Archivo de la etiqueta: orden

Ecuaciones Diferenciales I: Introducción a las Ecuaciones Diferenciales

Por Omar González Franco

La vida es buena por sólo dos cosas, descubrir y enseñar las matemáticas.
– Simeon Poisson

Introducción

Bienvenidos a la primera clase del curso, en esta entrada conoceremos qué son las ecuaciones diferenciales, cómo clasificarlas y presentaremos una parte de la terminología elemental que usaremos a lo largo del curso.

Las leyes del universo están escritas en el lenguaje de las matemáticas. Muchos de los fenómenos naturales que ocurren en el universo involucran cambios y si logramos crear modelos matemáticos que los describan, sin duda, la derivada será una herramienta fundamental que estará presente. Sabemos que la derivada $\dfrac{dy}{dx} = f'(x)$ de la función $f$ es la razón a la cual la cantidad $y = f(x)$ está cambiando respecto de la variable independiente $x$, es natural, entonces, que las ecuaciones que involucran derivadas se usen frecuentemente para describir el universo cambiante. Una ecuación que relacione una función desconocida con una o más de sus derivadas se llama ecuación diferencial.

Ecuaciones diferenciales

Al tratarse de un curso introductorio, sólo trabajaremos con ecuaciones diferenciales que contienen sólo una variable independiente, estas ecuaciones tienen un nombre particular.

El reto al que nos enfrentamos con las ecuaciones diferenciales es hallar la función involucrada que depende de la variable independiente. Supongamos que tenemos la función

$$y = f(x) = 2e^{x^{2}}$$

Esta función es derivable en todo $\mathbb{R}$, si la derivamos obtenemos otra función dada de la siguiente forma.

$$\dfrac{dy}{dx} = f'(x) = 4xe^{x^{2}}$$

Este resultado se puede reescribir como

$$\dfrac{dy}{dx} = 2x(2e^{x^{2}})$$

Podemos observar que lo que está entre paréntesis es de nuevo la función $y = 2e^{x^{2}}$ , si la sustituimos obtenemos como resultado la siguiente ecuación.

$$\dfrac{dy}{dx} = 2xy$$

Este resultado corresponde a una ecuación diferencial ordinaria, pues contiene la derivada de la variable dependiente $y$ con respecto a la variable independiente $x$, esto es $\dfrac{dy}{dx}$.

Ahora imagina que lo primero que vemos es la ecuación diferencial $\dfrac{dy}{dx} = 2xy$ y lo que debemos de hacer es obtener la función $f(x) = y$. ¿Cómo la obtendrías?. ¡Este es el reto!.

Básicamente el objetivo del curso será desarrollar distintos métodos para resolver los diferentes tipos de ecuaciones diferenciales ordinarias que se puedan presentar, analizaremos las circunstancias en las que aparecen y la forma en que surgen con el fin de describir o modelar fenómenos físicos en términos matemáticos.

Notación

En la mayor parte del curso utilizaremos la notación de Leibniz.

$$\dfrac{dy}{dx}, \hspace{0.4cm} \dfrac{d^{2}y}{dx^{2}}, \hspace{0.4cm} \dfrac{d^{3}y}{dx^{3}}, \hspace{0.4cm} \cdots,$$

En este caso la expresión $\dfrac{d}{dx}$ sirve como un operador que indica una derivación de la variable dependiente $y$ con respecto a la variable independiente $x$.

En ocasiones para ser más compactos utilizaremos la notación prima o también conocida como notación de Lagrange.

$$y^{\prime}, \hspace{0.4cm} y^{\prime \prime}, \hspace{0.4cm} y^{\prime \prime\prime}, \hspace{0.4cm} \cdots$$

En el caso de esta notación, a partir de la cuarta derivada ya no se colocan primas, sino números entre paréntesis, dicho número indica el grado de la derivada.

$$y^{(4)}, \hspace{0.4cm} y^{(5)}, \hspace{0.4cm} \cdots, \hspace{0.4cm} y^{(n)}$$

En este curso haremos mayor uso de la notación de Leibniz debido a que indica con claridad las variables independientes y dependientes. Por ejemplo, en la ecuación

$$\dfrac{dx}{dt} + 8x = 0$$

se observa de forma inmediata que el símbolo $x$ representa a la variable dependiente, mientras que $t$ a la variable independiente.

Cuando se trata de resolver problemas en contextos del mundo real relacionados con Física o ingeniería por ejemplo, es común utilizar la notación de Newton.

$$\dot{y}, \hspace{0.4cm} \ddot{y}, \hspace{0.4cm} \dddot{y}, \hspace{0.4cm} \cdots$$

Es común utilizar esta notación cuando la variable independiente corresponde al tiempo $t$.

$$\dfrac{dy}{dt} = \dot{y}(t)$$

Clasificación de las ecuaciones diferenciales

Para comenzar será importante clasificar a las ecuaciones diferenciales por tipo, orden y linealidad.

  • Clasificación por tipo

Un primer tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Ordinarias (EDO) que, como se definieron anteriormente, son aquellas que relacionan una función desconocida de una variable independiente con sus derivadas. Algunos ejemplos de ecuaciones diferenciales ordinarias son:

$$\dfrac{dy}{dx} + 5y = e^{x}, \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 6y = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dx}{dt} + \dfrac{dy}{dt} = 2x + y$$

Otro tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Parciales (EDP), estas ecuaciones presentan las derivadas parciales de una o más variables dependientes de dos o más variables independientes. Algunos ejemplos de ecuaciones diferenciales parciales son:

$$\dfrac{\partial^{2}z}{\partial x^{2}} + \dfrac{\partial^{2}z}{\partial y^{2}} = 0, \hspace{1cm} \dfrac{\partial^{2}z}{\partial x^{2}} = \dfrac{\partial^{2}z}{\partial t^{2}} -2\dfrac{\partial z}{\partial t} \hspace{1cm} y \hspace{1cm} \dfrac{\partial u}{\partial y} = – \dfrac{\partial v}{\partial x}$$

En este curso no estudiaremos a las ecuaciones diferenciales parciales.

  • Clasificación por orden

El orden de una ecuación diferencial representa el orden de la derivada más alta presente en la ecuación. Así, la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es una ecuación diferencial ordinaria de segundo orden. Importante, no confundir orden de la derivada con el grado o potencia de las derivadas.

Una EDO de $n$-ésimo orden se puede expresar como una variable dependiente empleando la forma general

$$F(x, y, y^{\prime}, \cdots , y^{(n)}) = 0 \tag{1} \label{1}$$

Donde $F$ es una función con valores reales de $n + 2$ variables. Por motivos teóricos debemos suponer que es posible resolver la EDO anterior únicamente para la derivada de mayor grado $y^{(n)}$ en términos de las $n + 1$ variables restantes, es decir, suponemos que se puede resolver la siguiente ecuación.

$$\dfrac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots , y^{(n – 1)}) \tag{2} \label{2}$$

Donde $f$ es una función continua con valores reales. A la ecuación (\ref{2}) se le denomina forma normal de (\ref{1}). En ocasiones será útil utilizar las formas normales

$$\dfrac{dy}{dx} = f(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime})$$

para representar ecuaciones diferenciales ordinarias de primer y segundo orden, respectivamente.

Por ejemplo, la forma normal de la ecuación diferencial de primer orden

$$4x \dfrac{dy}{dx} + y = x$$

es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Para $x \neq 0$. En este caso la función $f$ sería

$$f(x, y) = \dfrac{x -y}{4x}$$

Mientras que la forma general de la misma ecuación es

$$F \left( x, y , \dfrac{dy}{dx} \right) = 4x \dfrac{dy}{dx} + y -x = 0$$

Las ecuaciones diferenciales ordinarias de primer orden ocasionalmente se escriben en lo que se conoce como la forma diferencial.

$$M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}$$

Anteriormente vimos que la forma normal de la ecuación diferencial dada es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Haciendo de un abuso de notación podemos escribir a esta ecuación como

$$4x dy = (x -y) dx$$

O bien,

$$(y -x) dx + 4x dy = 0$$

Esta es la correspondiente forma diferencial, en este caso

$$M(x, y) = y -x \hspace{1cm} y \hspace{1cm} N(x, y) = 4x$$

Con este ejemplo encontramos tres formas distintas de representar a la misma ecuación diferencial. Veremos más adelante que cada forma de representación nos será de utilidad cuando intentemos encontrar a la función dependiente.

  • Clasificación por linealidad

Una ecuación diferencial ordinaria de $n$-ésimo orden (\ref{1}) es lineal si $F$ es lineal en $y, y^{\prime}, \cdots, y^{(n)}$, es decir, una EDO es lineal si se puede escribir como

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \tag{4} \label{4}$$

Cumpliendo las siguientes propiedades:

  • La variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$ son de primer grado, es decir, la potencia de cada uno de los términos que involucran a $y$ es $1$.
  • Los coeficientes $a_{0}, a_{1}, \cdots, a_{n}$ de $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$, respectivamente, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$.

Una ecuación diferencial ordinaria no lineal simplemente es una ecuación que no es lineal, es decir, que no cumple con las propiedades anteriores.

La ecuación

$$4x \dfrac{dy}{dx} + y = x$$

claramente es lineal, mientras que la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es no lineal debido a que la primera derivada de la variable dependiente $y$ no es de primer grado, sino de grado $3$.

Ejemplo: Clasificar las siguientes ecuaciones diferenciales.

  • $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$
  • $(1-y) y^{\prime} + 2y = e^{x}$

Solución:

En la ecuación

$$\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$$

observamos que se trata de una ecuación diferencial ordinaria, pues la variable dependiente $y$ sólo depende de una variable independiente, en este caso de $x$. Por otro lado, observamos que la derivada más alta es $\dfrac{d^{3}y}{dx^{3}}$ , por lo tanto el orden de la ecuación es $3$, es decir, es una ecuación diferencial de tercer orden. Finalmente vemos que se trata de una ecuación lineal, pues la potencia de los términos que involucran a $y$ es $1$ y además la función $g(x) = e^{x}$ sólo depende de la variable independiente.

En la ecuación

$$\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$$

notamos que corresponde a una ecuación diferencial ordinaria de segundo orden ya que la derivada más alta es $\dfrac{d^{2}y}{dx^{2}}$. En este caso la ecuación es no lineal ya que la función $\sin(y)$ no es lineal e involucra a la variable dependiente.

Finalmente, en la ecuación

$$(1-y) y^{\prime} + 2y = e^{x}$$

se observa que es una ecuación diferencial ordinaria de primer orden y que es no lineal ya que el coeficiente de $y^{\prime}$, la función $(1 -y)$, depende de la variable dependiente.

$\square$

Como podemos notar, para deducir si una ecuación diferencial es lineal o no es conveniente escribirla en la forma (\ref{4}) y verificar las dos propiedades de linealidad.

De acuerdo a (\ref{4}), las ecuaciones diferenciales de primer orden ($n = 1$) y segundo orden ($n = 2$) se pueden escribir de forma general como

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{5} \label{5}$$

y

$$a_{2}(x) \frac{d^{2}y}{dx^{2}} + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{6} \label{6}$$

Respectivamente.

Hemos concluido con esta entrada.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Definir el orden de las siguientes ecuaciones diferenciales ordinarias y establecer si son lineales o no lineales.
  • $(1 -x) y^{\prime \prime} -4xy^{\prime} + 5y = \cos(x)$
  • $\dfrac{d^{2}y}{dx^{2}} = \sqrt {1 + \left(\dfrac{dy}{dx}\right)^{2}}$
  • $x \dfrac{d^{3}y}{dx^{3}} -\left( \dfrac{dy}{dx} \right) ^{4} + y = 0$
  1. Determinar si las siguientes ecuaciones diferenciales de primer orden son lineales en la variable dependiente indicada comparándola con la ecuación (\ref{4}). (es decir, considera primero a una variable como dependiente de la otra y reescribe la ecuación en la forma general (\ref{4}) para deducir si es lineal o no, posteriormente intercambia al papel de las variables y vuelve a ver si la ecuación es lineal o no).
  • $(y^{2} -1) dx + x dy = 0$, $\hspace{0.5cm}$ en $y$, $\hspace{0.2cm}$ en $x$
  • $u dv + (v + uv -ue^{u}) du = 0$, $\hspace{0.5cm}$ en $v$, $\hspace{0.2cm}$ en $u$

Más adelante …

Como se mencionó, uno de los objetivos es hallar a la función involucrada que depende de la variable independiente, a esta función formalmente se le conoce como función solución de la ecuación diferencial. Antes de estudiar cómo obtener estas funciones solución será conveniente primero estudiar sus propiedades generales.

En la siguiente entrada comenzaremos a estudiar lo relacionado a la solución (o soluciones) de una ecuación diferencial.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: El principio del buen orden

Por Roberto Manríquez Castillo

Introducción

En la entrada pasada definimos una relación de orden en el conjunto de números naturales, más aun, probamos algunas propiedades de esta nueva relación, de las cuales, la más importante fue que este orden era un orden total. Ya en los ejercicios morales, vimos que podíamos restringir esta relación a cualquier número natural $n$ para definir un orden en los conjuntos con $n$ elementos.

En esta entrada definiremos una de las propiedades más importantes del orden en los naturales: el principio de buena ordenación, veremos que en cierto sentido es equivalente al principio de inducción, y daremos una breve presentación a algunos otros conjuntos que en este sentido se comportan de forma similar a los naturales.

La propiedad de buena ordenación

Pensemos en un número natural $n\neq 0$ con el orden que este hereda de $\mathbb{N}$, abusando de la notación, podemos escribir de forma ordenada a $n$ como $\{0<1<…<n-1\}$, parece ser que no habrá muchas sorpresas a la hora de estudiar a los números como conjuntos ordenados. Sin embargo, vale la pena notar que debido a lo que probamos en la sección de El tamaño de los naturales, cualquier subconjunto $A$ de $n$ será finito. Gracias a esto, y a que demostramos que el orden es total, podemos comparar todos los elementos de $A$ y fijarnos en el menor de todos ellos. Antes de formalizar esta prueba, recordaremos qué significa que un elemento de un conjunto sea mínimo.

Definición. Si $A$ es un conjunto ordenado por $\leq$, decimos que $a_0\in A$ es un elemento mínimo, si para todo $a\in A$ se tiene que $a_0\leq a$.

Ahora sí, enunciamos y demostramos nuestro primer teorema.

Teorema. Si $n\neq 0$ y $A\subseteq n$ es distinto del vacío, entonces existe $a_0$ mínimo en $A$.

Demostración. El hecho de que $A$ sea un conjunto finito no necesita más demostración que la que se mencionó en el párrafo anterior. Entonces podemos proceder por inducción sobre $m=\vert A\vert$.

Como $A\neq \emptyset$ la base de inducción se probará para $m=1$. Es decir que $A=\{a\}$, evidentemente, el elemento $a$ es el mínimo de $A$.

Supongamos ahora que si un conjunto no vacío tiene $m$ elementos, entonces tiene un elemento mínimo y supongamos que $A$ es un conjunto con $\sigma(m)$ elementos. Como $A$ es no vacío, entonces podemos elegir algún $a\in A$ arbitrario, entonces el conjunto $A\setminus\{a\}$ es un conjunto con $m$ elementos, y por la hipótesis de inducción, tiene un mínimo, llamémoslo $a’$. Como el orden en $A$ es el de los naturales, y este es total, $a’$ y $a$ son comparables, llamemos $a_0$ al mínimo entre estos dos elementos y demostremos que $a_0$ es el mínimo de $A$.

Sea $x\in A$ arbitrario, si $x=a$, ya terminamos, pues por definición $a_0\leq a$, en caso contrario $x \in A\setminus\{a\}$, pero como $a’$ es el mínimo de este conjunto, entonces $a’\leq x$, y como $a_0\leq a’$, por transitividad concluimos que $a_0\leq x$, por lo que $A$ sí tiene mínimo.

$\square$

Como mencionamos antes, la propiedad de que todos los subconjuntos de un conjunto arbitrario tengan mínimo elemento es importante, por lo que damos la siguiente definición.

Definición. Si $B$ es un conjunto ordenado por $\leq$, decimos que $B$ tiene la propiedad del buen orden si todo subconjunto no vacío de $B$ tiene un mínimo.

Entonces el teorema anterior puede ser reformulado como

Teorema. Si $n$ es un número natural, entonces $n$ está bien ordenado.

El conjunto de los números naturales está bien ordenado.

Un error lógico, sería asumir que por el teorema anterior, el conjunto de los números naturales también cumple la propiedad del buen orden, ya que a diferencia de cualquier número natural, en $\mathbb{N}$ existen conjuntos con una infinidad de elementos; sin embargo, aunque esta prueba no funcione, no se sigue que $\mathbb{N}$ no esté bien ordenado, es por esto que enunciamos el siguiente teorema.

Teorema. $\mathbb{N}$ satisface la propiedad del buen orden.

Demostración. Sea $A$ un subconjunto no vacío de números naturales, procedamos por contradicción, es decir, supongamos que $A$ no tiene elemento mínimo. Consideremos $B=\{n\in\mathbb{N}\mid m\leq n \Rightarrow m\notin A\}$, veamos que B es inductivo.

Evidentemente $0$ está en $B$, porque si no, existiría $m\leq 0$ tal que $m\in A$, como el único natural menor o igual a $0$ es $0$, tenemos que $0\in A$, pero entonces, $0$ sería un mínimo de $A$, ya que es menor o igual a todo natural.

Supongamos entonces que $n\in B$ y demostremos que $\sigma(n)\in B$, supongamos que no, entonces existirá $m\leq\sigma(n)$, tal que $m\in A$, como $m\in A$, por la definición de $B$, debe ocurrir que $n<m$ y por uno de los resultados de la entrada pasada, tenemos que $\sigma(n) \leq m$, por la antisimetría del orden, tenemos que $m=\sigma(n)$.

De nuevo usemos reducción al absurdo para probar que $\sigma(m)$ es un mínimo de $A$, si no lo fuera, existiría $a \in A$ tal que es falso que $\sigma(n)\leq a$, esto implicaría que es falso que $n<a$, es decir que $a\leq n$ y como $n\in B$, esto implicaría que $a\notin A $ lo cual es absurdo, entonces $\sigma(n)$ sí es un mínimo de $A$, pero de nuevo, esto es contradictorio con la suposición de que $A$ no tenía elemento mínimo, esta contradicción se deriva de suponer que $\sigma(n)\notin B$, entonces $\sigma(n)\in B$, por lo que el paso inductivo queda probado y $B=\mathbb{N}$.

Como $B=\mathbb{N}$, debe ocurrir que $A= \emptyset$ ya que si $a\in A$, como $a\leq \sigma(a)$, por la definición de $B$ debería pasar que $\sigma(a)\notin B$, contradiciendo que $B=\mathbb{N}$, pero desde un inicio, supusimos que $A\neq \emptyset$, esto quiere decir que suponer que $A$ no tiene mínimo es absurdo. Entonces, concluimos que $A$ sí debe de tener un elemento mínimo.

$\square$

El principio de inducción y el principio del buen orden

La idea de una prueba más corta de este resultado se da en los ejercicios morales; sin embargo, damos esta prueba para ver como el principio de inducción prueba el del buen orden. De forma análoga podemos demostrar el principio de inducción a partir del principio del buen orden.

Teorema. Supongamos cierto que $\mathbb{N}$ satisface la propiedad del buen orden, entonces, el principio de inducción también es cierto.

Demostración. Sea $A$ un conjunto inductivo, debemos de demostrar que $A=\mathbb{N}$, supongamos que no lo es, entonces $\mathbb{N}\setminus A\neq\emptyset$, por lo que, por el principio del buen orden, este conjunto tiene un elemento mínimo, sea $n$ el mínimo. Como $A$ es inductivo, $0\in A$. por lo que $n\neq 0$, entonces existe un $m$ tal que $\sigma(m)=n$, como $n$ es el mínimo, de $\mathbb{N}\setminus A$, tenemos que $m\notin \mathbb{N}\setminus A$, por lo que $m\in A$, pero como $A$ es inductivo, $\sigma(m)=n\in A$, lo cual es una contradicción, entonces, $A=\mathbb{N}$.

$\square$

En $\mathbb{N}$, existe otra formulación equivalente al principio de inducción, llamado principio de inducción fuerte, y dice que

Teorema. Si $A$ es un conjunto tal que:

  • $0\in A$.
  • Es cierto que si $n\in A$ y para todo $m\leq n$, se tiene que también $m\in A$ entonces $\sigma(n)\in A$.

Entonces $A=\mathbb{N}$.

Los detalles de la prueba se mencionan en uno de los ejercicios morales.

Conjuntos bien ordenados

Antes de estudiar otros conjuntos bien ordenados damos la siguiente proposición elemental.

Teorema. Si $A$ es un conjunto bien ordenado por $\leq$, entonces $A$ es un orden lineal.

Demostración. Sean $a,b\in A$, consideremos el conjunto $\{a,b\}\subset A$, como $A$ es un buen orden, entonces, este subconjunto tiene un elemento mínimo, es decir que $a\leq b$ ó $b\leq a$, esto quiere decir que los elementos son comparables.

$\square$

Hemos demostrado que todo número natural y el conjunto de los naturales, tienen un buen orden natural, una pregunta natural es si estos son los únicos conjuntos bien ordenados, la respuesta es que no; sin embargo hay varias cosas que analizar.

Lo primero que mencionaremos, es que todo conjunto finito $A$ y linealmente ordenado, satisface la propiedad del buen orden y más aun, se puede probar que si $\vert A\vert=n$, entonces el orden de $A$ y de $n$ son indistinguibles, detallamos esta afirmación en uno de los problemas de la tarea moral.

El caso infinito es más complicado, ya que existen muchos conjuntos numerables que pueden ordenarse de forma distinta a $\mathbb{N}$ y aun así tener la propiedad del buen orden, en realidad, es muy sencillo construirlos, como mencionamos en el siguiente teorema.

Teorema. Si $A$ es un conjunto bien ordenado bajo $\leq$, entonces $\sigma(A)$ es un conjunto bien ordenado con el orden $\leq’=\leq\cup\bigcup_{a\in \sigma(A)}(a,A)$.

Demostración. El hecho de que $\leq’$ es un orden, será un ejercicio moral, veamos que $\leq’$ está bien ordenado. Sea $B\subseteq \sigma(A)$ distinto del vacío, entonces debemos encontrar un elemento mínimo para $B$. Si $B=\{A\}$ el resultado es trivial.

Entonces supongamos que $B\neq\{A\}$ y consideremos $B\setminus \{A\}\subseteq A$, el cual es distinto del vacío. Como $A$ es un buen orden, entonces, existe $b$ elemento mínimo para este conjunto, afirmamos que $b$ también es un elemento mínimo para $B$. Para ver esto, sea $b’\in B$, si $b’\in B\setminus \{A\}\subseteq A$ el resultado se sigue de la definición de $b$, mientras que si $b’=A$, tenemos que $b’\leq A$ ya que por definición $(b’,A)\in \leq’$. Con esto finaliza la prueba.

$\square$

Aplicando el teorema anterior a $\mathbb{N}$, tenemos que $\mathbb{N}\cup\{\mathbb{N}\}$ es un buen orden con $\leq$ definido como $a\leq b$ si y solo si $a\in b$ o $a=b$, sin embargo, a diferencia de $\mathbb{N}$, este conjunto tiene un máximo, dígase $\mathbb{N}$ (ahora visto como elemento).

Otra cosa curiosa que podemos notar del conjunto $\sigma(\mathbb{N})$ es que aunque el principio del buen orden es válido, el principio de inducción no lo es, a diferencia de como pasaba en $\mathbb{N}$, en realidad, esta no es la única propiedad que perdemos, por ejemplo, en $\sigma(\mathbb{N})$, el cero no es el único elemento sin un antecesor, en realidad, esta es una de las razones por las que la prueba del principio de inducción a partir del principio del buen orden no es válida para este conjunto.

El estudio de los buenos ordenes es importante en Teoría de conjuntos y está muy relacionada con la teoría de conjuntos transitivos.

Más adelante…

Ya que hemos estudiado la propiedad más importante del orden en los naturales. solo falta ver como es que esta propiedad se relaciona con las operaciones que definimos, los resultados vistos en esta sección y en la siguiente, serán muy importantes en los siguientes temas que desarrollemos, ya que serán la base de muchos resultados, sobre todo al ver los resultados de la teoría de números en $\mathbb{Z}$, donde el orden, la inducción y el buen orden tendrán papeles fundamentales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $A$ es un conjunto con $n$ elementos, y $\leq_A$ es un orden total en $A$, demuestra que existe una función $f:n \longrightarrow A$ tal que $n\leq m \Leftrightarrow f(n)\leq_A f(m)$. Sugerencia: Usa inducción sobre $n$ y después el principio del buen orden.
  2. Prueba el principio del buen orden a partir del axioma de regularidad y de la definición de $<$. Sugerencia: recuerda que el axioma de regularidad prohíbe la existencia de sucesiones infinitas de conjuntos tales que $…\in a_2\in a_1\in a_0$.
  3. Demuestra que en $\mathbb{N}$, el principio de inducción fuerte es equivalente al principio de inducción. Sugerencia: Prueba el principio de inducción fuerte a partir del débil, y el principio del buen orden a partir del fuerte.
  4. Usando la notación del último teorema, demuestra que $\leq’$ sí define una relación de orden en $\sigma(A)$.
  5. Si $A$ es un conjunto bien ordenado e infinito con $a_0$ elemento mínimo, prueba que existe una función $f:\mathbb{N}\longrightarrow A$ tal que $f(0)= a_0$ y si $n\leq m$ entonces $f(n)\leq f(m)$. Sugerencia: Usa la técnica que se ocupó a la hora de demostrar que los naturales son el conjunto infinito más pequeño.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: La relación de orden en los naturales

Por Roberto Manríquez Castillo

Introducción

Seguramente desde que construimos de forma intuitiva el conjunto de números naturales, te diste cuenta de que nuestra forma de generar nuevos números a través de la función sucesor, nos daba una jerarquía de qué número natural iba primero, y quien era el que inmediatamente le seguía. Así, el primer natural debería de ser el $0$, el cual debería ser menor a todos los demás. Después, seguiría $\sigma(0)=1$ el cual debería ser menor al sucesor de cualquier otro número. Este razonamiento podría seguir de forma inductiva para los demás números.

En esta entrada abordaremos el problema de cómo organizar el conjunto de naturales. Hay varias formas de definir esta relación. Pero el trabajo que realizamos en las dos entradas pasadas nos permitirá atacar dos problemas de manera sencilla: el de definir el orden en $\mathbb{N}$ y el de demostrar sus propiedades.

El orden parcial en $\mathbb{N}$

Recordemos que si $n$ es un número natural distinto de cero, entonces $n=\{0,1,…,n-1\}$. Entonces de forma intuitiva podemos afirmar que cada número natural tienen por elementos a todos los naturales «menores» a él. Usando esta idea, podemos dar las siguientes dos definiciones.

Definición. Si $n,m\in \mathbb{N}$, decimos que $n$ es menor que $m$, en símbolos, $n<m$ si $n\in m$.

Definición. Si $n,m\in \mathbb{N}$, decimos que $n$ es menor o igual que $m$, en símbolos $n\leq m$ si $n\in m$ o $n=m$.

Antes de lanzarnos a probar propiedades de estas relaciones, comenzaremos con verificar la segunda de ellas define un orden parcial.

Teorema. La relación $\leq$ es un orden parcial en $\mathbb{N}$.

Demostración. Recordemos que según la definición de orden parcial, debemos probar que $\leq$ es reflexiva, transitiva y antisimétrica, hagamos esto por pasos.

$\leq$ es reflexiva: Si $m$ es un natural, tenemos que $m=m$, por lo que por nuestra definición, podemos escribir que $m\leq m$.

$\leq$ es transitiva: Sean $n,m,l$ naturales tales que $n\leq m$ y $m\leq l$. Debemos demostrar que $n\leq l$. Si $n=m$ o $m=l$ la conclusión es inmediata de las hipótesis. En otro caso, tenemos que que $n\in m$ y $m\in l$. Como $l$ es un número natural, es un conjunto transitivo, entonces $n\in l$, por lo que $n\leq l$.

$\leq$ es antisimétrica: Si $n,m$ son naturales tales que $n\leq m$ y $m\leq n$, debemos demostrar que $n=m$. Para ver esto, procedamos por contradicción. Supongamos que no son iguales, entonces $n\in m$ y $m\in n$. Pero como ya hemos mencionado anteriormente, el hecho de que dos conjuntos pertenezcan mutuamente al otro es contradictorio con el axioma de regularidad. Entonces debe suceder que $n=m$ como queríamos.

$\square$

Propiedades del orden en los naturales

Ya mostramos que $\leq$ es un orden parcial en $\mathbb{N}$. Probemos otras propiedades que esperamos que satisfaga. Empezamos con la que mencionamos en la introducción de la entrada.

Teorema. $0\leq n$ para todo natural $n$

Demostración. Si $n=0$, el resultado se sigue de manera automática. Si $n\neq 0$, el resultado se sigue de que ya demostramos que $0$ está en cada natural distinto de $0$.

$\square$

La siguiente propiedad que probaremos es que la función sucesor sí preserva el orden que definimos.

Teorema. Si $n,m\in\mathbb{N}$ y $n<m$, entonces $\sigma(n)<\sigma(m)$

Demostración. Procedamos por inducción sobre $m$. Para el caso base debemos probar que la afirmación $n<0\Rightarrow\sigma(n)<0$, es verdadera. Sin embargo, el antecedente siempre es falso, ya que $n<0$ quiere decir que $n\in\emptyset$ lo cual es absurdo. Como el antecedente siempre es falso, entonces la base de inducción es verdadera.

Supongamos que para alguna $m$ se tiene que si $n<m$, entonces $\sigma(n)< \sigma(m)$. Debemos probar que el resultado es cierto para $\sigma(m)$. Supongamos entonces que $n<\sigma(m)$. Debemos probar que $\sigma(n)<\sigma( \sigma(m))$.

Como $n<\sigma(m)$, tenemos que $n\in \sigma(m)=m\cup \{m\}$, así que tenemos dos casos: $n\in m$ o $n\in\{m\}$.

Si $n\in m$, por hipótesis inductiva $\sigma(n)\in \sigma(m)$. Como $\sigma(m)\in \sigma(\sigma(m))$ y los naturales son transitivos, tenemos $\sigma(n)\in \sigma(\sigma(m))$, es decir, $\sigma(n)< \sigma(\sigma(m))$, como queríamos.

Finalmente, si $n\in \{m\}$, entonces $n=m$, pero así $\sigma(n)=\sigma(n)\in \sigma(\sigma(m))$, de modo que $\sigma(n)<\sigma(\sigma(m))$, como queríamos.

$\square$

El orden en los naturales es total

De entre los órdenes parciales hay un tipo de órdenes especiales: aquellos en los que cualesquiera dos elementos se pueden comparar. A estos se les conoce como órdenes totales. Los resultados de esta sección muestran que la relación $\leq$ en $\mathbb{N}$ es un orden total.

Un paso intermedio para demostrar esto es ver que si un número natural es menor que otro, entonces la función sucesor «no nos puede llevar muy lejos».

Teorema. Si $n,m$ son naturales tales que $m<n$, entonces se tiene que $\sigma(m)\leq n$.

Demostración. La hipótesis es imposible cuando $n=0$, pues no hay ningún natural menor a cero. Así, $n$ debe ser sucesor de algún otro natural, digamos $n=\sigma(k)$.

De $m<\sigma(k)$ tenemos que $m\in k\cup \{k\}$, así que $m\in k$, o $m=k$. Si $m\in k$, entonces $m<k$ y por el teorema anterior tenemos que $\sigma(m)<\sigma(k)=n$. Si $m=k$, entonces $\sigma(m)=\sigma(k)=n$. En cualquier caso tenemos $\sigma(m)\leq n$.

$\square$

El anterior teorema es equivalente a la afirmación siguiente.

Corolario. Si $n,m\in\mathbb{N}$, son tales que $m<n$ pero es falso que $\sigma(m)< n$, entonces $\sigma(m)=n$.

En estos momentos es conveniente regresar a leer las dos pruebas de los teoremas anteriores, y notar que en las demostraciones, cuando suponíamos que era falso que $n<m$ nunca supusimos que $n\geq m$. Sólo apelábamos directamente a la negación de la definición. Haber usado $n\geq m$ hubiera sido un error. En primer lugar, porque aún no hemos definido el símbolo $\geq$. Y en segundo lugar, porque aún no hemos descartado una cuarta posibilidad: que $n$ y $m$ no sean comparables. En realidad esto es imposible, pero hay que demostrarlo. En $\mathbb{N}$ el orden es total y de hecho satisface la propiedad de tricotomía que enunciamos a continuación.

Teorema. Para cualesquiera $n$ y $m$ naturales se cumple una y sólo una de las siguientes afirmaciones

  • $n=m$
  • $n< m$
  • $m< n$

Demostración. Ya hemos demostrado mediante el axioma de regularidad que estas proposiciones son mutuamente excluyentes. Sólo queda demostrar que siempre sucede por lo menos una de ellas. Demostraremos esto por inducción sobre $n$.

El caso base se reduce a probar que para cualquier $m$, se tiene que $0=m$, $0\in m$ o $m\in 0$. El primer teorema que probamos muestra que siempre se da la primera o la segunda opción.

Supongamos ahora que el resultado es cierto para alguna $n$. Debemos probarlo para $\sigma(n)$. Entonces sea $m\in\mathbb{N}$ arbitrario. Por hipótesis de inducción, $m$ es comparable con $n$, entonces podemos considerar tres casos:

$m=n$. Este caso es trivial porque entonces $m\in\sigma(n)$.

$m< n$. De nuevo tenemos que $m\in n\in \sigma(n)$, y por transitividad (del orden o de los conjuntos), tenemos que $m\in\sigma(n)$.

$n< m$. Por el teorema anterior, tenemos que en este caso, $\sigma(n)<m$ ó $\sigma(n)=m$.

De cualquier forma $\sigma(n)$ y $m$ son comparables. Esto termina la demostración.

$\square$

Para finalizar, hacemos la observación de que definir los símbolos $>$ y $\geq$ en $\mathbb{N}$ es sencillo. Simplemente, diremos que $n\geq m$ cuando $m\leq n$. Así mismo, diremos que $n>m$ cuando $m<n$.

Más adelante…

Ya empezamos a probar las propiedades del orden en $\mathbb{N}$. Sin embargo, falta ver una de las más importantes: el principio del buen orden. Esta lo veremos en la entrada siguiente. También veremos que, en cierto sentido, es equivalente al principio de inducción.

Otra cosa más que falta es ver que el orden que definimos «se comporta bien» con las operaciones de suma y producto en $\mathbb{N}$. Esto resultará de suma importancia para entradas posteriores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $n\leq m$, entonces $n<\sigma(m)$.
  2. Prueba que $n\leq m$ si y sólo si $n\subseteq m$.
  3. Generaliza el teorema de que $\in$ define un orden en $\mathbb{N}$, a que $\in$ define un orden en cualquier conjunto transitivo.
  4. Demuestra que $\leq$, restringido a $n \times n$ es un orden total en el conjunto $n$.
  5. Encuentra un conjunto $A$ con tantos elementos como números naturales y una forma de ordenarlo linealmente, tal que $A$ tiene elemento máximo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Grupos, anillos y campos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En estas entradas hemos visto cómo distintas herramientas de álgebra nos pueden ayudar en la resolución de problemas. En las primeras dos entradas, hablamos de identidades algebraicas básicas y un par de avanzadas. Luego, hablamos de factorización en polinomios y del teorema de la identidad. Ahora platicaremos de cómo estructuras un poco más abstractas nos pueden ayudar. De manera particular, nos enfocaremos en aplicaciones de teoría de grupos a la resolución de problemas. Sin embargo, hacia el final de la entrada también hablaremos un poco acerca de anillos, dominios enteros y campos.

Teoría de grupos básica

Una de las nociones de álgebra abstracta más básicas, y a la vez más flexibles, es la de grupo. La teoría de grupos es muy rica y se estudia a profundidad en un curso de álgebra abstracta o álgebra moderna. Aquí veremos únicamente un poco de esta teoría y algunas aplicaciones a resolución de problemas. Comenzamos con la definición.

Definición. Un grupo es un conjunto no vacío $G$ con una operación binaria $\cdot$ que cumple lo siguiente:

  • Asociatividad: Para cualesquiera elementos $x,y,z$ en $G$ tenemos que $x\cdot (y\cdot z) = (x\cdot y) \cdot z$.
  • Neutro: Existe un elemento $e$ en $G$ tal que $x\cdot e = x = e\cdot x$ para todo elemento x.
  • Inversos: Para cada elemento $x$ en $G$, existe un elemento $y$ en $G$ tal que $x\cdot y = e = y\cdot x$.

Usualmente se simplifica la notación de la siguiente manera. Por un lado, en vez de poner el símbolo de producto, simplemente se ponen elementos consecutivos, por ejemplo $a\cdot b = ab$. Además, por la asociatividad, muchas veces no se ponen los paréntesis, de modo que expresiones como $(a\cdot b)\cdot c$ se escriben simplemente como $abc$, a menos que los paréntesis ayuden a entender un argumento.

Hay que tener cuidado con invertir el orden de factores. En grupos, no necesariamente sucede que la operación es conmutativa, es decir, que $ab=ba$ para todo par de elementos $a$ y $b$. Si $ab=ba$ decimos que $a$ y $b$ conmutan y si todo par de elementos de $G$ conmutan, decimos que $G$ es conmutativo. Un elemento siempre conmuta consigo mismo. Para $n$ un entero positivo definimos $a^n$ como el producto formado por $n$ veces el elemento $a$.

A partir de la definición se puede ver que el neutro es único, pues si hubiera dos neutros $e$ y $e’$ tendríamos $e=e\cdot e’=e’$, en donde primero usamos que $e’$ es neutro y después que $e$ lo es. Para $a$ en $G$, definimos $a^0$ como $e$.

En grupos se vale «cancelar». Por ejemplo, si $ab=ac$, entonces podemos multiplicar esta igualdad a la izquierda por un inverso $d$ de $a$ y obtendríamos $$b=eb=dab=dac=ec=c.$$ Del mismo modo, la igualdad $ba=ca$ implica $b=c$.

En particular, si $d$ y $d’$ son inversos de $a$, tenemos $da=e=d’a$, de donde $d=d’$. Esto muestra que los inversos también son únicos, así que al inverso de $a$ le llamamos $a^{-1}$. Observa que $e^{-1}=e$. Nota que si $a$ y $b$ son elementos de $G$, entonces $$ab(b^{-1}a^{-1})=aea^{-1}=aa^{-1}=e,$$ de modo que el inverso de un producto $ab$ es el producto $b^{-1}a^{-1}$. Para $n$ un entero positivo, definimos $a^{-n}$ como el inverso de $a^n$, que por lo anterior, es precisamente $(a^{-1})^n$. De hecho, ya definido $a^n$ para todo entero, se puede verificar que se satisfacen las leyes usuales de los exponentes.

Problema. Sean $a$ y $b$ dos elementos en un grupo $G$ con neutro $e$ tales que $aba=ba^2b$, $a^3=e$ y $b^{2021}=e$. Muestra que $b=e$.

Sugerencia pre-solución. Observa que si $a$ y $b$ conmutaran, entonces el resultado se deduce fácilmente de la primer igualdad. Así, intenta modificar el problema a demostrar que $a$ y $b$ conmutan. Para ello tienes que hacer un paso intermedio que necesita inducción.

Solución. Lo primero que veremos es que $a$ y $b^2$ conmutan. Poniendo una identidad entre ambas $b$ en el producto $ab^2$, tenemos que $$ab^2=abaa^{-1}b=ba^2ba^{-1}b.$$ De $a^3=e$, tenemos $a^{-1}=a^2$, así que siguiendo con la cadena de igualdades, \begin{align*}
ba^2ba^{-1}b&=ba^2ba^2b\\
&=ba^2aba\\
&=bba=b^2a.
\end{align*} Así, $ab^2=b^2a$.

Ahora veremos que $a$ y $b$ conmutan. Para ello, como $a$ y $b^2$ conmutan, tenemos que $a$ y $b^{2k}$ conmutan para cualquier entero $k$. Esto se puede probar por inducción. El caso $k=1$ es lo que ya probamos. Si es válido para cierta $k$, se sigue que $$ab^{2k+2}=b^{2k}ab^2=b^{2k+2}a.$$ Por hipótesis, $b^{2020}=b$, así que el resultado anterior nos dice que $a$ y $b$ conmutan.

Por esta razón, la primer hipótesis $aba=ba^2b$ se puede reescribir como $a^2b=a^2b^2$, que por cancelación izquierda da $e=b$, como queríamos mostrar.

$\square$

Subgrupos y órdenes

Dentro de un grupo pueden vivir grupos más pequeños.

Definición. Un subgrupo de un grupo $G$ es un subconjunto $H$ de $G$ que es un grupo con las operaciones de $G$ restringidas a $H$.

Para que $H$ sea subgrupo, basta con que no sea vacío y que sea cerrado bajo la operación de grupos y la operación «sacar inverso».

Por ejemplo, se puede ver que $\mathbb{Z}_{12}$, los enteros módulo $12$ con la suma, forman un grupo. De aquí, $H_1=\{0,3,6,9\}$ es un subgrupo y $H_2=\{0,4,8\}$ es otro.

Proposición. Si $a$ es un elemento de un grupo $G$, entonces o bien $$1,a, a^2, a^3,\ldots$$ son todos elementos distintos de $G$, o bien existe un entero positivo $n$ tal que $a^n=1$ y $1,a,\ldots,a^{n-1}$ son todos distintos. En este segundo caso, $\{1,a,\ldots,a^{n-1}\}$ es un subgrupo de $G$.

Sugerencia pre-demostración. Divide en casos. Luego, usa el principio de cancelación o las leyes de exponentes para grupos.

Demostración. Si todos los elementos son distintos, entonces no hay nada que hacer. De otra forma, existen $i<j$ tales que $a^j=a^i$, de donde por la ley de cancelación tenemos que $a^{j-i}=e$ y $j-i\geq 1$. Así, el conjunto de enteros positivos $m$ tales que $a^m=e$ es no vacío, de modo que por el principio de buen orden tiene un mínimo, digamos $n$.

Afirmamos que $$1,a,a^2,\ldots,a^{n-1}$$ son todos distintos. En efecto, de no ser así, como en el argumento de arriba existirían $0\leq i < j \leq {n-1}$ tales que $a^{j-i}=e$, pero $j-i\leq n-1$ sería una contradicción a la elección de $n$ como elemento mínimo.

Probemos ahora que $A=\{1,a,\ldots,a^{n-1}\}$ es subgrupo de $G$. Si tenemos $a^k$ y $a^l$ en $A$, su producto es $a^{k+l}$. Por el algoritmo de la división, $k+l=qn+r$, con $r\in \{0,\ldots,n-1\}$, de modo que $$a^ka^l=a^{qn+r}=(a^n)^qa^r=e^qa^r=a^r,$$ así que $A$ es cerrado bajo productos. Además, si $1\leq k\leq n-1$, entonces $1\leq n-k \leq n-1$ y $a^ka^{n-k}=a^n=e$. Así, $A$ es cerrado bajo inversos. Esto muestra que $A$ es subgrupo de $G$.

$\square$

En teoría de grupos, la palabra «orden» se usa de dos maneras. Por un lado si $G$ es un grupo, su orden $\text{ord}(G)$ es la cantidad de elementos que tiene. Por otro, dado un elemento $a$, el orden $\text{ord}(a)$ de $a$ es el menor entero positivo $n$ tal que $a^n=e$, si es que existe.

Definimos al subgrupo generado por $a$ como $$\langle a\rangle:=\{a^n:n\in \mathbb{Z}\}.$$ La proposición anterior dice que si $\langle a \rangle$ es finito, entonces es un subgrupo de $G$ de orden $\text{ord}(\langle a \rangle) = \text{ord}(a).$ A los grupos de la forma $\langle a \rangle$ se les llama cíclicos.

Teorema de Lagrange

Cuando estamos trabajando con grupos finitos, el orden de un subgrupo debe cumplir una condición de divisibilidad.

Teorema (de Lagrange). Sea $G$ un grupo finito y $H$ un subgrupo de $G$. Entonces $\text{ord}(H)$ divide a $\text{ord}(G)$.

No daremos la demostración de este teorema, pero veremos algunos corolarios que sirven en la resolución de problemas.

Proposición. Sea $G$ un grupo finito.

  • Si $\text{ord}(G)$ es un primo $p$, entonces $G$ es cíclico.
  • El orden de cualquier elemento $a$ de $G$ divide al orden de $G$, y por lo tanto $a^{\text{ord}(G)}=1$.
  • Si $a$ es un elemento de $G$ de orden $n$ y $a^m=e$, entonces $n$ divide a $m$.

Demostración. Para la primer parte, si tomamos un elemento $a$ de $G$ que no sea $e$, ya vimos que $\langle a \rangle$ es un subgrupo cíclico de $G$. Por el teorema de Lagrange, su orden debe dividir al primo $p$. Pero el orden de $\langle a \rangle$ es al menos $2$, así que el orden de $\langle a \rangle$ debe ser $p$ y por lo tanto $\langle a \rangle=G$.

Como vimos arriba, el orden de $a$ es el orden de $\langle a \rangle$, que divide a $G$. Así,
\begin{align*}
a^{\text{ord}(G)}&=(a^{\text{ord}{a}})^{\text{ord}(G)/ \text{ord}(a)}\\
&=e^{\text{ord}(G)/ \text{ord}(a)}\\
&=e.
\end{align*} Con esto queda probado el segundo punto.

Para el último punto, usamos el algoritmo de la división para escribir $m=qn+r,$ con $r$ entre $0$ y $n-1$. Tenemos que $$e=a^m=a^{qn+r}=a^r.$$ Por lo visto en la sección anterior, necesariamente $r=0$, así que $n$ divide a $m$.

$\square$

Veamos cómo se pueden aplicar algunas de las ideas anteriores a un problema de teoría de grupos concreto.

Problema. En un grupo $G$, tenemos elementos $a$ y $b$ tales que $a^7=1$ y $aba^{-1}=b^2$. Determina qué posibles valores puede tener el orden de $b$.

Sugerencia pre-solución. Conjetura una fórmula para $b^{2n}$ buscando un patrón. Establécela por inducción.

Solución. El orden de $a$ debe dividir a $7$, así que es o $1$ o $7$. Si es $1$, entonces $a=e$, por lo que por la hipótesis tenemos $b=b^2$. De aquí $b=e$, así que el orden de $b$ es $1$. La otra opción es que el orden de $a$ sea $7$.

Afirmamos que para todo entero $n$ se tiene que $a^nba^{-n}=b^{2^n}$. Esto se prueba inductivamente. Es cierto para $n=1$ por hipótesis. Si se cumple para cierta $n$ y elevamos la igualdad al cuadrado, tenemos que
\begin{align*}
b^{2^{n+1}}&=(b^{2n})^2\\
&=a^nba^{-n}a^nba^{-n}\\
&=a^nb^2a^{-n}\\
&=a^{n+1}ba^{-(n+1)},
\end{align*}

lo cual termina la inducción.

En particular, para $n=7$ tenemos que $a^7=a^{-7}=e$, por lo que $b=b^{2^7}$, y por lo tanto $b^{127}=e$. Como $127$ es primo, el orden de $b$ puede ser $1$ ó $127$.

$\square$

En realidad, en el problema anterior falta mostrar que en efecto existe un grupo que satisfaga las hipótesis, y para el cual el orden de $b$ sea exactamente $127$. Esto no lo verificaremos aquí.

Teoría de grupos en teoría de números

Lo que hemos platicado de teoría de grupos se vale para grupos en general. Cuando aplicamos estos resultados a grupos particulares, tenemos nuevas técnicas para resolver problemas. Uno de los casos que aparecen más frecuentemente es aplicar teoría de grupos en problemas de teoría de números.

Si tomamos un entero $n$, los enteros entre $1$ y $n-1$ que son primos relativos con $n$ forman un grupo con la operación de producto módulo $n$. Si llamamos $\varphi(n)$ a la cantidad de primos relativos con $n$ entre $1$ y $n-1$, el teorema de Lagrange da el siguiente corolario.

Teorema (de Euler). Para todo entero positivo $n$ y $a$ un entero primo relativo con $n$, se tiene que $$a^\varphi(n)\equiv 1\pmod n.$$

Como corolario al teorema de Euler, tenemos el pequeño teorema de Fermat, que hemos discutido previamente aquí en el blog.

Teorema (pequeño teorema de Fermat). Para $p$ un primo y $a$ un entero que no sea múltiplo de $p$, se tiene que $$a^{p-1}\equiv 1 \pmod p.$$

Así, cuando $p$ es primo y $a$ no es múltiplo de $p$, se tiene que el orden de $a$ divide a $p-1$. Veamos un ejemplo en donde esta idea forma parte fundamental de la solución.

Problema. Muestra que para ningún entero $n>1$ se tiene que $n$ divide a $2^n-1$.

Sugerencia pre-solución. Procede por contradicción, suponiendo que sí existe. Considera un primo $p$ que divida a $n$ y que además sea extremo en algún sentido. Trabaja módulo $p$.

Solución. Supongamos que existe un entero $n>1$ tal que $n$ divide a $2^n-1$. Sea $p$ el primo más pequeño que divide a $n$. Tomemos $a$ el orden de $2$ en el grupo multiplicativo $\mathbb{Z}_p$.

Por un lado, como $p$ divide a $n$ y $n$ divide a $2^n-1$, se tiene que $p$ divide a $2^n-1$ y por lo tanto $$2^n\equiv 1 \pmod p.$$ De esta forma, $a$ divide a $n$.

Por otro lado, por el pequeño teorema de Fermat, tenemos que $$2^{p-1}\equiv 1 \pmod p,$$ así que $a$ divide a $p-1$ y por lo tanto $a\leq p-1$.

Si $a\neq 1$, entonces $a$ tiene un divisor primo que divide a $n$ y es menor que $a\leq p-1$, lo cual es imposible pues elegimos a $p$ como el menor divisor primo de $n$. De esta forma, $a=1$. Pero esto da la contradicción $2\equiv 1 \pmod p$.

$\square$

Anillos, dominios enteros y campos

Cuando se están resolviendo problemas, es importante tener en mente que existen otras estructuras algebraicas. Definiremos sólo las más comunes y veremos un problema ejemplo.

Definición. Un anillo es un conjunto $R$ con dos operaciones binarias suma y producto tales que:

  • $R$ con la suma es un grupo conmutativo.
  • El producto en $R$ es asociativo, es decir $(ab)c=a(bc)$ para $a,b,c$ en $R$.
  • Se cumple la ley distributiva, es decir $a(b+c)=ab+ac$ y $(b+c)a=ba+ca$ para $a,b,c$ en $R$.

El producto en $R$ no tiene por qué ser un grupo. De hecho, ni siquiera tiene que tener neutro.

Definición. Si un anillo $R$ tiene neutro, decimos que $R$ es un anillo con $1$. Si la multiplicación de $R$ es conmutativa, decimos que $R$ es conmutativo.

Definición. Un dominio entero es un anillo conmutativo con uno en donde además se vale cancelar, es decir, $ab=ac$ implica $b=c$ y $ba=ca$ implica $b=c$.

Definición. Un campo es un anillo conmutativo con uno en donde cada elemento distinto de la identidad aditiva tiene inverso multiplicativo. En otras palabras, es un anillo en donde la suma y el producto son grupos.

Problema. Muestra que todo dominio entero finito es un campo.

Sugerencia pre-solución. Usa el principio de las casillas.

Solución. Supongamos que $R=\{a_1,\ldots,a_n\}$ es un dominio entero con una cantidad finita de elementos. Lo único que falta para que sea campo es que los elementos tengan inversos multiplicativos.

Sea $a$ un elemento de $R$ y supongamos que $a$ no tiene inverso multiplicativo. Entonces, los números $$a_1a, a_2a,\ldots,a_n a$$ sólo pueden tomar a lo más $n-1$ valores diferentes, de modo que por principio de las casillas existen dos de ellos que son iguales, digamos $a_ia=a_ja$ para $i\neq j$.

Como $R$ es dominio entero, se vale cancelar, lo cual muestra $a_i=a_j$. Esto es una contradicción, pues $a_i$ y $a_j$ eran elementos distintos de $R$. Así, todo elemento tiene inverso multiplicativo.

$\square$

En cursos de matemáticas a nivel superior se ven muchos ejemplos de estas estructuras algebraicas. En cursos de Álgebra Superior se construye el dominio entero de enteros $\mathbb{Z}$. Se construyen los campos $\mathbb{R}$, $\mathbb{Q}$ y $\mathbb{C}$. También, se construyen los anillos de polinomios $\mathbb{F}[x]$. La noción de campo es fundamental cuando se construye la teoría de Álgebra Lineal. Como se puede ver, la teoría de álgebra es muy amplia, así que esta entrada sólo queda como invitación al tema.

Más problemas

Puedes encontrar más problemas de estructuras algebraicas en la Sección 4.4 del libro Problem Solving through Problems de Loren Larson.