Archivo de la etiqueta: recursión

Teoría de los Conjuntos I: Producto en los naturales

Por Gabriela Hernández Aguilar

Introducción

Ahora que hemos definido a la suma en el conjunto de los naturales, podemos definir el producto, pues éste se refiere a sumar cierta cantidad de veces un mismo número. De este modo, el producto se definirá recursivamente en términos de la suma, así como la suma fue definida recursivamente en términos de la función sucesor.

Producto de naturales

Utilizando el teorema de recursión se puede mostrar, al igual que con la operación suma, que existe una única función $\cdot: \mathbb{N}\times\mathbb{N}\to \mathbb{N}$, denotada por $\cdot(m,n)=m\cdot n$, que satisface las siguientes condiciones:

  1. $0\cdot n=0$ para cualquier $n\in \mathbb{N}$,
  2. $s(m)\cdot n= (m\cdot n)+n$.

Dado que seguimos trabajando con conjuntos y hemos definido una nueva operación binaria, podemos preguntarnos si esta operación conmuta, es asociativa o si cumple alguna otra propiedad tal como lo hace el producto cartesiano y la suma en los naturales. Además veremos que esta operación se distribuye con la suma.

Distributividad del producto sobre la suma

Teorema. Para cualesquiera $m,n,k\in \mathbb{N}$, se tiene que $m\cdot(n+k)=m\cdot n+ m\cdot k$.

Demostración. Procederemos por inducción sobre $m$ y dejaremos fijos a $n$ y $k$.

Base de inducción. Si $m=0$, $0\cdot(n+k)=0=0+0=(0\cdot n)+(0\cdot k)$.

Hipótesis de inducción. Supongamos que se cumple para $m$, es decir, $m\cdot(n+k)= (m\cdot n)+(m\cdot k)$.

Paso inductivo. Veamos que se cumple para $m+1$, es decir, $(m+1)\cdot(n+k)=(m+1)\cdot n+(m+1)\cdot k$.

\begin{align*}
(m+1)\cdot (n+ k)&=m\cdot (n+ k)+(n+ k) \tag{Definición $\cdot$}\\
&= (m\cdot n+m\cdot k)+(n+ k) \tag{Hipótesis de inducción}\\
&= ((m\cdot n)+n)+((m\cdot k)+k)\tag{Conmutatividad y asociatividad de $+$}\\
&= (m+1)\cdot n+(m+1)\cdot k \tag{Definición $\cdot$}.
\end{align*}

Por lo tanto, $m\cdot(n+k)=m\cdot n+m\cdot k$ para cualesquiera $m, n, k\in \mathbb{N}$.

$\square$

Conmutatividad del producto

Para demostrar que el producto es conmutativo primero vamos a demostrar los siguientes lemas:

Lema 1. Para cualquier $n\in \mathbb{N}$, se tiene que $n\cdot 0=0$.

Demostración.

Procederemos por inducción sobre $n$.

Base de inducción. Si $n=0$, tenemos que $0\cdot 0=0$.

Hipótesis de inducción. Supongamos que para algún $k\in \mathbb{N}$ se satisface que $k\cdot 0=0$.

Paso de inductivo. Veamos que se cumple para $k+1$, es decir, $(k+1)\cdot 0=0$.

\begin{align*}
(k+1)\cdot 0 &=(k\cdot 0)+0\tag{Definición $\cdot$}\\
&= 0+0\tag{Hipótesis de inducción}\\
&= 0\tag{Propiedad $+$}.
\end{align*}

Por lo tanto, $n\cdot 0=0$, para cualquier $n\in \mathbb{N}$.

$\square$

Lema 2. Para cualquier $n\in \mathbb{N}$, se tiene que $n\cdot 1=n$.

Demostración.

Procederemos por inducción sobre $n$.

Base de inducción. Si $n=0$, tenemos que $0\cdot 1= 0$ por la definición de $\cdot$.

Hipótesis de inducción. Supongamos que para algún $k\in \mathbb{N}$ se satisface que $k\cdot 1=k$.

Paso de inductivo. Veamos que se cumple para $k+1$, es decir, $(k+1)\cdot 1=k+1$.

\begin{align*}
(k+1)\cdot 1&=(k\cdot 1)+1\tag{Definición $\cdot$}\\
&= k+1. \tag{Hipótesis de Inducción}
\end{align*}

Por lo tanto, para cualquier $n\in \mathbb{N}$, $n\cdot 1=n$.

$\square$

Teorema. Para cualesquiera $m,n\in \mathbb{N}$, $n\cdot m=m\cdot n$.

Demostración.

Por inducción sobre $m$.

Base de inducción. Si $m=0$, entonces $0\cdot n=0=n\cdot 0$, por el Lema 1.

Hipótesis de inducción. Supongamos que para $k$ se cumple que $n\cdot k=k\cdot n$.

Paso inductivo. Veamos que para $k+1$ se satisface que $n\cdot (k+1)= (k+1)\cdot n$.

\begin{align*}
(k+1)\cdot n&= (k\cdot n)+n\tag{Definición $+$}\\
&= (n\cdot k)+n\tag{Hipótesis de Inducción}\\
&= (n\cdot k)+(n\cdot 1) \tag{Lema 2}\\
&= n\cdot (k+1) \tag{Distributividad}.
\end{align*}

Por lo tanto, $\cdot$ es conmutativo.

$\square$

Asociatividad del producto

Teorema. Para cualesquiera $m,n,k\in \mathbb{N}$, se tiene que $m\cdot(n\cdot k)=(m\cdot n)\cdot k$.

Demostración. Procederemos por inducción sobre $m$ y dejaremos fijos a $n$ y $k$.

Base de inducción. Si $m=0$, $0\cdot(n\cdot k)=0=0\cdot k = (0\cdot n)\cdot k$.

Hipótesis de inducción. Supongamos que se cumple para $m$, es decir, $m\cdot(n\cdot k)= (m\cdot n)\cdot k$.

Paso inductivo. Veamos que se cumple para $m+1$, es decir, $(m+1)\cdot(n\cdot k)=((m+1)\cdot n)\cdot k$.

\begin{align*}
(m+1)\cdot (n\cdot k)&=(m\cdot (n\cdot k))+(n\cdot k) \tag{Definición $\cdot$}\\
&= ((m\cdot n)\cdot k)+(n\cdot k) \tag{Hipótesis de inducción}\\
&=(k\cdot(m\cdot n))+(k\cdot n) \tag{Conmutatividad del producto}\\
&=k\cdot(m\cdot n+n) \tag{Distributividad}\\
&= (m\cdot n+n)\cdot k\tag{Conmutatividad del producto}\\
&= ((m+1)\cdot n)\cdot k\tag{Definición $\cdot$}.
\end{align*}

Por lo tanto, $\cdot$ es asociativa.

$\square$

Ley de cancelación

En álgebra, cuando tenemos una ecuación como la siguiente #$x\cdot z=y\cdot z,$$ siempre que $z\not=0$, concluimos que $x=y$. Esto tiene una justificación y la llamaremos ley de cancelación para el producto. En los naturales se cumple esta ley.

Teorema. Sean $n, m, k\in \mathbb{N}$ con $k\not=0$. Si $n\cdot k=m\cdot k$, entonces $n=m$.

Para probar dicho teorema, utilizaremos la siguiente serie de resultados.

Proposición. Si $n,m\in\mathbb{N}$ son tales que $n\leq m$, entonces, existe $t\in\mathbb{N}$ tal que $n+t=m$.

Demostración (Proposición).

Mostraremos por inducción sobre $m$ que para todo $n\leq m$, existe $t_n\in \mathbb{N}$ tal que $n+t_n=m$.

Base de inducción. $k=0$. Si $n\leq 0$, entonces $n=0$, pues recordemos que dos números naturales $n$ y $m$ satisfacen $n\leq m$ si, y sólo si, $n\in m$ o $n=m$. Así, si $n\leq 0$, entonces $n\in 0$ o $n=0$, pero dado que el enunciado $n\in 0$ no puede ser cierto pues $0=\emptyset$ no tiene elementos, se sigue que $n=0$ tiene que ser verdadero. De este modo, si $n\leq 0$, entonces $n=0$ y tomando $t=0$ se tiene que $n+t=0+0=0$. Por lo tanto, para todo $n\leq 0$ existe $t_n\in\mathbb{N}$ tal que $n+t_n=0$. Por lo tanto, la proposición es cierta para $k=0$.

Hipótesis de inducción. Supongamos que para algún $k\in\mathbb{N}$ se satisface que para todo $n\leq k$, existe $t_n\in\mathbb{N}$ tal que $n+t_n=k$.

Paso inductivo. Veamos que se cumple para $s(k)$. Sea $n\leq s(k)$. Luego, $n\in s(k)$ o $n=s(k)$. Si $n=s(k)$, entonces tomamos $t=0$ y se tiene que $n+t=s(k)+0=s(k)$. Supongamos ahora que $n\in s(k)$.

Como $n\in s(k)$, entonces $n=k$ o $n\in k$, es decir, $n\leq k$. Luego, por hipótesis de inducción, existe $t_n\in\mathbb{N}$ tal que $n+t_n=k$. De este modo, si tomamos $s(t_n)\in\mathbb{N}$ se tiene que $n+s(t_n)=s(t_n)+n=s(t_n+n)=s(k)$.

En cualquier caso para $n$ hemos concluido que existe $t_n\in\mathbb{N}$ tal que $n+t_n=s(k)$.

Por lo tanto, la proposición es verdadera.

$\square$

Proposición. Si $n\in\mathbb{N}$, entonces $n\leq n+t$ para todo $t\in\mathbb{N}$.

Demostración (Proposición).

Sea $n\in\mathbb{N}$. Probaremos por inducción sobre $t$ que $n\leq n+t$ para todo $t\in\mathbb{N}$.

Base. $t=0$. Para $t=0$ tenemos que $n+t=n+0=n$, por lo que es verdad que $n\leq n+t$.

Hipótesis de inducción. Supongamos que para algún $t\in\mathbb{N}$, $n\leq n+t$.

Bajo esta hipótesis veamos que $n\leq n+s(t)$. Primero, notemos que $n+s(t)=s(t)+n$ por la conmutatividad de la suma. Luego, por definición de la suma, $s(t)+n=s(t+n)$. Dado que $s(t+n)=(t+n)\cup\set{t+n}$, entonces $n+t\in s(t+n)$. Ahora bien, por hipótesis de inducción, $n\leq n+t$, es decir, $n=n+t$ o $n\in n+t$. Si $n=n+t$, entonces $n\in s(n+t)$, ya que $n+t\in s(n+t)$, por lo que $n\leq s(n+t)=n+s(t)$.

Ahora, si $n\in n+t$, entonces, $n\in s(n+t)$ por transitividad de la pertenencia en los naturales, por lo que también se cumple que $n\leq n+s(t)$.

En cualquier caso concluimos que $n\leq n+s(t)$, lo que concluye la prueba de la proposición.

$\square$

El último resultado que veremos, antes de iniciar con la demostración de la ley de la cancelación del producto, dice lo siguiente:

Corolario. Si $n\in\mathbb{N}$ es distinto de $0$, entonces $n+t$ es distinto de $0$ para todo $t\in\mathbb{N}$.

Demostración (Corolario).

Sea $n\in\mathbb{N}$ distinto de $0$ y supongamos que $t\in\mathbb{N}$ es arbitrario. Por la proposición anterior, $n\leq n+t$, es decir, $n=n+t$ o $n\in n+t$. Si $n=n+t$, entonces $n+t$ es distinto de $0$ por la hipótesis sobre $n$. Si ahora $n\in n+t$, entonces $n+t$ es distinto de $0$, pues $n+t$ tiene un elemento, el cual es $n$, mientras que el $0$ no tiene elementos. Esto concluye la prueba.

$\square$

Ya que contamos con esta serie de resultados previos podemos dar la demostración de la ley de cancelación del producto.

Demostración (Ley de cancelación del producto).

Supongamos que $n\cdot k = m\cdot k$ con $k \neq 0$. Como el orden $\leq$ es un buen orden en $\mathbb{N}$, entonces es total. Así, $n\leq m$ o $m\leq n$. Haremos el caso $n\leq m$ pues el otro caso es análogo. Como $n\leq m$, existe un natural $t$ tal que $n+t=m$. Como $k\neq 0$, existe un natural $s$ tal que $k=s+1$. De esta manera,

\begin{align*}
ns+n &= n(s+1)\\
&=nk\\
&=mk\\
&=(n+t)(s+1)\\
&=ns+n+ts+t.
\end{align*}

En esta cadena de igualdades hemos usado las propiedades que ya hemos probado de la suma y el producto. Usando ahora la ley de cancelación de la suma, obtenemos que $0=ts+t$. Como aquí hay una suma de naturales igualada a cero, cada sumando es igual a cero. En particular, $t=0$ y por lo tanto $m=n+0=n$, como queríamos.1

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta sección:

  1. Demuestra que existe una única función $\cdot: \mathbb{N}\times\mathbb{N}\to \mathbb{N}$, denotada por $\cdot(m,n)=m\cdot n$, que satisface las siguientes condiciones:
    – $0\cdot n=0$ para cualquier $n\in \mathbb{N}$,
    – $s(m)\cdot n= (m\cdot n)+n$.
  2. Demuestra que para cualesquiera $m,n,l\in \mathbb{N}$ tal que $l\not=0$, si $m<n$, entonces $l\cdot m<l\cdot n$.
  3. Demuestra que para cualesquiera $m,n\in \mathbb{N}$, si $m\cdot n=0$, entonces $m=0$ o $n=0$.
  4. Usa el teorema de recursión para probar la existencia y unicidad de una función $F:\mathbb{N}\to \mathbb{N}$ que satisfaga lo siguiente:
    $F(0)=1$,
    $F(1)=1$,
    $F(2)=2\cdot 1$,
    $\vdots$
    $F(n)=n\cdot (n-1)\cdots 2\cdot 1$.
    A la función $F$ se le llama el factorial y la denotamos por $F(n)=n!$.
  5. Usa el teorema de recursión y unicidad para probar para cada natural $n$ la existencia de una función $w_n:\mathbb{N}\to \mathbb{N}$ que cumple $w_n(0)=1$ y $w_n(m+1)=n\cdot w_n(m)$. Usa las funciones $w_n$ para definir la exponenciación en $\mathbb{N}$ como la operación binaria de $\mathbb{N}$ en $\mathbb{N}$ denotada por $n^m=w_n(m)$. Prueba que la exponenciación cumple las siguientes propiedades:
    • Para todo natural $m>0$, se cumple que $0^m=0$ y $1^m=1$.
    • Para cualesquiera naturales $l,m,n$, se cumple que $(m\cdot n)^l=m^l\cdot n^l$, que $l^{m+n}=l^m\cdot l^n$ y que $(l^m)^n=l^{m\cdot n}$.
  6. Encuentra todas las soluciones en los naturales a la ecuación $m^2+n=n^2+m$. ¡Ten cuidado! En $\mathbb{N}$ todavía no hemos definido la resta, así que como primer paso no puedes «pasar restando». Todos tus argumentos tendrán que permanecer en lo que hemos construido de $\mathbb{N}$.

Más adelante…

Con esta entrada concluimos el contenido acerca de números naturales. Es lo único que haremos en este curso sobre la construcción de sistemas numéricos, pero todos estos conocimientos sirven para constuir a los enteros y los racionales. Puedes hacer clic en los enlaces para consultar el contenido de la construcción de los números enteros y de los números racionales que se encuentra en el curso de Álgebra Superior II.

Nuestro enfoque continuará siendo conjuntista, y ahora nos enfocaremos en la noción de que dos conjuntos «tengan la misma cantidad de elementos». Así, en la siguiente unidad hablaremos acerca de equipotencia, finitud, infinitud, dominancia y aritmética cardinal. El conjunto de los números naturales jugará un papel clave para esta teoría.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. También puedes consultar las pruebas de las propiedades del producto en los naturales en: Hernández, F., Teoría de Conjuntos, México: Aportaciones Matemáticas No.13, SMM, 1998, p. 106-108. ↩︎

Álgebra Superior I: Principio de recursión en los números naturales

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada revisaremos el concepto de recursión en un sentido matemático y revisaremos algunos ejemplos. Probablemente ya hayas escuchado el término, pues verás que es una herramienta útil para definir funciones en términos de las evaluaciones pasadas.

La suma de los primeros n números naturales

Carl Friedrich Gauss fue un matemático alemán del siglo XVIII el cual es uno de los más importantes en distintas disciplinas matemáticas como la teoría de números, la geometría y estadística. Sus aportes son varios en estas y más áreas por lo que nos tomaría varios años de estudio para llegar a muchos de sus resultados. En esta ocasión veremos uno de sus razonamientos más famosos el cual muchos le atribuyen cuando este solo estaba en el colegio cuando aún era niño.

Se dice que el profesor de su clase de matemáticas había castigado a todo el salón haciéndoles sumar los números naturales del $1$ al $100$. La historia dice que no pasó mucho tiempo (y mucho menos del esperado por el profesor) hasta que Gauss llegó con la respuesta «5050». El razonamiento que tuvo fue el siguiente: Para llegar a la suma, pondremos los números del $1$ al $100$ en una lista, y debajo los mismos números pero al revés, es decir, del $100$ al $1$, y notemos que sumando uno a uno los números de las dos listas como los hemos acomodado, queda un mismo número:

$$\begin{array}{cccccc}
&1 & 2 & \dots &99 & 100 \\
+&100 & 99 & \dots &2 & 1 \\
=&101 & 101 & \dots &101 & 101\\
\end{array}$$

De manera que si tenemos los primeros $100$ números, entonces el número resultante de la suma es $101$, de manera que si sumamos estos números, estaríamos sumando $100$ veces el número $101$, pero como hemos sumado dos veces la lista, entonces deberemos dividir entre $2$ para obtener la suma real. Dicho de otra forma: $$ \sum_{i=0}^{100} i = \frac{100(100+1)}{2} .$$
Si recuerdas, esta es la fórmula que probamos en la entrada pasada, pues en el caso general: $$ \sum_{i=0}^{n} i = \frac{n(n+1)}{2} $$.

Viendo la suma como recursión

Sigamos pensando en el ejemplo. Para cada $n \in \mathbb{N}$, llamemos $$S_n = \sum_{i=0}^{n} i = \frac{n(n+1)}{2} .$$ Y nota que para cada número natural $n$ se cumple que:

  1. $S_0=0$
  2. Si $n>0$ entonces $S_n = S_{n-1}+n$

Nota ahora que podemos definir a $S_n$ únicamente en términos de la suma de su antecesor con el número. Esto quiere decir que si nos pidieran calcular $S_{51},S_{52},S_{53}$, primero podemos calcular $S_{51}$ sumando todos los números del $0$ al $51$, pero una vez tengamos ese resultado, no es necesario volver a sumar todos los números para $S_{52}$, sino que basta saber quién es $S_{51}$ y sumarle $52$ para obtener el término deseado, lo mismo para el siguiente número de la sucesión $S_{53}=S_{52}+53$. A $S$ se le puede ver como una función $S:\mathbb{N} \rightarrow \mathbb{N} $ donde $S_n$ hace referencia a la función $S$ valuada en $n$, esto quiere decir que $S(n)=S_n$. A esta función se le llamará una función recursiva.

Definición. Una función $\phi: \mathbb{N} \rightarrow \mathbb{N} $ se dice tener la propiedad de recursión si existe $a \in \mathbb{N} $ y una función $f : \mathbb{N} \rightarrow \mathbb{N} $ tal que:

  1. $\phi(0)=a$
  2. Si $n>0$ entonces $\phi(\sigma(n)) = f(\phi(n))$

Veamos esta definición por partes. Retomemos nuestro ejemplo de la suma de los primeros números naturales. La función que es recursiva es $\phi$, esta función debe satisfacer dos condiciones. La primera condición es que se defina a dónde «manda» el $0$, es decir, hace falta saber cómo empezar la definición recursiva, en este caso, se trata de cómo definimos el comportamiento de la función en el primer número del conjunto de los números naturales. La segunda condición se pone más interesante, pues lo que nos dice es que existe una función $f$ tal que la función $\phi$ evaluada en el sucesor de $n$ ($\sigma(n)=n+1$) es la función $f$ valuada en $\phi (n)$. Lo que quiere decir esta oración es que «Si quieres saber quién es $\phi(n+1)$ y ya sabes quién es $\phi (n)$, entonces basta hacerle algo a ese resultado (valuar ese resultado en $f$) para obtener lo querido».

En nuestro ejemplo de la función $S$ (en la definición, esta sería la función $\phi$), la función $f$ es aquella que a cada suma parcial le agrega el número correspondiente. Esto quiere decir que $f$ es la función: $$\begin{align*} f(S(n)) &= S(n)+n \\&= S(n+1)=S(\sigma(n))\end{align*}.$$

Teorema de recursión débil

El siguiente teorema nos garantiza no solo la existencia de funciones recursivas, sino que además nos garantiza que esta es una herramienta para conjuntos distintos al de los números naturales:

Teorema (Recursión Débil): Sea $X$ un conjunto y $x_{0}\in X$. Supongamos que tenemos una función $f:X\to X$. Entonces existe una única función $\phi:\mathbb{N}\to X$ tal que:

  • $\phi(0)=x_{0}$
  • $\phi(\sigma(n))=f(\phi(n)).$

La demostración de este teorema se verá en el curso de Álgebra Superior II. Y a grandes rasgos nos garantiza el hecho de que las definiciones de las funciones por recursión son matemáticamente válidas. En otras palabras, muestra que somos capaces de definir y usar funciones recursivas.

Algunos ejemplos

Veamos otro ejemplo de este tipo de funciones. Sea $n \in \mathbb{N}$ Definamos $$ n! = n*(n-1)*(n-2)*\dots*2*1.$$ Por ejemplo, $3!=3*2*1=6$. Nota que esta es una función que podemos describir como recursiva al establecer las siguientes condiciones:

  1. $0!=1$
  2. $n!=(n-1)!*n.$

Como veremos en siguientes entradas, esta función llamada factorial se utilizará mucho en conteo y combinatoria, pues nos hablará de el número de formas de combinar un conjunto con algún número de elementos.

El siguiente ejemplo requiere de una pequeña definición:

Definición. Sea $a$ una función. La función $a$ es una sucesión si $a : \mathbb{N} \rightarrow \mathbb{N} $ es una función entre números naturales.

Esta definición nos indica que a las funciones entre números naturales también se les conoce como sucesiones, muchas veces este no será el nombre común al que se refieran a las funciones de $ \mathbb{N} $ en $ \mathbb{N} $ pero si en alguna ocasión ves el término, sabrás a qué se refiere. También es común, al estar hablando de sucesiones, de escribir las evaluaciones de $a$ en cada término $n$ simplemente como $a_n$ es decir $a_n=a(n)$.

Supongamos ahora que tenemos la sucesión definida como $$a_n=5n+2$$. Los cinco primeros términos de esta sucesión son:$$a_0=2$$ $$a_1=7$$ $$a_2=12$$ $$a_3=17$$ $$a_4=22$$ Notemos que podemos escribir esto de forma recursiva, para ello, notemos que únicamente en cada paso estamos sumando un 5, de manera que $$a_{n+1}=a_n+5.$$Adicionalmente, ya sabemos cuánto vale en el $0$, así la siguiente proposición demuestra este hecho:

Proposición $a_n$ puede definirse de forma recursiva como:

  1. $a_0=2$
  2. $a_{n+1}=a_n+5.$

Demostración (por inducción)

Base inductiva. Es claro que $$a_0 = 2 = 0*5+2$$ De manera que se cumple la base de inducción.

Hipótesis inductiva. Supongamos que para $n\geq 0$ se cumple que $$a_n = a_{n-1}+5=5n+2.$$

Paso inductivo. Para demostrar que $$a_{n+1}=a_n+5$$ como dice la proposición, notemos que por definición de la sucesión, $$a_{n+1}=5(n+1)+2=5n+2+5.$$
Ahora, por hipótesis de inducción, $$a_n=5n+2.$$De esta forma, $$a_{n+1}=5(n+1)+2)+5=a_n+5. $$ tal como se quería demostrar.

$\square$

Más adelante…

En esta entrada dimos la idea de lo que significa la recursión en las matemáticas, en la siguiente entrada usaremos esta idea para empezar a definir las operaciones básicas en los números naturales: la suma y el producto.

Tarea Moral

  1. Muestra que hay una única función $\phi$ entre número naturales tal que:
    1. $\phi(0)=10$
    2. $\phi(\sigma(n))=2\phi(n)$
  2. Da una definición explícita de la función del inciso anterior.
  3. Da una definición recursiva para las siguientes sucesiones:
    • $a_n=2n$
    • $a_n=2n+1$
    • $a_n=2^n$
    • $a_n=0$

Entradas relacionadas

  • Ir a Álgebra Superior I
  • Entrada anterior del curso: Problemas de inducción
  • Siguiente entrada del curso: Suma y producto de naturales y sus propiedades

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: Otras definiciones recursivas en los naturales (exponenciación y factorial)

Por Roberto Manríquez Castillo

Introducción

En las entradas pasadas hemos dado la definición recursiva de la suma y del producto usando el teorema de la recursión débil y probamos las propiedades elementales de estas operaciones usando el principio de inducción.

Continuando con esta línea de pensamiento, en esta entrada definiremos las funciones exponenciales usando las funciones producto; sin embargo, para definir estas funciones, también ocuparemos el teorema de recursión débil. Para ver que no enunciamos en vano la versión fuerte de este teorema, daremos como aplicación la definición de la función factorial, y de la misma forma a como lo hicimos antes, probaremos algunas de sus propiedades haciendo uso del principio de Inducción. Sin embargo, dejaremos algunas de las propiedades como ejercicio para que puedas practicar este tipo de pruebas una vez más.

Exponenciación en los naturales

Desde la educación elemental nos enseñan que «multiplicar es sumar repetidas veces» y que «exponenciar es multiplicar repetidas veces». Formalicemos esta intuición mediante el teorema de recursión.

Definición: Sea $m\in \mathbb{N}$. Definimos $\eta_{m}:\mathbb{N}\longrightarrow\mathbb(N),$ como la función que satisface las siguientes propiedades:

  1. $\eta_{m}(0)=1$
  2. $\eta_m(\sigma(n))=p_{m}(\eta_{m}(n)) $

Así como lo hemos hecho con la definición de producto y de suma, introduciremos la «notación usual» para hablar de esta función. En este caso, definimos $m^n:=\eta_m(n)$.

De este modo, en términos de las notaciones usuales, podemos suplir la propiedad (2) de la definición anterior como $m^{n+1}=m\cdot m^n$.

Las potencias de $0$ y de $1$

Así como lo hicimos con la suma y el producto, analizaremos de forma especial a las funciones $\eta_{0}$ y $\eta_{1}$.

Teorema: Tenemos que $\eta_{0}(0)=1$ y si $n\neq 0$, entonces $\eta_{0}(n)=0$.

La demostración queda como un ejercicio moral. La buena noticia es que hemos trabajado lo suficiente como para no tener que realizar una prueba por inducción. Cuando intentes demostrar esto por tu cuenta, recuerda qué sucede cuando multiplicamos por $0$.

Notemos que así como lo definimos, $0^0$ es $1$ en los números naturales. Sin embargo, como veremos más adelante y como posiblemente lo sabrás ya, la expresión $0^0$ no estará definida en otros sistemas numéricos como los números reales. Al igual que «$0$ es un natural», la definición de $0^0$ frecuentemente varía dependiendo del contexto.

Teorema: Tenemos que $\eta_{1}(n) =1$ para todo $n$ en los naturales.

Demostración. Para este resultado sí procederemos por inducción sobre $n$. Por la parte (1) de la definición de $\eta_{1}$, tenemos que $\eta_{1}(0)=1$. Esta es nuestra base de inducción.

Supongamos que $\eta_{1}(n)=1$. Queda demostrar que $\eta_{1}(\sigma(n))=1.$ Sin embargo esto se sigue ya que por definición, $\eta_{1}(\sigma(n))=1\cdot\eta_{1}(n)=1\cdot 1=1$. Te invitamos a identificar los argumentos que se ocuparon en cada paso.

$\square$

La exponencial no conmuta ni asocia

Como la notación que ocupamos para las funciones $\eta_{m}$ no es tan simétrica como la que ocupamos para el producto o para la suma, uno puede esperar que esta operación no sea en general conmutativa. En efecto esto es cierto, solo basta notar que

$0^1\neq1^0$

Así mismo la exponenciación no es en general asociativa, es decir que existen casos en que

$(n^m)^l\neq n^{(m^l)}$

Encontrar un contraejemplo queda como un ejercicio moral.

Le exponenciación y otras operaciones

Cuando estudiamos el producto de números naturales, vimos que esta operación se distribuye sobre la suma, entonces una buena pregunta es preguntarnos qué pasa cuando mezclamos la exponenciación con el producto y la suma. Quedará como ejercicio dar contraejemplos a todas las siguientes proposiciones:

  1. $n^{(l\cdot m)}=n^l\cdot n^l$
  2. $(l+m)^n=l^n+m^n$
  3. $n^{l+m}=n^l+n^m$

Sin embargo, probaremos dos teoremas conocidos usualmente como las leyes de los exponentes. El primero de ellos dice que por la izquierda, la exponenciación sí se distribuye sobre el producto.

Teorema: Si $a,b,n\in\mathbb{N}$, entonces $(a\cdot b)^n=a^n\cdot b^n$.

Demostración. Procedamos por inducción sobre $n$. De la definición de exponencial, tenemos que $(a\cdot b)^0=1=1\cdot 1= a^0\cdot b^0$, por lo que la base de inducción es cierta.

Supongamos que para algún $n$ se tiene que $(a\cdot b)^n=a^n\cdot b^n$ y probemos que $(a\cdot b)^{\sigma(n)}=a^{\sigma(n)}\cdot b^{\sigma(n)}$. Esto es cierto ya que

\begin{align*}
(a\cdot b)^{\sigma(n)}&=(a\cdot b)\cdot (a\cdot b)^n\\
&=(a\cdot b)\cdot (a^n\cdot b^n)\\
&=(a\cdot a^n)\cdot (b\cdot b^n)\\
&=a^{\sigma(n)}\cdot b^{\sigma(n)}
\end{align*}

A diferencia de las entradas anteriores ya ocupamos sin mención las propiedades ya demostradas o la hipótesis de inducción; sin embargo, sería bueno que detallaras las pruebas.

$\square$

Aunque vimos que en general no podemos hablar de que la exponencial se distribuya, sí hay importantes relaciones que notaremos en los siguientes dos teoremas.

Teorema: Si $a,b,n\in\mathbb{N}$, entonces $a^{b+n}=a^b\cdot a^n$.

Demostración. De nuevo procederemos por inducción sobre $n$. Si $n=0$, entonces $a^{b+0}=a^b =a ^b \cdot 1=a^b \cdot a^0$, con lo que probamos la base de inducción.

Supongamos entonces que para algún $n$ se tiene que $a^{b+n}=a^b\cdot a^n$, y demostremos el caso para $\sigma(n)$. Sabemos que

\begin{align*}
a^{b+ \sigma(n)}=&a^{\sigma(b+n)}\\
=&a\cdot a^{b+n}\\
=&a\cdot (a^b\cdot a^n)\\
=&a^b\cdot (a \cdot a^n)\\
=&a^b\cdot a^{\sigma(n)}
\end{align*}

Con esto termina la prueba.

$\square$

El siguiente teorema queda como ejercicio de la tarea moral, para que puedas practicar.

Teorema: Si $a,b,n\in\mathbb{N}$, entoces $(a^b)^n=a^{b\cdot n}$.

El factorial

Hasta ahora, sólo hemos ocupado el teorema de recursión débil a la hora de definir las operaciones. A pesar de que antes demostramos que ambas versiones del teorema son equivalentes, la siguiente definición mostrará la naturalidad que tiene el ocupar el teorema de Recursión Fuerte para algunas cosas.

Definición: Se define la función factorial, $f:\mathbb{N}\to \mathbb{N}$, como la única función dada por el teorema de recursión fuerte que cumple que

  • $f(0)=1$
  • $f(\sigma(n))=p_{\sigma(n)}(f(n))$

Usaremos la notación $n!:=f(n)$. Así, la primer parte de la definición dice que $0!=1$ y la segunda dice que $(n+1)!=(n+1)\cdot n!$.

Notemos que en la definición anterior es necesario ocupar el teorema de Recursión Fuerte ya que en cada paso damos una función distinta. En concreto, para dar la definición en $\sigma(n)$ usamos a la función $p_{\sigma(n)}$.

El factorial es una función que jugará un papel importante en varios temas que verás en la facultad. Tiene una fuerte relación con contar cosas, el cual es un tema que posiblemente hayas estudiado en Álgebra Superior II. Aparece al contar las permutaciones de objetos, pero también como parte de la fórmula para los coeficientes binomiales $\binom{n}{k}$. También, lo encontraremos en este curso a la hora de enunciar el teorema de Wilson de teoría de números, pero necesitamos definir más cosas antes de llegar ahí.

Sin embargo, algo que sí podemos hacer ahora es demostrar una propiedad interesante que satisface el factorial.

Proposición: Para todo $n\in \mathbb{N}$, se tiene que $0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+1=(n+1)!$

Demostración. Procederemos por inducción, el caso base es claro ya que $0\cdot 0!+1= 0+1=1!.$

Supongamos que el resultado es cierto para alguna $n$ y con esta suposición probemos que

$0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+(n+1)\cdot(n+1)!+1=(n+2)!$.

Sabemos por nuestra hipótesis de inducción que

\begin{align*}
&0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+(n+1)\cdot(n+1)!+1\\
=&(0\cdot 0!+1\cdot 1!+2\cdot 2!+…+n\cdot n!+1)+(n+1)\cdot(n+1)! \\
=&(n+1)!+ (n+1)\cdot(n+1)!\\
=&(n+1)!(1+n+1)\\
=&(n+1)!(n+2)\\
=&(n+2)!
\end{align*}

En la primer igualdad estamos usando la conmutatividad y asociatividad de la suma. En la segunda igualdad, la hipótesis de inducción. Para la tercer igualdad estamos factorizando el término $(n+1)!$. El resto de igualdades se siguen de las definiciones.

$\square$

Resumen de las propiedades de los exponentes

Para finalizar con la entrada, hacemos un repaso de las propiedades que demostramos, posiblemente las conozcas como las leyes de los exponentes

  • Para todo $n$ número natural, se tiene que $n^0=1$
  • Si $n\neq 0$,entonces $0^n=0$
  • Para todo $n$ número natural, se tiene que $n^1=n$
  • Para todo $n$ número natural, se tiene que $1^n=1$
  • Para $l,m,n$ naturales, se tiene que $(l\cdot m)^n=l\n\cdot m^n$
  • Para $l,m,n$ naturales, se tiene que $n^{l+m}=n^l\cdot n^m$
  • Para $l,m,n$ naturales, se tiene que $n^{l\cdot m}=(n^l)^m$

Más adelante…

Con esta entrada, acabamos con las definiciones de operaciones a través de los teoremas de Recursión; sin embargo, no podemos decir que no ocuparemos este teorema en futuras ocasiones, al menos de forma implícita, mucho menos nos olvidaremos del principio de Inducción, el cuál irá siempre adherido al concepto de número natural.

En las siguientes entradas, estudiaremos otro tipo de propiedades de los naturales, relacionadas con el orden y el tamaño que estos tienen. Sin embargo, aún ocuparemos las operaciones que definimos y las relacionaremos; por ejemplo, con el orden que les daremos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra los contraejemplos que faltaron en la entrada
  2. Da la demostración de que $0^n=0$, para toda $n$
  3. Prueba que para todos los naturales $a,b,n$, se tiene que $(a^b)^n=a^{b\cdot n}$
  4. El factorial consiste en «multiplicar los primeros enteros». ¿Qué pasa si queremos hacer algo análogo para sumar los primeros enteros? Da una definición recursiva de una función $S(n)=0+1+2+…+n$, ¿por qué en realidad no es necesario dar una definición recursiva de esta función?
  5. Demuestra que si $n,m$ son naturales tales que existe $k\in\mathbb{N}$ tal que $n\cdot k=n^k=m$, entonces $n^m=m^n$. El regreso de esta afirmación es también verdadero, pero para verlo formalmente, necesitamos desarrollar más teoría.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Definición del producto y sus propiedades básicas

Por Roberto Manríquez Castillo

Introducción

En la entrada anterior, nos dedicamos a buscar una definición apropiada para la suma de números naturales, y después nos dedicamos a probar las propiedades más elementales que esta operación satisface.

Ahora es el turno de la multiplicación o producto, que se definirá de forma similar a la suma, ya que ocuparemos el teorema de Recursión Débil, y para probar sus propiedades ocuparemos el principio de Inducción.

Te motivamos a releer la entrada anterior y pensar unos momentos en el ejercicio 5 de la entrada anterior.

Definición del producto

Así como con la suma, recurriremos a una definición recursiva, la cual existe en virtud del teorema de Recursión.

Definición. Sea $m\in\mathbb{N}$, defnimos la función $p_{m}:\mathbb{N}\longrightarrow\mathbb{N}$, como la función que satisface las propiedades siguientes:

  1. $p_{m}(0)=0$.
  2. $p_{m}(\sigma(n))=s_{m}((p_{m}(n))$.

Denotaremos a $p_{m}(n)$ como $m\cdot n$, o simplemente como $mn$

Ejemplo. Para aclarar la definición anterior, consideremos $p_{7}$ y realicemos el diagrama conmutativo correspondiente a su definición recursiva.

Recordemos que las flechas indican a donde es mandado cada elemento bajo cada función, entonces las flechas verticales, justamente son las que nos indican los valores de $p_{7}$ en cada número natural, observemos que estos valores coinciden con la conocida tabla del $7$.

$\triangle$

Aprendiendo a multiplicar por uno

En este momento, demostraremos las propiedades más importantes del producto. Tenemos la fortuna de que contamos con una buena cantidad de propiedades de las funciones $s_{n}$, las cuales ya podremos usar sin ningún problema, más aún, para simplificar la notación haremos uso de la notación $m+n$, en vez de la notación $s_{m}(n)$, cada vez que se pueda.

Siguiendo la idea anterior, mencionamos la siguiente identidad, que es solo una reformulación del punto (2) de la definición del producto, pero que nos servirá para esclarecer la mayor parte de las pruebas.

Observación. $a\cdot\sigma(n)=a+(a\cdot n)$.

Para referir a esta observación en una demostración ocuparemos el símbolo $\overset{*}{=}$.

Proposición. Para toda $n\in\mathbb{N}$, se tiene que $p_{1}(n)=n$, es decir, $1\cdot n=n$

Demostración. Como se esperaba, la prueba es por inducción sobre $n$.

Base inductiva: Por la definición de $p_{1}$, tenemos que $p_{1}(0)=0$.

Hipótesis de inducción: Supongamos que para algún $n$, se tiene que $p_{1}(n)=n$

Paso inductivo: Debemos demostrar que $p_{1}(\sigma(n))=\sigma(n)$, esto se sigue por las siguientes igualdades

\begin{align*}
p_{1}(\sigma(n))&\overset{*}{=}1+(p_{1}(n))\\ &\overset{\text{H.I.}}{=}1+n=\sigma(n).
\end{align*}

Donde la última igualdad se da recordando que en la entrada anterior probamos que $s_{1}(n)=\sigma(n)$.

$\square$

Con esto hemos aprendido a multiplicar por $1$.

Aprendiendo a multiplicar por cero

Proposición. Para toda $n\in\mathbb{N}$, se tiene que $p_{0}(n)=0$.

Demostración. Procedamos por inducción sobre $n$, la base inductiva es directa de la definición, ya que $p_{0}(0)=0$.

Nuestra hipótesis de inducción consiste en suponer que para alguna $n$ se tiene que $p_{0}(n)=0$. Entonces queda demostrar que $p_{0}(\sigma(n))=0$. Esto se sigue de las siguientes igualdades.

\begin{align*}
p_{0}(\sigma(n))&\overset{*}{=}0+p_{0}(n)\\ &\overset{\text{H.I.}}{=}0+0=0
\end{align*}

$\square$

La propiedad distributiva izquierda

La siguiente propiedad es una de las más famosas, ya que nos permitirá relacionar la suma y el producto, además jugará un papel importante en la demostración de las siguientes propiedades.

Proposición (propiedad distributiva izquierda). Si $a,b,n$ son números naturales, entonces $p_{s_{a}(b)}(n)=s_{p_{a}(n)}(p_{b}(n))$, u ocupando la notación familiar $(a+b)\cdot n=(a\cdot n)+(b\cdot n)$.

Demostración. Procedamos por inducción, como podrás notar con todas estas demostraciones, la inducción será sobre la variable que aparezca más a la derecha de nuestras expresiones, es decir, la inducción será sobre $n$.

Base inductiva: Por la definición del producto tenemos que, $(a+b)\cdot 0=0$, y por las propiedades que demostramos para la suma, concluimos que $0=0+0$, sin embargo; de nuevo por la definición del producto, $0=(a\cdot n)$ y $0=(b\cdot n)$, uniendo todas estas igualdades concluimos que $(a+b)\cdot 0=(a\cdot n)+(b\cdot n)$, justo como queremos.

Hipótesis de inducción: Supongamos que para algún $n$ se tiene que $(a+b)\cdot n=(a\cdot n)+(b\cdot n)$.

Paso inductivo: Debemos probar que $(a+b)\cdot\sigma(n)=(a\cdot\sigma(n))+(b\cdot\sigma(n))$. Por la observación que hicimos, tenemos

\begin{align*}
(a+b)\cdot\sigma(n)&\overset{*}{=}(a+b)+((a+b)\cdot n)\\ &\overset{\text{H.I.}}{=}(a+b)+((a\cdot n)+(b\cdot n))
\end{align*}

A partir de aquí, el resultado se seguirá usando la asociatividad y la conmutatividad de la suma, en la siguiente cadena de igualades detallamos la demostración paso a paso ¿Puedes identificar cómo ocupamos las propiedades de la suma?.

\begin{align*}
(a+b)+((a\cdot n)+(b\cdot n))&=a+(b+((a\cdot n)+(b\cdot n)))\\
&=a+((b+(a\cdot n))+(b\cdot n))\\
&=a+(((a\cdot n)+b)+(b\cdot n))\\
&=a+((a\cdot n)+(b+(b\cdot n)))\\
&=(a+(a\cdot n))+(b+(b\cdot n))\\
&\overset{*}{=}(a\cdot \sigma (n))+(b\cdot \sigma (n))
\end{align*}

$\square$

Aunque la prueba anterior fue un poco más confusa que las anteriores, las consecuencias que tendrá esta proposición serán sumamente importantes.

El producto es conmutativo

Como mencionamos, la asociatividad y la conmutatividad, serán una consecuencia de las propiedades distributivas, por el momento veamos que en efecto el producto conmuta.

Proposición (conmutatividad). Si $m,n\in \mathbb{N}$, entonces $m\cdot n=n\cdot m$.

Demostración. Una vez más hagamos la prueba por inducción sobre $n$

Base inductiva: Por definición tenemos que $m\cdot 0 =0$, además $p_{0}(m)=0$ por lo demostrado antes, es decir que $m\cdot 0=0=0\cdot m$

Hipótesis de inducción: Supongamos que para alguna $n$, se tiene que $m\cdot n=n\cdot m$.

Paso inductivo: Debemos probar que $m\cdot\sigma(n)=\sigma(n)\cdot m$. Esto se sigue ya que

\begin{align*}
m\cdot\sigma(n)&\overset{*}{=}m+(m\cdot n)\\
&\overset{\text{H.I.}}{=}m+(n\cdot m)
\end{align*}

Pero ya demostramos que $m=1\cdot m$, usando esto y la propiedad ditributiva, podemos concluir que

\begin{align*}
m+(n\cdot m)&=(1\cdot m )+(n\cdot m)\\
&=(1+n)\cdot m=\sigma(n)\cdot m
\end{align*}

$\square$

Con la conmutatividad, podemos probar de manera inmediata el siguiente resultado

Corolario (propiedad distributiva derecha). Si $a,b,n$ son números naturales, entonces $a\cdot(b+ n)=(a\cdot b)+(a\cdot n)$.

La prueba queda como un ejercicio moral, en parte porque su prueba no requiere Inducción. Con este resultado, podemos probar la propiedad asociativa del producto.

El producto es asociativo

Con la propiedad distributiva derecha , podemos dar la demostración de la propiedad asociativa del producto.

Proposición (asociatividad). Si $a,b,n$ son números naturales, se tiene que $a\cdot(b\cdot n)=(a\cdot b)\cdot n$.

Demostración. De nuevo procedamos por inducción sobre $n$

Base inductiva: Notemos que por definición, para cualquier número natural $m$ se tiene que $0=p_{m}(0)=m\cdot 0$. Con esto en mente tenemos que, $(a\cdot b)\cdot(0)=0=a\cdot 0=a\cdot(b\cdot 0)$ que es justo la base de inducción.

Hipótesis de Inducción: Supongamos que para alguna $n\in \mathbb{N}$, tenemos que $(a\cdot b)\cdot n=a\cdot(b\cdot n)$

Paso Inductivo: Demostremos que $(a\cdot b)\cdot\sigma(n)=a\cdot(b\cdot \sigma(n))$. Como

\begin{align*}
(a\cdot b)\cdot\sigma(n)&\overset{*}{=}(a\cdot b)+(a\cdot b)\cdot n\\
&\overset{\text{H.I.}}{=}(a\cdot{b})+a\cdot(b\cdot n)\\
&=a\cdot (b+b\cdot n)\\
&\overset{*}{=}a\cdot(b\cdot \sigma (n))
\end{align*}

la igualdad que no está justificada es la aplicación de la propiedad distributiva.

$\square$

Ley de la cancelación

Para concluir con las propiedades del producto, enunciamos la propiedad de la cancelación del producto, recordemos que esta propiedad también es válida para la suma. Para hacer esta prueba necesitamos trabajar un poco.

Recordemos el ejercicio 2 de la Tarea moral de la entrada Principio de inducción y teoremas de recursión, el cual ya hemos ocupado anteriormente:

Si $n\neq0$, entonces existe $a\in \mathbb{N}$ tal que $n=\sigma(a)$

De la misma forma, el ejercicio 1 de la Tarea moral de la entrada pasada dice que:

Si $a,b\in\mathbb{N}$ son tales que $a+b=0$, entonces $a=b=0$

Con estos resultados en mente probamos el siguiente lema.

Lema. Si $n\neq 0$ y $m\in \mathbb{N}$ es tal que $m\cdot n=0$, entonces $m=0$.

Demostración. Como $n\neq0$, entonces existe $a\in \mathbb{N}$, tal que $n=\sigma(a)$, entonces tenemos que

\begin{align*}
0&=m\cdot n\\
&=m\cdot\sigma(a)\\
\overset{*}{=}m+(m\cdot a).
\end{align*}

Entonces tenemos que $m\cdot a=0$ y que $m=0$ que es lo que debíamos probar.

$\square$

Es común usar una equivalencia lógica del enunciado anterior, la cual dice:

Si $n,m\in \mathbb{N}\setminus\{0\}$, entonces $n\cdot m\in \mathbb{N}\setminus\{0\}$

Proposición (ley de cancelación). Si $m,n$ son números naturales y $a\neq0$ y cumplen que $a\cdot n=a\cdot m$, entonces, $n=m$

Demostración. De nuevo, procedamos por inducción sobre $n$

Base inductiva: Supongamos que $n=0$ y $a\neq0$, entonces $a\cdot m=a\cdot n=a\cdot0 =0,$ por el Lema tenemos que $m=0=n$.

Hipótesis de inducción: Supongamos que para algún $n$, tenemos que si $a\neq0$ y $a\cdot n=a\cdot m$, entonces $n=m$.

Paso inductivo: Probemos para $\sigma(n)$, sea $a\neq 0$ y supongamos que $a\cdot\sigma(n)=a\cdot m$.

Como $\sigma(n)\neq 0$, y por hipótesis, $a\neq0$, entonces por la equivalencia del lema, concluimos que $a\cdot\sigma(n)\neq 0$, de donde $a\cdot m\neq 0$, esto implica que $m\neq 0$, por lo que existe $b$ tal que $m=\sigma(b)$, entonces podemos escribir

\begin{align*}
a+a\cdot n& \overset{*}{=}a\cdot\sigma(n)\\
&=a\cdot m\\
&=a\cdot\sigma(b)\\
&\overset{*}{=}a+a\cdot b
\end{align*}

Ocupando la ley de cancelación de la suma, tenemos que $a\cdot n=a\cdot b$.

Pero por hipótesis de inducción debemos de tener que $n=b$, esto quiere decir que $\sigma(n)=\sigma(b)=m$, justo como debíamos probar.

$\square$

Con esta prueba concluimos las propiedades más fundamentales del producto.

Resumen de las propiedades del producto

Para finalizar con la entrada, haremos un compendio de las propiedades que demostramos

  • Para todo $n$ natural, se tiene que $1\cdot n=n=n \cdot 1$
  • Para todo $n$ natural, se tiene que $0\cdot n=0=n \cdot 0$
  • Para $l,m,n$ naturales cualesquiera se tiene que $(l+m)\cdot n=(l\cdot n)+(m\cdot n)$
  • Para $m,n$ naturales se tiene que $m\cdot n=n\cdot m$
  • Para $l,m,n$ naturales cualesquiera se tiene que $l\cdot(m+n)=(l\cdot m)+(l\cdot n)$
  • Para $l,m,n$ naturales cualesquiera se tiene que $(l\cdot m)\cdot n=l\cdot(m\cdot n)$
  • Para $m,n$ naturales con $m\neq 0$, si $m\cdot n=0$, entonces $n=0$
  • Para $l,m,n$ naturales con $l\neq 0$, si $l\cdot n=l\cdot m$, entonces $n=m$

Más adelante…

Con las propiedades de la suma y del producto en nuestra bolsa de herramientas, tenemos ya una rica teoría que desarrollar; nos falta aún definir una relación muy familiar en el conjunto $\mathbb{N}$, el orden, al cual ya hemos apelado en la demostración del teorema de la Recursión Débil.

Por el momento estudiaremos con mayor detalle los conjuntos infinitos, donde veremos la importancia de los naturales dentro de esta clase de conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba la Propiedad distributiva derecha.
  2. Usando únicamente la ley de cancelación el producto, demuestra el Lema previo a la demostración de la ley de cancelación.
  3. ¿Qué pasa si en el enunciado de la ley de la cancelación, no asumimos que $a\neq 0$?
  4. Demuestra usando el Lema previo a la demostración de la ley de cancelación que si $n,m\in \mathbb{N}\setminus\{0\}$, entonces $n\cdot m\in \mathbb{N}\setminus\{0\}$.
  5. Da una definición recursiva de las funciones $\eta_{m} (n)=m^n$ y prueba las leyes de los exponentes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Definición de la suma y sus propiedades básicas

Por Roberto Manríquez Castillo

Introducción

Para continuar con nuestra tarea de construir las operaciones más elementales de los números naturales, en esta entrada definimos la conocida operación suma. Un buen ejercicio antes de empezar con el contenido de la entrada, es pensar ¿Cómo podemos definir la suma de dos números enteros? De nuevo nos encontramos con el problema de intentar definir formalmente algo que ha sido intuitivo para nosotros durante la mayor parte de nuestra vida.

Sin embargo, todo el trabajo que hicimos en las entradas anteriores, especialmente en la demostración del teorema de Recursión, nos servirán para poder dar una definición precisa de qué es la suma. Además, usando el principio de Inducción, podremos demostrar las propiedades que nos han sido tan familiares desde hace mucho tiempo.

La idea intuitiva de la suma

La primera forma en la que aprendimos a sumar, al menos de manera intuitiva y tal vez limitada, fue usando nuestros dedos. Ocuparemos esta idea como hilo conductor, para poder llegar a la definición recursiva de la suma. Con esta forma de pensar, si queríamos sumar $3+4$, poníamos frente a nosotros nuestras manos con los dedos abajo, e instantáneamente mencionábamos la palabra «tres«. Después estirábamos un primer dedo y al mismo tiempo, mencionábamos la palabra «cuatro» (a quien ahora conocemos como el sucesor de $3$), después alzábamos un segundo dedo y decíamos «cinco» (el sucesor de $4$) , y continuábamos de la misma manera hasta que tuviéramos cuatro dedos totalmente extendidos; momento en el cual, decíamos el resultado: «siete«.

Analicemos un poco qué es lo que queremos decir con «continuábamos de la misma manera«. Entre cada número que contábamos, varias cosas pasaban por nuestra mente. Al mencionar un número, lo primero que hacíamos era cerciorarnos que aún tuviéramos extendidos menos dedos de los que queríamos añadir. Si esta condición se satisfacía, teníamos que grabarnos el número que habíamos mencionado justo en ese instante (el olvidar dicho número, tenía como consecuencia empezar el procedimiento desde el inicio), después alzábamos el siguiente dedo, y mencionábamos el sucesor del número memorizado (es por esto que recordar ese número era tan importante). Muy a grandes rasgos esto es lo mismo que lo que haremos de manera formal.

Definición de la suma

Esperamos que en los párrafos anteriores puedas encontrar una analogía entre el algoritmo que usábamos para sumar cotidianamente, y el método recursivo que describiremos a continuación. Antes de precisar la definición de la suma, hay que aclarar que no definiremos «de golpe» qué quiere decir «sumar dos números». Más bien, lo que haremos es, para cada natural, decir qué quiere decir «sumarle otro». Lo haremos de esta manera pues esto es lo que nos permite hacer el teorema de Recursión. Así, para cada número natural $m$ (fijo) obtendremos una función que nos sume a ese número fijo, una cantidad arbitraria.

Definición: Sea $m\in\mathbb{N}$. Definimos la función $s_{m}:\mathbb{N}\longrightarrow\mathbb{N}$, como la única función que satisface las propiedades siguientes:

  1. $s_{m}(0)=m$.
  2. $s_{m}(\sigma(n))=\sigma(s_{m}(n))$.

Denotaremos $s_{m}(n)$ como $m+n$.

Vale la pena hacer un par de comentarios de la definición anterior. Primero mencionamos que esta definición depende totalmente del teorema de Recursión Débil. Si regresas al enunciado del teorema, podemos notar que la función $s_m$ se obtiene tomando $X=\mathbb{N}$, $x_{0}=m$, $f=\sigma$ y $g=s_{m}$.

En segundo lugar, hay que remarcar que a pesar de nuestra intuición, los papeles de $m$ y $n$ en la expresión $m+n$, no son intercambiables. Por definición $m+n=s_{m}(n)$, mientras que $n+m=s_{n}(m)$. A primera vista, estos valores no tienen por qué coincidir. Veremos que en efecto esta y otras propiedades sí son válidas, para que posteriormente podamos utilizarlas de manera directa.

Aprender a sumar cero

De aquí en adelante probaremos varias propiedades de la suma. Debido a la definición recursiva de esta función, la mayor herramienta que ocuparemos es el principio de Inducción.

Antes de lanzarnos a demostrar la primer propiedad, nota que directamente de las definiciones de las funciones $s_{m}$ y de la notación que estamos usando, se tiene que $m+0=s_m(0)=m$. Ahora nos gustaría ver que también $0+m=m$, pero como aún no sabemos que la suma sea conmutativa, tendremos que probarlo por inducción.

Proposición: Para todo $n\in\mathbb{N}$ se tiene que $s_{0}(n)=n$, es decir, $0+n=n$

Demostración. Como se mencionó, procedamos por inducción sobre $n$.

Base inductiva: Por el punto (1) de la definición de $s_0$, tenemos que s_{0}(0)=0.

Hipótesis inductiva: Supongamos que para algún $n\in\mathbb{N}$, se tiene que $s_{0}(n)=n$.

Paso inductivo: Demostremos que $s_{0}(\sigma(n))=\sigma(n)$.

La demostración se sigue de la siguiente cadena de igualdades, las cuales justificamos una a una abajo:

\begin{align*}
s_{0}(\sigma(n))&=\sigma(s_{0}(n)) \\&\overset{\text{H.I.}}{=}\sigma(n).
\end{align*}

La primera igualdad sucede por el punto (2) de la definición de $s_0$. La segunda igualdad sucede por la hipótesis inductiva, lo cual estamos indicando con un «H.I.» sobre el símbolo de igualdad.

Esto termina el paso inductivo y entonces la proposición se vale para todos los naturales.

$\square$

Así, ya sabemos «sumar cero».

Aprender a sumar uno

Veamos ahora que nuestra intuición de «sumar uno» en efecto coincide de manera formal con «ir al sucesor».

Observación: Tenemos la siguiente cadena de igualdades \[n+1=s_{n}(1)=s_{n}(\sigma(0))=\sigma(s_{n}(0))=\sigma(n).\]

La primera es por nuestra elección de notación. La segunda por la definición del símbolo 1, pues simplemente es el sucesor de 0. La tercera es por el punto (2) de la definición de $s_n$. Finalmente, la última es por el punto (1) de la definición de $s_n$.

$\triangle$

Proposición: Para todo $n\in\mathbb{N}$ se tiene que $s_{1}(n)=\sigma(n)$, es decir, que al juntarlo con la observación anterior obtenemos $1+n=\sigma(n)=n+1$.

Demostración. Demostremos que $s_1(n)=\sigma(n)$ por inducción sobre $n$. Tenemos que $s_{1}(0)=1=\sigma(0)$ por el punto (1) de la definición de $s_1$ y por la definición de 1. Esto muestra que la igualdad se cumple en el caso base $n=0$.

Nuestra hipótesis de inducción es suponer que $s_{1}(n)=\sigma(n)$ y a partir de ella debemos demostrar que $s_{1}(\sigma(n))=\sigma(\sigma(n))$. Esto lo logramos mediante la siguiente cadena de igualdades:

\begin{align*}
s_{1}(\sigma(n))&=\sigma(s_{1}(n))\\ &= \sigma(\sigma(n))
\end{align*}

La primera igualdad se debe al punto (2) de la definición de $s_1$. La segunda, a la hipótesis inductiva.

$\square$

La suma es asociativa

Con los resultados probados en las dos secciones anteriores, continuamos ahora probando propiedades más interesantes de la suma. Aunque las aprendimos desde la educación básica, ahora será momento de justificar por qué se deducen de lo que hemos construido. Empezamos por la asociatividad.

Proposición (asociatividad): Si $a, b, n$, son naturales arbitrarios, entonces $(a+b)+n=a+(b+n)$.

Como es usual, aquí los paréntesis significan «hacer esa operación primero». Si quisiéramos usar la notación formal, tendríamos que enunciar la asociatividad como $$s_{a+b}(n)=s_a(s_b(n)),$$ y cuando hagamos la demostración aprovecharemos la definición de estas funciones $s_{a+b}$, $s_a$ y $s_b$.

Demostración. Procedamos por inducción. Tenemos tres variables naturales. ¿Sobre cuál hacemos inducción? Esto es una decisión importante y el hacer una elección incorrecta puede dificultar la prueba o impedir concluirla. Haremos inducción sobre $n$, pero te recomendamos que intentes hacerlo sobre las otras variables para detectar las dificultades que pueden surgir.

Base inductiva: $(a+b)+0=a+b=a+(b+0)$. En el primer paso usamos el punto (1) de la definición de $s_{a+b}$ y en el segundo usamos el punto (1) de la definición de $s_b$.

Hipótesis inductiva: Supongamos que $(a+b)+n=a+(b+n)$. Recuerda que en una prueba inductiva sólo se hace la hipótesis inductiva para un valor fijo de $n$, pero lo que se quiere suponer es que se vale para todo valor de $n$. Así, no estamos suponiendo que cualquier $n$ pueda asociarse con cualesquiera dos números, solo estamos suponiendo que una $n$ fija puede asociarse con los valores fijos de $a$ y de $b$; más aún, el orden de $a$ y $b$ importa, ya que no hemos demostrado aún la conmutatividad.

Paso inductivo: Demostremos que $(a+b)+\sigma(n)=a+(b+\sigma(n))$.

Hagamos esto mediante la siguiente cadena de igualdades:

\begin{align*}
(a+b)+\sigma(n)&=\sigma((a+b)+n)\\
&\overset{\text{H.I}}{=}\sigma(a+(b+n))\\
&=a+\sigma(b+n)\\
&=a+(b+\sigma(n)).
\end{align*}

Aquí las igualdades se siguen, respectivamente, de la definición de $s_{a+b}$, de la hipótesis inductiva, de la definición de $s_a$ y de la definición de $s_b$. Con esto, concluimos la prueba del paso inductivo y con ello la prueba por inducción.

$\square$

En la demostración anterior ya no estamos siendo tan específicos con exactamente qué parte de la definición de las funciones estamos usando. Sin embargo, te sugerimos completar estos detalles pues te ayudarán a entender mucho mejor por qué cada uno de los pasos tiene su justificación.

La suma es conmutativa

Otra de las propiedades de la suma que nos enseñan en educación básica es que «el orden de los factores no afecta el resultado». Esto tiene un nombre en matemáticas formales: conmutatividad. El objetivo de la siguiente proposición es demostrar que en efecto la suma es conmutativa.

Proposición (conmutatividad): Si, $n, m$ son naturales, entonces $n+m=m+n$.

En términos de las funciones que construimos mediante el teorema de recursión esto se ve como $s_n(m)=s_m(n)$.

Demostración. De nuevo, procedamos por inducción sobre $n$, por la misma razón remarcamos que entonces $m$ es un número arbitrario pero fijo.

Base inductiva. Por la primer proposición que probamos, tenemos que $0+m=m=m+0$.

Hipótesis de Inducción: Supongamos que $n$ cumple que $n+m=m+n$.

Paso inductivo: Demostremos que $\sigma(n)+m=m+\sigma(n)$.

Hagamos esto mediante la siguiente cadena de igualdades:

\begin{align*}
m+\sigma(n)&=\sigma(m+n)\\
&\overset{H.I.}{=}\sigma(n+m)\\
&=n+\sigma(m)\\
&=n+(1+m)\\
&=(n+1)+m\\
&=\sigma(n)+m.
\end{align*}

Como siempre, es importante justificar cada igualdad. Pero ahora es tu turno. ¿Cuáles son las justificaciones de cada una de estas igualdades? Nota que algunas serán las definiciones, algunas serán la notación que estamos usando y finalmente otras se deducen de propiedades que ya demostramos (como la asociatividad).

$\square$

La suma se cancela

Imagina por un momento que tenemos una igualdad del estilo $x+8=y+8$ en los números naturales. Nos gustaría poder concluir que $x=y$. Sin embargo, no podemos hacer el «truco tradicional» de «restar 8» en cada lado de la igualdad para cancelar al 8, pues en los naturales no existe la operación de resta. Nos encontraremos con ella más adelante, hasta que trabajemos con los números enteros.

Aunque no podamos restar, de cualquier forma podemos realizar cancelaciones de este estilo. La siguiente proposición formaliza este hecho.

Proposición (cancelación por la derecha): Si, $a, b, n$ son naturales, tales que $a+n=b+n$, entonces $a=b$.

Demostración. Como ya esperábamos, sean $a$ y $b$ arbitrarios, y procedamos por inducción sobre $n$.

Base inductiva. Si $a+0=b+0$, por definición de $s_a$ y $s_b$ obtenemos $a=b$.

Hipótesis inductiva. Supongamos que $n$ es tal que cada vez que tengamos $a+n=b+n$, obtenemos que $a=b$.

Paso inductivo. Demostremos que si $a+\sigma(n)=b+\sigma(n)$, entonces $a=b$.

Entonces supongamos que $a+\sigma(n)=b+\sigma(n)$. Por definición $a+\sigma(n)=\sigma(a+n)$ y $b+\sigma(n)=\sigma(b+n)$. Por nuestra hipótesis tendríamos entonces que $\sigma(a+n)=\sigma(b+n)$. Usando el cuarto axioma de Peano, obtendríamos entonces que $a+n=b+n$. Finalmente, la hipótesis inductiva nos garantiza que entonces $a=b$, como buscábamos.

$\square$

Podemos enunciar el resultado anterior en una forma un poco más «funcional».

Corolario: Las funciones $s_{m}$ con $m\in \mathbb{N}$ son inyectivas.

Demostración: Con todas las herramientas que hemos desarrollado, ya no será necesario ocupar la inducción.

Si $s_{m}(a)=s_{m}(b)$, por la conmutatividad de la suma, tenemos que $s_{m}(a)=s_{a}(m)$ y $s_{m}(b)=s_{b}(m)$. Esto quiere decir que $a+m=b+m$, y por la proposición anterior, $a=b$.

$\square$

Con esto hemos demostrado las propiedades más fundamentales de la suma, a partir de las cuales podremos probar muchas más.

Resumen de propiedades de la suma

Para recapitular, en esta entrada demostramos las siguientes propiedades de la suma y por lo tanto podremos usarlas directamente de aquí en adelante:

  • Para todo $n$ natural, se tiene $0+n=n=n+0$.
  • Para todo $n$ natural, se tiene $1+n=\sigma(n)=n+1$.
  • Para $m$ y $n$ naturales cualesquiera, se tiene $m+n=n+m$.
  • Para $l,m,n$ naturales cualesquiera, se tiene que $l+(m+n)=(l+m)+n$.
  • Para $l,m,n$ naturales cualesquiera, si $m+l=n+l$, entonces $m=n$.

Más adelante…

Ya que conocemos las propiedades de la suma, podemos pasar a definir el producto, y análogamente, a como lo hicimos antes, estudiaremos sus propiedades usando el principio de Inducción.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $a, b\in \mathbb{N}$, y $a+b=0$, entonces $a=b=0$.
  2. Demuestra que si $a+a=b+b$, entonces $a=b$. ¡Ten cuidado! En los números naturales no se vale «dividir», así que más bien tendrás que hacer una prueba inductiva.
  3. Sean $m,n,l$ naturales cualesquiera. Demuestra, usando sólo las propiedades que ya mostramos (ya sin inducción), que todas las siguientes expresiones son iguales:
    \begin{align*}
    m+(n+l)\\
    (l+m)+n\\
    n+(m+l)\\
    (n+l)+m\\
    \end{align*}
  4. ¿Cuáles de las funciones $s_{m}$ tienen inversa? ¿Qué significa esto?
  5. Antes de dominar las tablas de multiplicar de memoria, ¿Cómo multiplicabas? Ocupa esta idea para motivar una definición recursiva del producto de números naturales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»