¡Ya apareció por primera vez el símbolo de números naturales! Pero tiene algo adicional: usamos un subíndice $A$ ya que, a primera vista, su construcción depende del conjunto inductivo $A$ con el que empezamos. Sin embargo, justamente, el paso siguiente será ver que $\mathbb{N}_{A}$ no depende de $A$.

Para ello, primero hacemos la observación de que si $Y\subset A$ es inductivo, entonces $\mathbb{N}_{A}\subset Y$, la cual te dejamos corroborar usando las propiedades de la intersección. Dicho esto, probamos lo siguiente.

Proposición. Si $C$ es otro conjunto inductivo, entonces $\mathbb{N}_{A}= \mathbb{N}_{C} $.

Demostración. Consideremos $\mathbb{N}_{A} \cap \mathbb{N}_{C} $, el cual sabemos que es un conjunto inductivo. Como $\mathbb{N}_{A} \cap \mathbb{N}_{C} \subset A$, por la observación anterior, concluimos que $\mathbb{N}_{A} \subset \mathbb{N}_{A} \cap \mathbb{N}_{C} $. Como la intersección está contenida en cada intersecando, $\mathbb{N}_{A} \subset \mathbb{N}_{A} \cap \mathbb{N}_{C}\subset\mathbb{N}_{A} $, por lo que $\mathbb{N}_{A} = \mathbb{N}_{A} \cap \mathbb{N}_{C} $. Haciendo las mismas observaciones para $\mathbb{N}_{C}$, concluimos que $\mathbb{N}_{A} = \mathbb{N}_{A} \cap \mathbb{N}_{C}= \mathbb{N}_{C} $, con lo que concluimos la prueba.

$\square$

Como sabemos ahora que el conjunto $\mathbb{N}_{A}$ no depende del conjunto $A$ inductivo con el que empecemos, finalmente podemos definir al conjunto de números naturales.

Definición. Si $A$ es algún conjunto inductivo, definimos al conjunto de los números naturales $\mathbb{N}$ como $\mathbb{N}:=\mathbb{N}_{A}$. Definimos al cero como $0:=\emptyset$ y la función sucesor para los naturales como $\sigma:\mathbb{N}\to \mathbb{N}$ tal que $\sigma(n)=n\cup \{n\}$.

Nuestra construcción de los naturales cumple los axiomas de Peano

Para concluir esta entrada veremos que la construcción de los naturales que dimos en efecto da un modelo para los axiomas de Peano. En realidad, la construcción de la función sucesor, la noción de conjunto inductivo y la forma en la que creamos $\mathbb{N}$ fueron todas ellas siempre motivadas por estas ideas, por lo que no deberá ser difícil probar que en verdad todo funciona como queremos.

Teorema. El conjunto $\mathbb{N}$ junto con el $0$ y la función $\sigma$ que definimos satisfacen los cinco axiomas de Peano.

Demostración. Veamos que se verifican los cinco axiomas de Peano.

Axioma 1. $0\in\mathbb{N}$.

Como $\mathbb{N}$ es inductivo, $0=\emptyset\in\mathbb{N}$.

Axioma 2. Si $n\in \mathbb{N}$, entonces $\sigma(n)\in\mathbb{N}$.

Si $n\in\mathbb{N}$, como $\mathbb{N}$ es inductivo, se sigue que $\sigma(n)\in\mathbb{N}$.

Axioma 3. Para toda $n\in\mathbb{N}$ se tiene que $\sigma(n)\neq 0$.

Como $\sigma(n)=n\cup\{n\}$, tenemos que $n\in\sigma(n)$ por lo que $\sigma(n)\neq\emptyset=0$.

Axioma 4. Si $\sigma(n)=\sigma(m)$, entonces $n=m$.

Como $\sigma(n)=\sigma(m)$ y $n\in\sigma(n)$, entonces $n\in\sigma(m)= m\cup\{m\}$. Como $n$ está en una unión, hay dos opciones: $n\in\{m\}$ o $n\in m$. Si $n\in \{m\}$, entonces $n=m$ y concluimos.

En otro caso, $n\in m$. Veamos que podemos decir de $m$. Procediendo análogamente, podemos notar que $m=n$ o $m\in n$. En el primer caso, llegamos a lo que queremos. El segundo caso es imposible, pues tendríamos $n\in m\in n$ lo cual contradice el axioma de regularidad de teoría de conjuntos.

Axioma 5. Si $S\subset\mathbb{N}$ tal que $0\in S$ y $n\in S \Rightarrow \sigma(n)\in S$, entonces $S=\mathbb{N}$.

Notemos que las hipótesis de $S$ implican que éste es un conjunto inductivo. Por ello, $\mathbb{N}=\mathbb{N}_{S}\subset S\subset \mathbb{N}$. Esta cadena de contenciones implica la igualdad $\mathbb{N}=S$.

$\square$

Notemos que todos los axiomas salieron de forma casi inmediata de la definición de $\mathbb{N}$ o de la definición de $\sigma$, justo como esperábamos.

Más adelante…

Ya dimos la construcción de los naturales. También vimos que en verdad funcionan como esperábamos. nuestro siguiente objetivo será definir una suma, un producto y un orden en $\mathbb{N}$. Así como lo hicimos con los axiomas de Peano, veremos que nuestras definiciones coincidirán con las propiedades que conocemos.

Para hacer esto seguiremos pensando simultáneamente tanto en la definición conjuntista que hemos dado de los naturales, como en los axiomas de Peano. Especialemente usaremos el quinto axioma de manera repetida. Veremos cómo este axioma es básicamente el principio de inducción que conocimos en Álgebra Superior I. También veremos cómo nos ayuda a demostrar el teorema de recursión, el cual a su vez la herramienta que necesitaremos para definir con toda formalidad la suma y producto en los naturales.

Tarea moral

  1. Completa los detalles faltantes de la construcción de los naturales. En particular, sobre por qué el conjunto $B$, de los conjuntos inductivos de $A$, sí existe. Necesitarás usar un axioma muy específico de la teoría de conjuntos.
  2. Demuestra que si $x\subset y\subset\sigma(x) $, entonces $y=x$ o $y=\sigma(x)$.
  3. Si aún no estás tan acostumbrado a las intersecciones arbitrarias, considera un conjunto inductivo $A$ y la siguiente definición: $$\mathbb{N}’:=\{x\in A:  x \text{ está en todo conjunto inductivo}\}.$$ ¿Cómo se relaciona el axioma del infinito, con el hecho de que esto sí sea un conjunto?
  4. Esboza una demostración de que $\mathbb{N}’=\mathbb{N}$.
  5. Usa el quinto axioma de Peano para demostrar que para cualquier natural $n$ se cumple que $$\sigma(n)=\{0, 1, 2, …, n\}.$$
    Sugerencia. Considera el conjunto $S\subseteq \mathbb{N}$ de enteros $n$ para los cuales la afirmación anterior es cierta. Demuestra que $S$ es inductivo y usa el quinto axioma para concluir que $S=\mathbb{N}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»