Archivo de la etiqueta: lineal

Álgebra Lineal I: Ortogonalidad y transformación transpuesta

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya estudiamos la noción de espacio dual y la de ortogonalidad. También vimos cómo a partir de la ortogonalidad podemos definir subespacios como intersección de hiperplanos. Como veremos a continuación, la ortogonalidad también nos permite definir qué quiere decir que consideremos la «transformación transpuesta» de una transformación lineal.

Antes de comenzar, vale la pena recordar también que cada transformación lineal entre espacios de dimensión finita puede ser expresada mediante una matriz que depende de la elección de bases de los espacios vectoriales. Como tal vez te imaginarás, la transformación transpuesta tendrá como matriz a la matriz transpuesta de la transformación original.

Esta intuición nos dice que hay que tener cuidado. Supongamos que estamos trabajando sobre un campo $F$. Si tenemos espacios vectoriales $V$ de dimensión $n$, $W$ de dimensión $m$ y una tranformación lineal $T:V\to W$, recordemos que, tras elegir bases, $T$ está representada por una matriz $A$ en $M_{m,n}(F)$, es decir, con $m$ filas y $n$ columnas.

Pero la matriz transpuesta $^t A$ es de $n$ filas y $m$ columnas, así que típicamente no representará a una transformación de $V$ a $W$, pues las dimensiones no necesariamente coinciden. Podríamos intentar construir una transformación de $W$ a $V$ para que las dimensiones coincidan, pero resulta que esto no es «tan natural», por razones en las que no profundizaremos.

Lo que sí resulta muy natural y fácil de definir es una transformación de $W^\ast$ a $V^\ast$, lo cual tendrá sentido pues ya probamos que $\dim W^\ast = \dim W$ y $\dim V^\ast = \dim V$, así que será representada por una matriz en $M_{n,m}$. Es un poco más difícil conceptualmente, pero las consecuencias matemáticas son más bonitas y útiles. Sin decir más, comenzamos con la teoría.

Definición y ejemplo de transformación transpuesta

Para definir «transformación transpuesta», le hacemos como sigue.

Definición. Sean $V$ y $W$ espacios vectoriales sobre un campo $F$ y sea $T:V\to W$ una transformación lineal. Definimos la transformación transpuesta de $T$, como la transformación $^tT:W^\ast \to V^\ast$ tal que a cada forma lineal $l$ en $W^\ast$ la manda a la forma lineal $^tT(l)$ en $V^\ast$ para la cual $$(^tT(l))(v)=l(T(v)).$$

Otra forma de escribir a la definición es mediante la notación de emparejamiento canónico: $$\langle ^tT(l),v\rangle=\langle l, T(v)\rangle.$$

Veamos un ejemplo para entender mejor la definición.

Ejemplo. Considera a $V=M_{2}(\mathbb{R})$ y $W=\mathbb{R}^2$. Considera la transformación lineal $T:V\to W$ dada por $$T\begin{pmatrix} a& b\\ c&d\end{pmatrix}=(a+b,c+d).$$

La transformación $^t T$ va a mandar a una forma lineal $l$ de $W$ a una forma lineal $^tT(l)$ de $V$. Las formas lineales $l$ en $W$ se ven de la siguiente forma $$l(x,y)=rx+sy.$$ La forma lineal $^tT(l)$ en $V$ debe satisfacer que $^tT(l)=l\circ T$. En otras palabras, para cualquier matriz $\begin{pmatrix} a& b\\ c&d\end{pmatrix}$ se debe tener
\begin{align*}
(^t T(l)) \begin{pmatrix} a& b\\ c&d\end{pmatrix} &= l(a+b,c+d)\\
&=r(a+b)+s(c+d)\\
&=ra+rb+sc+sd.
\end{align*}

Si tomamos la base canónica $E_{11}$, $E_{12}$, $E_{21}$, $E_{22}$ de $V$ y la base canónica $e_1,e_2$ de $W$, observa que la transformación $T$ tiene como matriz asociada a la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\end{pmatrix}$$ (recuerda que se obtiene poniendo como columnas a los vectores coordenada de las imágenes de la base).

Por otro lado, los vectores de la base dual $e_1^\ast$ y $e_2^\ast$ «leen las coordenadas», de modo que $e_1^\ast(x,y)=x$ y $e_2^\ast(x,y)=y$. Por lo que vimos arriba, $(^t T)(e_1)$ es entonces la forma lineal $a+b$ y $(^t T)(e_2)$ es la forma lineal $c+d$. En términos de la base dual en $V^\ast$, estos son $E_{11}^\ast + E_{12}^\ast$ y $E_{21}^\ast+ E_{22}^\ast$ respectivamente. De esta forma, la transformación $^t T$ tiene matriz asociada $$\begin{pmatrix}1&0\\1&0\\0&1\\0&1\end{pmatrix}.$$

$\triangle$

Nota que en el ejemplo la transformación transpuesta tiene como matriz a la matriz transpuesta de la transformación original. Esto es algo que queremos que pase siempre, y más abajo lo demostramos.

Propiedades básicas de transformación transpuesta

Observa que la definición no necesita que $V$ y $W$ sean de dimensión finita. A continuación enunciamos y probamos algunos resultados que se valen también en el contexto de dimensión infinita.

Teorema 1. Tomemos $V$,$W$,$Z$ espacios vectoriales sobre un campo $F$ y $c$ en $F$. Sean $T_1,T_2: V \to W$ transformaciones lineales. Sea $T_3:W\to Z$ una transformación lineal. Se cumple todo lo siguiente:

  1. $^tT_1$ es una transformación lineal.
  2. $^t(T_1+cT_2)= {^tT_1} + c^tT_2$.
  3. $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$.
  4. Si $V=W$ y $T_1$ es invertible, entonces $^t T_1$ también lo es y $(^t T_1)^{-1}= {^t (T_1^{-1})}$.

Para tener un poco más de intuición, observa cómo estas propiedades son análogas a las de transposición para matrices.

Demostración. Las partes 1 y 2 se demuestran usando cuidadosamente las definiciones. Haremos la demostración de $1$ y la demostración de $2$ queda como tarea moral. Para probar $1$, necesitamos probar que $^tT_1:W^\ast \to V^\ast$ es lineal, así que tomemos $l_1$, $l_2$ en $W^\ast$ y $a$ un escalar en $F$. Tenemos que demostrar que $$ ^tT_1(l_1+a l_2)= {^tT_1(l_1)}+ a ^tT_1(l_2).$$

Ésta es una igualdad de formas lineales en $V^\ast$, y para mostrar su validez tenemos que mostrar que se vale en cada $v\in V$. Por un lado,
\begin{align*}
^tT_1(l_1+a l_2)(v) &= (l_1+a l_2)(T_1(v))\\
&=l_1(T_1(v))+a l_2(T_1(v)).
\end{align*}

Por otro lado,
\begin{align*}
(^tT_1(l_1)+ a ^tT_1(l_2))(v)&= {^tT_1(l_1)(v)}+ a ^tT_1(l_2)(v)\\
&= l_1(T_1(v)) + a l_2(T_1(v)).
\end{align*}

En ambos casos obtenemos el mismo resultado, así que $^tT_1(l_1+a l_2)$ y $^tT_1(l_1)+ a ^tT_1(l_2)$ son iguales, mostrando que $^t T_1$ es lineal.

Pasemos a la parte 3. La igualdad $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$ es una igualdad de transformaciones de $Z^\ast$ a $V^\ast$. Para verificar su veracidad, hay que ver que son iguales en cada elemento en su dominio. Tomemos entonces una forma lineal $l$ en $Z^\ast$. Queremos verificar la veracidad de $$ ^t(T_3\circ T_1)(l) = (^t T_1 \circ ^t T_3)(l),$$ que es una igualdad de formas lineales en $V^\ast$, de modo que tenemos que verificarla para cada $v$ en $V$. Por un lado,

\begin{align*}
^t(T_3\circ T_1)(l)(v)&=l((T_3\circ T_1)(v))\\&=l(T_3(T_1(v))),
\end{align*}

Por otro,
\begin{align*}
(^t T_1 \circ ^t T_3)(l)(v)&=(^tT_1(^t T_3 (l)))(v)\\&=(^t T_3 (l))(T_1(v))\\&=l(T_3(T_1(v))).
\end{align*}

En ambos casos obtenemos el mismo resultado.

Para la parte 4 basta notar que si $V=W$ y $T_1$ es invertible, entonces tiene una inversa $S:V\to V$, y por la parte $3$ tenemos que $$^t S\circ ^t T_1 = {^t(T_1\circ S)} = {^t \text{Id}_V} = \text{Id}_{V^\ast},$$

mostrando que $^t T_1$ tiene inversa $^tS$. Observa que estamos usando que la transpuesta de la transformación identidad es la identidad. Esto no lo hemos probado, pero lo puedes verificar como tarea moral.

$\square$

La matriz transpuesta es la matriz de la transformación transpuesta

Cuando estamos trabajando en espacios de dimensión finita, podemos mostrar que la matriz que le toca a la transformación transpuesta es precisamente la transpuesta de la matriz que le toca a la transformación original. Hacemos esto más preciso en el siguiente resultado.

Teorema 2. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita y $B$ y $B’$ bases de $V$ y $W$ respectivamente. Si $A$ es la matriz de $T$ con respecto a $B$ y $B’$, entonces $^t A$ es la matriz de la transformación $^t T:W^\ast \to V^\ast$ con respecto a las bases duales $B’^\ast$ y $B^\ast$.

Demostración. Necesitamos definir algo de notación. Llamemos $n=\dim V$, $m=\dim W$, $B=\{b_1,\ldots, b_n\}$, $B’=\{c_1,\ldots, c_m\}$ y $A=[a_{ij}]$. Recordemos que la matriz $A$ está hecha por las coordenadas de las imágenes de la base $B$ en términos de la base $B’$, es decir, que por definición tenemos que para toda $j=1,\ldots, n$: \begin{equation}T(b_j)=\sum_{i=1}^{m} a_{ij} c_i.\end{equation}

La transformación $^t T:W^\ast \to V^\ast$ va de un espacio de dimensión $m$ a uno de dimensión $n$, así que en las bases $B’^\ast$ y $B^\ast$ se puede expresar como una matriz de $n$ filas y $m$ columnas. Afirmamos que ésta es la matriz $^t A$. Para ello, basta mostrar que las coordenadas de las imágenes de la base $B’^\ast$ en términos de la base $B^\ast$ están en las filas de $A$, es decir, que para todo $i=1, \ldots, m$ tenemos que $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast.$$

La anterior es una igualdad de formas lineales en $V^\ast$, de modo que para ser cierta tiene que ser cierta evaluada en todo $v$ en $V$. Pero por linealidad, basta que sea cierta para todo $b_j$ en la base $B$. Por un lado, usando (1),

\begin{align*}
^tT(c^\ast_i)(b_j)&=c^\ast_i(T(b_j))\\
&=c^\ast_i \left(\sum_{k=1}^{m} a_{kj} c_i\right)\\
&=\sum_{k=1}^{m} a_{kj} c^\ast_i(c_k)\\
&=a_{ij},
\end{align*}

en donde estamos usando que por definición de base dual $c_i^\ast (c_i)= 1$ y $c_j^\ast (c_i)=0$ si $i\neq j$. Por otro lado,

\begin{align*}
\left(\sum_{k=1}^{n} a_{ik} b_k^\ast\right)(b_j)&= \sum_{k=1}^{n} a_{ik} b_k^\ast(b_j)\\
&=a_{ij},
\end{align*}

en donde estamos usando linealidad y la definición de base dual para $B$.

Con esto concluimos la igualdad $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast,$$ que muestra que podemos leer las coordenadas de las evaluaciones de $^t T$ en $B’^\ast$ en términos de la base $B^\ast$ en las filas de $A$, por lo tanto podemos leerlas en las columnas de $^t A$. Esto muestra que $^t A$ es la matriz correspondiente a esta transformación en términos de las bases duales.

$\square$

Kernel e imagen de la transformación transpuesta

Finalmente, el siguiente resultado nos habla acerca de cómo están relacionadas las transformaciones transpuestas y la ortogonalidad.

Teorema 3. Sea $T:V\to W$ una transformación lineal entre espacios vectoriales de dimensión finita. Entonces

$$\ker (^t T) = (\Ima (T))^\bot,\quad \ker (T)=(\Ima (^t T))^\bot$$

y

$$\Ima (^t T) = (\ker(T))^\bot\,\quad \Ima (T)=(\ker(^t T))^\bot.$$

Demostración. Demostraremos la igualdad $\ker (^t T) = (\Ima (T))^\bot$. Notemos que $l \in \ker(^t T)$ si y sólo si $(^t T)(l)=0$, lo cual sucede si y sólo si $l\circ T = 0$. Pero esto último sucede si y sólo si para todo $v$ en $V$ se tiene que $l(T(v))=0$, que en otras palabras quiere decir que $l(w)=0$ para todo $w$ en $\Ima (T)$. En resumen, $l\in \ker(^t T)$ pasa si y sólo si $l$ se anula en todo $\Ima (T)$ es decir, si y sólo si está en $(\Ima (T))^\bot$.

El resto de las igualdades se demuestran de manera análoga, o alternativamente, usando la bidualidad canónica. Es un buen ejercicio hacerlo y se deja como tarea moral.

$\square$

Más adelante…

En esta entrada enunciamos un resultado muy importante: dada una transformación lineal $T$, su transformación transpuesta tiene como matriz asociada la matriz transpuesta de la matriz asociada de $T$. Este resultado nos permitirá calcular fácilmente la transpuesta de una transformación, como veremos en la entrada de problemas de este tema.

En la siguiente entrada del blog hablaremos por primera vez de formas bilineales: vamos a ver cómo nuestra discusión de transformaciones lineales facilitará mucho abordar este tema.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transpuesta de la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=T(7x+8y,6x+7y)$ es invertible. Encuentra a su transpuesta y a la inversa de la transpuesta explícitamente.
  • Muestra la parte $2$ del Teorema 1.
  • Muestra que la transpuesta de la transformación identidad es la identidad.
  • Demuestra el resto de las igualdades del Teorema 3.
  • Encuentra la transpuesta de la transformación traza que va de $M_n(\mathbb{R})$ a los reales. Recuerda que esta transformación manda a una matriz $A=[a_{ij}]$ a la suma de sus entradas en la diagonal principal, es decir $$A\mapsto a_{11}+a_{22}+\ldots+a_{nn}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de ortogonalidad, ecuaciones e hiperplanos

Por Ayax Calderón

Introducción

En esta entrada ejercitaremos los conceptos introducidos recientemente. Abordamos los temas de espacio ortogonal e hiperplanos. Para ello, resolveremos problemas de ortogonalidad relacionados con encontrar una base para el espacio ortogonal y de escribir subespacios en términos de ecuaciones e intersecciones de hiperplanos.

Problemas resueltos de espacio ortogonal

Problema 1. Sea $S=\{x^3+x, x^2+x ,-x^3+x^2+1\} \subseteq \mathbb{R}_3[x]$.
Describe $S^{\bot}$ dando una base de este espacio.

Solución. Una forma lineal $l$ sobre $\mathbb{R}_3[x]$ es de la forma

$l(a_0 + a_1x+a_2x^2+a_3x^3)=aa_0+ba_1+ca_2+da_3$

para algunos $a, b,c,d\in \mathbb{R}$, pues basta decidir quiénes son $a=l(1)$, $b=l(x)$, $c=l(x^2)$ y $d=l(x^3)$.

La condición $l\in S^{\bot}$ es equivalente a

$l(x^3+x)=l(x^2+x)=l(-x^3+x^2+1)=0.$

Esto es
\begin{align*}
l(x^3+x)&=b+d=0\\
l(x^2+x)&=b+c=0\\
l(-x^3+x^2+1)&=a+c-d=0.
\end{align*}

La matriz asociada al sistema es

$A=\begin{pmatrix}
0 & 1 & 0 & 1\\
0 & 1 & 1 & 0\\
1 & 0 & 1 & -1\end{pmatrix}$

y su forma escalonada reducida es

$A_{red}=\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 1\\
0 & 0 & 1 & -1\end{pmatrix}.$

Así, $d$ es variable libre y \begin{align*} a&=0\\ b&=-d\\ c&=d.\end{align*}

De aquí, el conjunto de soluciones del sistema es
$$\{(0,-u,u,u) : u\in \mathbb{R}\}.$$

Las correspondientes formas lineales son $$l_u(a_0+a_1x+a_2x^2+a_3x^3)=u(-a_1+a_2+a_3).$$

Este es un subespacio de dimensión $1$, así que para determinar una base para $S^{\bot}$, basta con elegir una de estas formas lineales con $u\neq 0$, por ejemplo, para $u=1$ tenemos
$$l_1(a_o+a_1x+a_2x^2+a_3x^3)=-a_1+a_2+a_3.$$

$\triangle$

Problema 2. Sea $V$ un espacio vectorial sobre un campo $F$, sea $V^\ast$ su espacio dual y tomemos subconjuntos $S, S_1, S_2\subseteq V^\ast$ tales que $S_1\subseteq S_2$. Prueba lo siguiente.

  1. $S_2^{\bot}\subseteq S_1^{\bot}$.
  2. $S\subseteq (S^{\bot})^{\bot}$.

Solución.

  1. Sea $l\in S_2^{\bot}$. Por definición $l(s)=0$ para toda $s\in S_2$.
    Luego, si $s\in S_1$, entonces $s\in S_2$ y así $l(s)=0$. Por consiguiente $l\in S_1^{\bot}$. Concluimos $S_2^{\bot}\subseteq S_1^{\bot}$.
  2. Sea $s\in S$. Para cualquier $l\in S^{\bot}$ se cumple que $l(s)=0$ y así $s\in (S^{\bot})^{\bot}$

$\square$

Observación. El problema anterior también es cierto si suponemos que $S, S_1, S_2\subseteq V$ tales que $S_1\subseteq S_2$ y la prueba es idéntica a la anterior.

Observación. Por muy tentador que sea pensar que la igualdad se da en el inciso 2 del problema anterior, esto es totalmente falso: $(S^{\bot})^{\bot}$ es un subespacio de $V$ (o de $V^\ast$), mientras que no hay razón para que $S$ lo sea, pues este es solamente un subconjunto arbitrario de $V$ (o $V^\ast$). Como vimos en una entrada anterior, la igualdad se da si $S$ es un subespacio de $V$ (o de $V^\ast$) cuando $V$ es un subespacio de dimensión finita.

Problemas resueltos de ecuaciones lineales y de hiperplanos

Veamos ahora problemas de ortogonalidad relacionados con encontrar expresiones para un subespacio en términos de ecuaciones lineales y de hiperplanos.

Problema 1. Sea $W$ el subespacio de $\mathbb{R}^4$ generado por los vectores

$v_1=(1,1,0,1)$
$v_2=(1,2,2,1).$

Encuentra ecuaciones lineales en $\mathbb{R}^4$ cuyo conjunto solución sea $W$.

Solución. Necesitamos encontrar una base para $W^{\bot}$.
Recordemos que $W^{\bot}$ consiste de todas las formas lineales

$l(x,y,z,t)=ax+by+cz+dt$

tales que $l(v_1)=l(v_2)=0$, es decir
\begin{align*}
a+b+d&=0\\
a+2b+2c+d&=0.
\end{align*}

La matriz asociada al sistema anterior es

$A=\begin{pmatrix}
1 & 1 & 0 & 1\\
1 & 2 & 2 & 1\end{pmatrix}$

y por medio de reducción gaussiana llegamos a que su forma reducida escalonada es

$A_{red}=\begin{pmatrix}
1 & 0 & -2 & 1\\
0 & 1 & 2 & 0\end{pmatrix}.$

De aquí, $c$ y $d$ son variables libres y $a$ y $b$ son variables pivote determinadas por
\begin{align*}a&=2c-d\\b&=-2c.\end{align*}

Por lo tanto,
\begin{align*}
l(x,y,z,t)&=(2c-d)x-2cy+cz+dt\\
&=c(2x-2y+z)+d(-x+t).
\end{align*}

Así, deducimos que una base para $W^{\bot}$ está dada por

$l_1(x,y,z,t)=2x-2y+z$ y $l_2(x,y,z,t)=-x+t$

y por consiguiente $W=\{v\in \mathbb{R}^4 : l_1(v)=l_2(v)=0\}$, de donde $$l_1(v)=0, l_2(v)=0$$ son ecuaciones cuyo conjunto solución es $W$.

$\triangle$

Problema 2. Considera el espacio vectorial $V=\mathbb{R}_3[x]$. Escribe el subespacio vectorial generado por $p(x)=1-2x^2$ y $q(x)=x+x^2-x^3$ como la intersección de dos hiperplanos linealmente independientes en $V$.

Solución. Sea $\mathcal{B}=\{1,x,x^2,x^3\}=\{e_1,e_2,e_3,e_4\}$ la base canónica de $V$.

Entonces

\begin{align*}
p(x)&=e_1-2e_3\\
q(x)&=e_2+e_3-e_4.
\end{align*}

Escribir $W=\text{span}(p(x),q(x))$ como intersección de dos hiperplanos es equivalente a encontrar dos ecuaciones que definan a $W$, digamos $l_1(v)=l_2(v)=0$ pues entonces $$W=H_1 \cap H_2,$$ donde $H_1=\ker(l_1)$ y $H_2=\ker(l_2)$.

Así que sólo necesitamos encontrar una base $l_1,l_2$ de $W^{\bot}$.

Recordemos que una forma lineal en $\mathbb{R}_3[x]$ es de la forma $$l_1(x_1e_1+x_2e_2+x_3e_3+x_4e_4)=ax_1+bx_2+cx_3+dx_4$$

para algunos $a,b,c,d \in \mathbb{R}$.

Esta forma lineal $l$ pertenece a $W^{\bot}$ si y sólo si $$l(p(x))=l(q(x))=0,$$ o bien

\begin{align*}
a-2c&=0\\
b+c-d&=0.
\end{align*}

Podemos fijar $c$ y $d$ libremente y despejar $a$ y $b$ como sigue:

\begin{align*}a&=2c\\b&=-c+d.\end{align*}

Por consiguiente

\begin{align*}
l(x_1e_1&+x_2e_2+x_3e_3+x_4e_4)\\
&=2cx_1+(-c+d)x_2+cx_3+dx_4\\
&=c2x_1-x_2+x_3)+d(x_2+x_4).
\end{align*}

Así deducimos que una base $l_1,l_2$ de $W^{\bot}$ está dada por

\begin{align*}
l_1(x_1e_1+x_2e_2+x_3e_3+x_4e_4)&=2x_1-x_2+x_3\\
l_2(x_1e_1+x_2e_2+x_3e_3+x_4e_4)&=x_2+x_4.
\end{align*}

y así $W=H_1\cap H_2$, donde

\begin{align*}
H_1&=\ker(l_1)=\{a+bx+cx^2+dx^3\in V : 2a-b+c=0\}\\
H_2&=\ker(l_2)=\{a+bx+cx^2+dx^3\in V : b+d=0\}.
\end{align*}


$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Ortogonalidad, hiperplanos y ecuaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hablamos de formas lineales, del espacio dual y de ortogonalidad. Con la teoría que hemos desarrollado en esas entradas, podemos cosechar uno de los hechos más importantes para espacios vectoriales de dimensión finita $n$: todos los subespacios se pueden obtener a partir de intersectar hiperplanos, es decir, subespacios de dimensión $n-1$. El objetivo de esta entrada es dar las definiciones necesarias para enunciar y demostrar este resultado formalmente.

Hiperplanos

Antes de demostrar el resultado mencionado en la introducción, tomaremos un poco de intuición geométrica de $\mathbb{R}^3$.

En $\mathbb{R}^3$ tenemos sólo un subespacio de dimensión $0$, que es $\{(0,0,0)\}$, un punto. Para obtener un subespacio de dimensión $1$, tenemos que tomar un vector $v\neq 0$ y considerar todos los vectores $rv$ con $r$ en $\mathbb{R}$. Esto corresponde geométricamente a una línea por el origen, con la misma dirección que $v$. En otras palabras, los subespacios de dimensión $1$ son líneas por el origen.

¿Quiénes son los subespacios de dimensión $2$? Debemos tomar dos vectores linealmente independientes $u$ y $v$ y considerar todas las combinaciones lineales $au+bv$ de ellos. Es más o menos fácil convencerse de que obtendremos al plano que pasa por $u$, $v$ y el $(0,0,0)$. Es decir, los subespacios de dimensión $2$ de $\mathbb{R}^3$ son planos por el origen.

Esto motiva la siguiente definición.

Definición 1. Sea $V$ un espacio vectorial de dimensión finita $n$. Un hiperplano de $V$ es un subespacio de dimensión $n-1$.

Ejemplo. El subespacio $U=\mathbb{R}_5[x]$ de $V=\mathbb{R}_6[x]$ es un hiperplano. Esto es ya que $U$ es de dimesión $6$ y $V$ es de dimensión $7$. Sin embargo, aunque $U$ también es un subespacio de $W=\mathbb{R}_7[x]$, no se cumple que $U$ sea hiperplano de $W$ pues $W$ es de dimensión $8$ y $6\neq 8-1$.

Las matrices simétricas de $M_2(\mathbb{R})$ forman un subespacio $S$ de dimensión $3$ de $M_2(\mathbb{R})$, pues son de la forma $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. De esta forma, $S$ es un hiperplano de $M_2(\mathbb{R})$. Sin embargo, el conjunto de matrices simétricas de $M_n(\mathbb{R})$ no es un hiperplano ni para $n=1$, ni para $n\geq 3$.

$\triangle$

Los hiperplanos nos pueden ayudar a obtener subespacios. De hecho, veremos que en el caso de dimensión finita nos ayudan a obtener a todos los subespacios. Para continuar construyendo la intuición, notemos que en $\mathbb{R}^3$ los hiperplanos son simplemente los planos por el origen y que:

  • Podemos obtener a cualquier plano por el origen como intersección de planos por el origen: simplemente lo tomamos a él mismo.
  • Podemos obtener a cualquier línea por el origen como la intersección de dos planos distintos por el origen que la contengan. Por ejemplo, el eje $z$ es la intersección de los planos $xz$ y $yz$. En otras palabras: todo subespacio de dimensión $1$ de $\mathbb{R}^3$ se puede obtener como la intersección de dos hiperplanos de $\mathbb{R}^3$.
  • A $\{0\}$ lo podemos expresar como la intersección de los planos $xy$, $yz$ y $xz$, osea, al único espacio de dimensión cero lo podemos expresar como intersección de $3$ hiperplanos.

Ya obtenida la intuición, lo que veremos a continuación es que el resultado anterior en realidad es un fenómeno que sucede en cualquier espacio vectorial de dimensión finita. Así, nos enfocaremos en entender las definiciones del siguiente teorema, y demostrarlo.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$.

  • Todo subespacio $W$ de $V$ de dimensión $m$ es la intersección de $n-m$ hiperplanos de $V$ linealmente independientes.
  • Toda intersección de $n-m$ hiperplanos de $V$ linealmente independientes es un subespacio vectorial de dimensión $m$.

Los hiperplanos son subespacio y la definición de independencia lineal que tenemos es para vectores. Pero el teorema anterior habla de «hiperplanos linealmente independientes». ¿A qué se refiere esto? Como veremos más adelante, a cada hiperplano se le puede asignar de manera natural un elemento del espacio dual de $V$.

Recordatorio de espacio ortogonal

En la entrada anterior mostramos el siguiente resultado:

Teorema (teorema de dualidad). Sea $V$ un espacio vectorial de dimensión finita sobre $F$ y $W$ un subespacio de $V$ (o de $V^\ast)$. Entonces $$\dim W + \dim W^\bot = \dim V.$$

Además, obtuvimos como corolario lo siguiente:

Corolario. Si $V$ es un espacio vectorial de dimensión finita sobre un campo $F$ y $W$ un subespacio de $V$ (o de $V^\ast$), entonces $(W^\bot)^\bot=W$.

Usaremos estos resultados para dar una definición alternativa de hiperplanos, para entender a los subespacios de dimensión $n-1$ y para mostrar el teorema principal de esta entrada.

Subespacios de dimensión $n-1$ y definición alternativa de hiperplanos

Tomemos un espacio vectorial $V$ de dimensión finita $n$. Un caso especial, pero muy importante, del teorema de dualidad es cuando $W$ es un subespacio de $V^\ast$ de dimensión $1$, es decir, cuando $W$ está generado por una forma lineal $l\neq 0$. En este caso, $W^\bot$ es un subespacio de $V$ y por el teorema de dualidad, es de dimensión $n-1$.

De manera inversa, si $W$ es un subespacio de $V$ de dimensión $n-1$, por el teorema de dualidad tenemos que $W^\bot$ es de dimensión $1$, así que hay una forma lineal $l\neq 0$ que lo genera. Por el corolario, $W=(W^\bot)^\bot$, que en otras palabras quiere decir que $W=\{v\in V: l(v)=0\}.$ En resumen:

Proposición. Un subespacio $W$ de un espacio de dimensión finita $d$ tiene dimensión $d-1$ si y sólo si es el kernel de una forma lineal $l\neq 0$ de $V$.

Ejemplo 1. Considera la forma lineal $\text{ev}_0$ en el espacio vectorial $V=\mathbb{C}_n[x]$ de polinomios con coeficientes complejos y grado a lo más $n$. Los polinomios $p$ tales que $\text{ev}_0(p)=0$ son exactamente aquellos cuyo término libre es $0$. Este es un subespacio vectorial de $V$ de dimensión $n=\dim V – 1$, pues una base para él son los polinomios $x, x^2, \ldots, x^n$.

$\triangle$

Problema. Considera el espacio vectorial $V=M_{2,3}(\mathbb{R})$. Considera $W$ el subconjunto de matrices cuya suma de entradas en la primer columna es igual a la suma de entradas de la segunda columna. Muestra que $W$ es un subespacio de dimensión $5$ y escríbelo como el kernel de una forma lineal.

Solución. Mostrar que $W$ es un subespacio de $V$ es sencillo y se queda como tarea moral. Se tiene que $W$ no puede ser igual a todo $V$ pues, por ejemplo, la matriz $\begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$ no está en $W$, así que $\dim W\leq 5$.

Las matrices $\begin{pmatrix} 1 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1\\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$ son linealmente independientes y están en $W$, así que $\dim W\geq 5$, y junto con el párrafo anterior concluimos que $\dim W = 5$.

Finalmente, tomemos la forma lineal $$l\begin{pmatrix} a & b & c\\ d& e& f\end{pmatrix}=a+d-b-e.$$ Tenemos que una matriz está en el kernel de $l$ si y sólo si $a+d-b-e=0$, si y sólo si $a+d=b+e$, es decir, si y sólo si las entradas de la primer columna tienen la misma suma que las de la segunda. Así, $W=\ker l$.

$\square$

La proposición anterior nos permite dar una definición alternativa de hiperplano y hablar de hiperplanos linealmente independientes.

Definición 2. Sea $V$ un espacio vectorial. Un hiperplano es el kernel de una forma lineal $l\neq 0$ en $V^\ast$. Una familia de hiperplanos es linealmente independiente si sus formas lineales correspondientes son linealmente independientes en $V^\ast$.

Observa además que la definición anterior también sirve para espacios vectoriales de dimensión infinita, pues nunca hace referencia a la dimensión que debe tener un hiperplano.

Ejemplo 2. El conjunto de funciones continuas $f$ en el intervalo $[0,1]$ tales que $$\int_0^1 f(x) \, dx = 0$$ son un subespacio $W$ de $\mathcal{C}[0,1]$. Este subespacio es un hiperplano pues es el kernel de la forma lineal $I$ tal que $$I(f)=\int_0^1 f(x)\, dx.$$

$\square$

No mencionaremos más de espacios de dimensión infinita en esta entrada.

Escribiendo subespacios como intersección de hiperplanos

Ya podemos entender el teorema principal de esta entrada y demostrarlo. Lo enunciamos nuevamente por conveniencia.

Teorema 2. Sea $V$ un espacio vectorial de dimensión finita $n$.

  • Todo subespacio $W$ de $V$ de dimensión $m$ es la intersección de $n-m$ hiperplanos de $V$ linealmente independientes.
  • Toda intersección de $n-m$ hiperplanos de $V$ linealmente independientes es un subespacio vectorial de dimensión $m$.

Demostración. Tomemos un espacio vectorial $V$ de dimensión finita $n$ y un subespacio $W$ de dimensión $m$. Por el teorema de dualidad, la dimensión de $\dim W^\bot$ es $n-m$. Tomemos una base $B=\{l_1,l_2,\ldots,l_{n-m}\}$ de $W^\bot$. Por el corolario al teorema de dualidad, podemos expresar a $W$ como $$W=(W^\bot)^\bot=\{v\in V: l_1(v)=\ldots=l_{n-m}(v)=0\}.$$

Si definimos $L_i=\{v\in V: l_i(v)=0\}$, por la proposición de la sección anterior tenemos que cada $L_i$ es un hiperplano de $V$. Además, $$W=L_1\cap \ldots\cap L_{n-m}.$$ Como los $l_i$ son linealmente independientes, con esto logramos expresar a $W$ como intersección de $n-m$ hiperplanos linealmente independientes.

Probemos ahora la segunda parte de la proposición. Tomemos el conjunto $S=\{l_1,\ldots,l_{n-m}\}$ de formas linealmente independientes que definen a los hiperplanos. Un vector $v$ está en la intersección de todos estos hiperplanos si y sólo si $l_1(v)=\ldots=l_{n-m}(v)=0$, si y sólo si está en $S^\bot=\text{span}(S)^\bot$. Es decir, la intersección de los hiperplanos es precisamente el subespacio $\text{span}(S)^\bot$. Como $S$ es linealmente independiente, tenemos que $ \text{span}(S)$ es de dimensión $n-m$, de modo que por el teorema de dualidad, $\dim \text{span}(S)^\bot = n-(n-m)=m$. Esto muestra lo que queremos.

$\square$

Algunos problemas prácticos

Si tenemos un espacio $V$ de dimensión finita $n$, un subespacio $W$ de dimensión finita $m$ y queremos encontrar de manera práctica la expresión de $W$ como intersección de hiperplanos de $V$, podemos hacer el siguiente procedimiento:

  • Determinamos una base $l_1,\ldots,l_{n-m}$ para $W^\bot$ (la cual consiste de formas lineales de $V^\ast$). Esto lo podemos hacer con los pasos que mencionamos en la entrada anterior.
  • Definimos $L_i=\{v\in V: l_i(v)=0\}$.
  • Tendremos que $W$ es la intersección de los $L_i$.

Una última observación es que cada $L_i$ está definido por una ecuación lineal. Esto nos permite poner a cualquier subespacio como el conjunto solución a un sistema lineal. Esto lo cual podemos ver de forma práctica de la siguiente manera:

  • Tomamos una base $e_1,\ldots,e_n$ de $V$.
  • Tomemos un vector $v=a_1e_1+\ldots+a_ne_n$ que queremos determinar si está en $W$. Para ello, debe estar en cada $L_i$.
  • Cada $L_i$ está definido mediante la ecuación $l_i(v)=0$ de modo que si $v$ está en $L_i$ sus coordenadas $a_1,\ldots,a_n$ en la base $e_1,\ldots,e_n$ deben satisfacer la ecuación lineal $$l_i(e_1)a_1+\ldots+l_i(e_n)a_n=0.$$
  • De esta forma, los vectores $v$ en $W$ son aquellos cuyas coordenadas en la base $e_1,\ldots, e_n$ satisfacen el sistema de ecuaciones obtenido de las ecuaciones lineales para cada $i$ del punto anterior.

Veremos algunos ejemplos de estos procedimientos en la siguiente entrada.

La receta anterior nos permite concluir la siguiente variante del teorema de esta entrada, escrito en términos de ecuaciones lineales.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B$ una base de $V$.

  • Un subespacio $W$ de dimensión $m$ se puede definir mediante un sistema de ecuaciones lineales independientes que deben satisfacer las coordenadas de los vectores de $W$ escritos en la base $B$.
  • Aquellos vectores cuyas coordenadas en la base $B$ satisfacen un sistema de ecuaciones lineales independientes homogéneo, forman un subespacio de $V$ de dimensión $n-m$.

La moraleja de esta entrada es que podemos pensar que los sistemas de ecuaciones, las intersecciones de hiperplanos y los subespacios de un espacio vectorial de dimensión finita son «prácticamente lo mismo».

Más adelante…

A lo largo de esta entrada enunciamos las definiciones necesarias para llegar al teorema que mencionamos al inicio: para un espacio vectorial de dimension finita $n$, todos los subespacios se pueden obtener a partir de intersectar hiperplanos, es decir, subespacios de dimensión $n-1$.

En la siguiente entrada utilizaremos este resultado para resolver algunos ejercicios y veremos en acción este importante teorema.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Considera el plano $P$ en $\mathbb{R}^3$ que pasa por el origen y por los vectores $(1,1,1)$, $(0,2,0)$. Encuentra reales $a,b,c$ tales que $$P=\{(x,y,z): ax+by+cz = 0 \}.$$
  • En todos los ejemplos en los que se menciona que algo es subespacio, verifica que en efecto lo sea. En los que se menciona que un conjunto es base, también verifica esto.
  • Encuentra una base para el espacio de polinomios $p$ en $M_n(\mathbb{C})$ tales que $\text{ev}(1)(p)=0$.
  • Sea $W$ el subconjunto de matrices de $V:=M_n(\mathbb{R})$ tal que la sumas de las entradas de todas las filas son iguales. Muestra que $W$ es un subespacio de $V$. Determina la dimensión de $W$ y exprésalo como intersección de hiperplanos linealmente independientes.
  • ¿Qué sucede cuando intersectas hiperplanos que no corresponden a formas linealmente independientes? Más concretamente, supongamos que tienes formas lineales $l_1,\ldots,l_m$ de $F^n$. Toma $B=\{e_1,\ldots,e_n\}$ la base canónica de $F^n$. Considera la matriz $A=[l_i(e_j)]$. ¿Qué puedes decir de la dimensión de la intersección de los hiperplanos correspondientes a los $l_i$ en términos del rango de la matriz $A$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Modelo de epidemia básico con álgebra lineal y Python

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada voy a platicar de una forma en la que se puede plantear un modelo de epidemia básico usando álgebra lineal. Es un modelo bastante simple, sin embargo a partir de él se pueden verificar varias de las lecciones que hemos estado aprendiendo durante la crisis del coronavirus. A grandes rasgos, haremos algunas suposiciones razonables para plantear una epidemia como un modelo de Markov.

Ya que hagamos esto, estudiaremos dos escenarios posibles: en el que la gente sale de sus casas y en el que la gente se queda en sus casas. Para ello usaremos las librerías NumPy y Matplotlib de Python para hacer las cuentas y generar bonitas gráficas como la siguiente:

Gráfica de evolución de la población con contagio bajo, bajo las suposiciones de nuestro modelo de epidemia básico
Ejemplo del tipo de gráficas que obtendremos en la entrada

En particular, veremos que incluso de este modelo simple se notan contrastes importantes en ambos escenarios. En particular, se puede deducir la importancia de #QuédateEnCasa para retrasar el contagio y no saturar los sistemas de salud.

Advertencia: De ninguna forma esta entrada pretende modelar, específicamente, la evolución del coronavirus. Para ello hay expertos trabajando en el tema, y están usando modelos mucho más sofisticados que el que platicaré. Esta entrada es, en todo caso, una introducción al tema y ayuda a explicar, poco a poco, algunos de los argumentos que se usan en modelación matemática de epidemias.

Suposiciones y modelo tipo Markov

Comenzemos a plantear el modelo de epidemia básico. Pensemos en una enfermedad imaginaria, que se llama «Imagivid» y en un territorio imaginario que se llama «Imagilandia», donde la población inicial es de $100,000$ habitantes sanos, en el día $0$.

Vamos a pensar que una persona puede estar en alguno de los siguientes cinco estados:

  • Sano
  • Síntomas leves
  • Síntomas graves
  • Recuperado
  • Fallecido

Para cada día $n$, consideremos el vector $$X(n)=(s(n),l(n),g(n),r(n),f(n))$$ de $5$ entradas cuyas entradas son los sanos, de síntomas leves, de síntomas graves, recuperados y fallecidos al día $n$. Por ejemplo al día $0$ dijimos que todos están sanos, así que $X(0)=(100000,0,0,0,0)$.

Haremos las siguientes suposiciones de cómo se pasa de un estado a otro

  • Los únicos fallecidos del periodo de tiempo que tendremos son por Imagivid. Sólo se puede fallecer de ello tras tener síntomas graves. Si alguien tiene síntomas graves, entonces tiene cierta probabilidad $g_f$ de fallecer al día siguiente, $g_r$ de recuperarse y por lo tanto $1-g_r-g_f$ de quedarse como enfermo grave.
  • Imagivid se contagia de persona a persona, y de un día a otro una persona tiene probabilidad $s_l$ de pasar de estar sana a tener síntomas leves. No se puede pasar directamente a tener síntomas graves, recuperarse o morir. De modo que se queda sana de un día a otro con probabilidad $1-s_l$
  • Si una persona tiene síntomas leves, tiene probabilidad $l_g$ de pasar a tener síntomas graves y $l_r$ de pasar a recuperarse. Por lo tanto, tiene probabilidad $1-l_g-l_r$ de quedarse con síntomas leves.
  • Una persona que se recupera desarrolla inmunidad a Imagivid, así que se queda en ese estado.
  • Una persona que fallece, se queda en ese estado.

En otras palabras, tenemos el siguiente diagrama de cómo se pasa de tener un estado a otro, en donde los números en las flechas muestran la probabilidad de pasar de un estado a otro:

Diagrama de probabilidades de transición entre estados en el modelo de epidemia básico
Diagrama de probabilidades de transición

En lenguaje técnico, estamos modelando a la epidemia como un proceso de Markov. Sin embargo, no es necesario entender toda la teoría de procesos de Markov para entender lo que sigue, pues la idea es bastante intuitiva.

Con estos números y suposiciones, podemos entender, en valor esperado, cómo será el vector de población $$X(n+1)=(s(n+1), l(n+1), g(n+1), r(n+1), f(n+1))$$ si sabemos cómo es el vector $$X(n)=(s(n), l(n), g(n), r(n), f(n)).$$ Por ejemplo, podemos esperar que la cantidad de recuperados al día $n+1$ sea $$r(n+1)=l_r \cdot l(n)+ g_r \cdot g(n) + 1 \cdot r(n),$$ pues de los de síntomas leves del día $n$ habrá una proporción $l_r$ de ellos que se recuperen, de los graves del día $n$ habrá una proporción $g_r$ de ellos que se recuperen, y todos los recuperados del día $n$ se quedan recuperados. De esta forma, obtenemos el siguiente sistema de ecuaciones de lo que podemos esperar:
\begin{align*}
s(n+1)&=(1-s_l) \cdot s(n)\\
l(n+1)&=s_l \cdot s(n) + (1-l_r-l_g) \cdot l(n)\\
g(n+1)&= l_g \cdot l(n) + (1-g_r-g_f) \cdot g(n)\\
r(n+1)&=l_r \cdot l(n) + g_r \cdot g(n) + 1 \cdot r(n)\\
f(n+1)&=g_f \cdot g(n) + 1 \cdot f(n),
\end{align*}

Este sistema de ecuaciones se puede escribir de una forma mucho más compacta. Si definimos la matriz $$A=\begin{pmatrix} 1-s_l & 0 & 0 & 0 & 0 \\s_l & 1-l_r-l_g & 0 & 0 & 0 \\0 & l_g & 1-g_r-g_f & 0 & 0 \\ 0 & l_r & g_r & 1 & 0\\ 0 & 0 & g_f & 0 & 1 \end{pmatrix},$$ las ecuaciones anteriores se pueden abreviar simplemente a $$X(n+1)=AX(n).$$

De esta forma, si queremos entender qué esperar del día $n$, basta hacer la multiplicación matricial $X(n)=A^n X(0)$.

Un ejemplo concreto en Python

El modelo de epidemia básico que planteamos arriba depende de cinco parámetros:

  • $s_l$, la probabilidad de pasar de estar sano a tener síntomas leves,
  • $l_g$, la probabilidad de pasar de tener síntomas leves a graves,
  • $l_r$, la probabilidad de pasar de tener síntomas leves a recuperarse,
  • $g_r$, la probabilidad de pasar de tener síntomas graves a recuperarse y
  • $g_f$, la probabilidad de pasar de tener síntomas graves, a fallecer.

Hagamos un ejemplo concreto, en el que estos parámetros para Imagivid son los siguientes: $s_l=0.30$, $l_g=0.10$, $l_r=0.20$, $g_r=0.10$ y $g_f=0.10$. En «la vida real», para hacer una modelación correcta se tienen que estimar estos parámetros de lo que ya se sepa de la enfermedad.

Si ponemos estos valores, la matriz que obtenemos es la siguiente:

$$A=\begin{pmatrix} 0.7 & 0 & 0 & 0 & 0 \\0.3 & 0.7 & 0 & 0 & 0 \\0 & 0.1 & 0.8 & 0 & 0 \\ 0 & 0.2 & 0.1 & 1 & 0\\ 0 & 0 & 0.1 & 0 & 1 \end{pmatrix}.$$

Vamos a usar la fórmula que obtuvimos en la sección anterior para entender cómo va evolucionando la epidemia de Imagivid. Para no hacer las cuentas a mano, usaremos Python. Trabajaremos con Python 3 y usaremos Numpy (para las cuentas de matrices) y Matplotlib (para visualizar gráficas). En el siguiente código definimos la población inicial, los parámetros de transición y la matriz de la sección anterior.

import numpy as np
import matplotlib.pyplot as plt
# En cada momento tendremos un vector
# de la distribución de la población
# (sanos, sintomas leves, sintomas graves,
# recuperados, fallecidos)

# Población inicial
x_0=(100000,0,0,0,0)

# Definimos las probabilidades de
# transición

S_L = 0.30
L_G = 0.10
L_R = 0.20
G_R = 0.10
G_F = 0.10

# Definimos la matriz A
A=np.array([[1-S_L,0,0,0,0],[S_L,1-L_G-L_R,0,0,0],[0,L_G,1-G_R-G_F,0,0],[0,L_R,G_R,1,0],[0,0,G_F,0,1]])

Vamos a estudiar la evolución de Imagivid por 60 días. Por ello, vamos a hacer un bucle en Python que calcule cómo son los vectores de población de todos estos 60 días. Para empezar a entender cómo funciona nuestro modelo de epidemia, también pediremos que muestre los valores para los días 1, 2 y 3.

# Encontramos la evolución de la
# epidemia los primeros 60 días
evolution=[x_0]
for j in range(60):
    evolution.append(np.matmul(A,evolution[-1]))
# Mostramos lo que pasa los primeros
# 3 días
for j in range(1,4):
    print(evolution[j])

Los valores que obtenemos son
\begin{align*}
X_1 &= (70000,30000,0,0,0)\\
X_2 &= (49000, 42000, 3000, 6000)\\
X_3 &= (34300, 44100, 6600, 14700, 300).
\end{align*}

Esto nos dice que al primer día hay $70000$ sanos y $30000$ con síntomas leves. En los primeros dos días no hay fallecidos, pues de acuerdo a nuestro modelo de epidemia un habitante primero debe presentar síntomas leves, luego graves y luego ya tal vez fallece. Al día 3 el modelo predice $300$ fallecidos.

Esto son sólo tres días, pero sería bueno poder entender qué sucede en todo el periodo de 60 días. Para ello, vamos a pedir a Python que nos muestre una gráfica de cómo evoluciona la población a través del tiempo. Para ello hacemos lo siguiente

# Hacemos gráfica para mostrar la evolución de todo el tiempo
plt.plot([j[0] for j in evolution], label="Sanos")
plt.plot([j[1] for j in evolution], label="Síntomas leves")
plt.plot([j[2] for j in evolution], label="Síntomas graves")
plt.plot([j[3] for j in evolution], label="Recuperados")
plt.plot([j[4] for j in evolution], label="Fallecidos")
plt.title("Evolución de la población, contagio=0.30")
plt.legend()
plt.show()

Obtenemos la siguiente imagen

Evolución de la población con contagio $0.30$

La gráfica tiene sentido es de esperarse que, tras cierta cantidad de tiempo, ya sólo haya habitantes recuperados y fallecidos. Notemos que hay un momento el el que la población con síntomas leves es de aproximadamente $40,000$ habitantes y que la población con síntomas graves llega a ser, en algún momento, como de $12,000$ habitantes.

¿Qué sucede al final de nuestro periodo de estudio? Si le pedimos a Python que nos de las últimas dos entradas del vector de población al día $60$,

#Mostramos recuperados y fallecidos al último día
print(evolution[-1][3])
print(evolution[-1][4])

obtenemos $\sim 83,333$ recuperados y $\sim 16,666$ fallecidos al día $60$, de modo que en este escenario la epidemia cobró $16,666$ vidas de Imagilandia. De hecho una observación muy importante, viendo la gráfica, es que ya se tenía prácticamente esta cantidad de víctimas desde el día 30.

Disminuir la tasa de infección para retrasar la epidemia

Antes de que sucediera la tragedia, las autoridades de Imagilandia estudiaron el modelo de epidemia que acabamos de mencionar y se dieron cuenta de que tenían que tomar una acción inmediata para mejorar la situación. Decidieron que una cosa muy importante para que la situación mejorara era pedirle a la gente que se quedara en sus casas lo más posible, pues con ello se disminuiría la tasa de contagio. Para ello sacaron la campaña #QuédateEnCasa. Las personas hicieron caso.

Habiendo más personas sanas y enfermas en su propia casa, ahora ni los enfermos pueden contagiar a sanos, ni los sanos estar expuestos a enfermos. Así, una persona sana ahora tiene menor probabilidad de estar enferma al día siguiente. Supongamos que $s_l$ pasa de ser $0.30$ a ahora ser $0.05$. De esta forma, ahora tenemos una nueva matriz que ayuda a calcular la evolución de la pandemia:

$$A=\begin{pmatrix} 0.95 & 0 & 0 & 0 & 0 \\0.05 & 0.7 & 0 & 0 & 0 \\0 & 0.1 & 0.8 & 0 & 0 \\ 0 & 0.2 & 0.1 & 1 & 0\\ 0 & 0 & 0.1 & 0 & 1 \end{pmatrix}.$$

Vamos a pedirle de nuevo a Python que haga las cuentas para los primeros 60 días bajo las suposiciones de nuestro modelo de epidemia y que nos muestre una gráfica de la evolución de la población.

# Definimos las probabilidades de transición, que son iguales salvo que ahora la tasa de contagio es menor, y por lo tanto S_L es menor

S_L = 0.05
L_G = 0.10
L_R = 0.20
G_R = 0.10
G_F = 0.10

# Definimos la matriz A
A=np.array([[1-S_L,0,0,0,0],[S_L,1-L_G-L_R,0,0,0],[0,L_G,1-G_R-G_F,0,0],[0,L_R,G_R,1,0],[0,0,G_F,0,1]])

evolution2=[x_0]
for j in range(60):
    evolution2.append(np.matmul(A,evolution2[-1]))

plt.plot([j[0] for j in evolution2], label="Sanos")
plt.plot([j[1] for j in evolution2], label="Síntomas leves")
plt.plot([j[2] for j in evolution2], label="Síntomas graves")
plt.plot([j[3] for j in evolution2], label="Recuperados")
plt.plot([j[4] for j in evolution2], label="Fallecidos")
plt.title("Evolución de la población, contagio=0.05")
plt.legend()
plt.show()

La gráfica que obtenemos es la siguiente:

Evolución de la población con contagio $0.05$

Una cosa fantástica en este escenario es que nunca hay muchas personas enfermas simultáneamente. En el peor día, parece haber como $12,000$ personas enfermas con síntomas leves, y parece que nunca hay más de $6000$ personas con síntomas graves. ¿Qué sucede con la mortalidad? Si le pedimos a Python que nos diga el número de habitantes recuperados y fallecidos al día 60,

print(evolution2[-1][3])
print(evolution2[-1][4])

obtenemos $\sim 78,419$ recuperados y $\sim 15,438$ fallecidos. Esto es ligeramente mejor que en la situación anterior, en donde había $\sim 16,000$ fallecidos. Donde sí hay una diferencia es en lo que sucede al día $30$. Si pedimos a Python que nos muestre la cantidad de fallecidos al día $30$ en ambos escenarios obtenemos lo siguiente.

print(evolution[30][4])
print(evolution2[30][4])

En el primer escenario, en el que la gente no se queda en casa, al día $30$ tenemos $\sim 16,493$ fallecidos, que es prácticamente ya todos los que habrá. Cuando la gente se queda en casa, al día $30$ sólo hay $\sim 10,963$, una buena parte menos.

Esto parece estar mejor, sin embargo, el tiempo va a seguir pasando, y de todas formas llegaremos al día $60$, en donde ambos escenarios son muy parecidos ¿Por qué entonces todo el esfuerzo de pedirle a la gente que se quede en casa, si la diferencia es mínima? Porque el tiempo es oro.

La carrera contra el tiempo

Hay muchas razones por las cuales es conveniente retrasar la epidemia de Imagivid en Imagilandia, aunque el modelo sencillo que mostramos arriba muestre qe a los 60 días parecería que habrá la misma cantidad de fallecidos.

Primero, es importante retrasar los contagios pues existe la posibilidad de que los científicos de Imagilandia entiendan mejor a Imagivid y, por ejemplo, desarrollen una vacuna o un tratamiento. ¿Qué sucedería si los científicos encuentran una cura al día $30$? En el primer escenario sólo se salvan unas $\sim 150$ vidas, pero en el segundo escenario se salvan unas $\sim 4,500$, osea, unas $\sim 4350$ más. En otras palabras, en el primer escenario el desarrollo científico llega demasiado tarde.

Segundo, también es importante retrasar la epidemia pues permite tener el número de casos simultáneos bajo control. Esto ya lo discutimos un poco arriba, pero pidamos a Python una gráfica más, para poder discutirlo de manera más clara. Supondremos, además, que Imagilandia cuenta con solamente $6000$ camas de hospital en donde se pueden tratar los casos severos de Imagivid, y le pediremos a Python que ponga esto como una línea horizontal.

plt.plot([j[1] for j in evolution2], color="green", linestyle=":", label="Leves, Contagio=0.05")
plt.plot([j[2] for j in evolution2], color="green", label="Severos, Contagio=0.05")
plt.plot([j[1] for j in evolution], color="red", linestyle=":", label="Severos, Contagio=0.30")
plt.plot([j[2] for j in evolution], color="red", label="Severos, Contagio=0.30")
plt.hlines(6000,0,60, color="black", label="Capacidad sistema salud")
plt.title("Enfermos a través del tiempo")
plt.legend()
plt.plot()

Obtenemos la siguiente gráfica:

Comparación de enfermos leves y graves. Rojo es con alto contagio y verde con bajo.

Cuando la gente sí se queda en sus casas y la tasa de contagio es baja (en verde), siempre hay suficiente espacio en el sistema de salud para tratar a a los enfermos graves.

Cuando la gente no se queda en sus casas y la tasa de contagio es alta (en rojo), notemos que los casos severos sobrepasan al sistema de salud. Aproximadamente entre los días $3$ y $15$ se tienen muchos enfermos graves que no podrán ser atendidos correctamente. Por ejemplo, al día 9 hay aproximadamente $\sim 6000$ enfermos graves por encima de la capacidad del sistema de salud. Sin atención médica, probablemente en vez de que sólo fallezcan el $10\%$ de ellos (según nuestro modelo), fallecerán casi todos, dando $5400$ víctimas más que no hemos contado.

De esta forma, siguiendo los consejos de quedarse en casa, la población de Imagilandia puede salvar, potencialmente, $\sim 4350$ personas por la vacuna y $\sim 5400$ personas por evitar saturar el sistema de salud, osea, salvar unas $\sim 9750$ vidas. Para ello es necesario que las autoridades hagan el llamado a quedarse, y que la población de Imagilandia haga caso. De aquí la importancia del #QuédateEnCasa.

Más contenido

Todo el código de Python del modelo lo corrí en una libreta de Jupyter. Puedes ver una versión en PDF de todo el código a continuación.

Si quieres el archivo de Jupyter para jugar con el modelo, puedes obtenerlo en el GitHub del proyecto: https://github.com/leomtz/linear-epidemid.

El modelo de epidemia que presentamos es una aplicación muy sencilla de álgebra lineal. En este blog hemos estado subiendo material de un curso de álgebra lineal que se imparte en la UNAM, y que ahora estamos impartiendo a distancia por la contingencia. A continuación ponemos el enlace a este curso y a otro material que te puede interesar.

Álgebra Lineal I: Ortogonalidad y espacio ortogonal

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hablamos de formas lineales y del espacio dual. Vimos que las formas coordenadas correspondientes a una base forman bases del espacio dual. También hicimos ejemplos prácticos de cómo encontrar bases duales y cómo hacer cambios de base en el espacio dual. Usaremos la teoría que hemos desarrollado hasta el momento para estudiar los conceptos de ortogonalidad y espacio ortogonal.

Antes de comenzar, es importante dejar un consejo. Quizás a estas alturas asocias a la ortogonalidad con la perpendicularidad. Esta intuición puede ayudar un poco más adelante, pero por el momento es recomendable que dejes esa intuición de lado. El problema es que la «perpendicularidad» habla de parejas de segmentos, parejas de lineas, o parejas de vectores. Sin embargo, las nociones de ortogonalidad que estudiaremos ahora hablan de cuándo una forma lineal $l$ y un vector $v$ son ortogonales, por lo cual es mejor pensarlo por el momento en la ortogonalidad como un concepto nuevo.

Definiciones de ortogonalidad y espacio ortogonal

En esta sección, $V$ es un espacio vectorial sobre un campo $F$.

Definición. Tomemos una forma lineal $l$ de $V$ y $v$ un vector en $V$. Decimos que $l$ y $v$ son ortogonales si $$\langle l,v \rangle = 0.$$

De manera equivalente, $l$ y $v$ son ortogonales si $l(v)=0$, o si $v$ está en el kernel de $l$.

Ejemplo 1. Consideremos la forma lineal $l$ de los polinomios en $\mathbb{R}_2[x]$ que a un polinomio lo manda a su evaluación en $2$, es decir, tal que $l(p)=p(2)$. Consideremos al polinomio $p(x)=x^2-3x+2$. Tenemos que \begin{align*}l(p)&=p(2)\\&=2^2-3\cdot 2 +2\\&=4-6+2\\&=0,\end{align*} de modo que $\langle l, p\rangle =0,$ así que $l$ y $p$ son ortogonales. Por otro lado, si $q(x)=x+1$, tenemos que $\langle l,q\rangle = l(q)=3$, de modo que $l$ y $q$ no son ortogonales.

$\triangle$

Ejemplo 2. Consideremos la forma lineal $l(x,y,z)=2x+3y-z$ de $\mathbb{R}^3$. Un vector que es ortogonal con $l$ es el vector $v=(0,0,0)$. Un vector un poco más interesante es el vector $(1,1,5)$ pues $l(1,1,5)=2+3-5=0$.

El vector $(1,1,5)$ también es ortogonal a la forma lineal $m(x,y,z)=x+y-\frac{2z}{5}$, como puedes verificar.

$\triangle$

A partir de la noción anterior, nos podemos hacer dos preguntas. Dado un conjunto de vectores, ¿quiénes son todas las formas lineales ortogonales a todos ellos? Dado un conjunto de formas lineales, ¿quiénes son todos los vectores ortogonales a todas ellas? Esta noción queda capturada en la siguiente definición.

Definición. Para $S$ un subconjunto de $V$, definimos al ortogonal de $S$ como el conjunto de formas lineales de $V$ ortogonales a todos los elementos de $S$. En símbolos, $$S^\bot:= \{l\in V^\ast: \langle l,v \rangle = 0\, \forall v \in S\}.$$

Tenemos una definición dual para subconjuntos de $V^\ast$.

Definición. Para $S$ un subconjunto de $V^\ast$, el ortogonal de $S$ es el conjunto de vectores de $V$ ortogonales a todos los elementos de $S$. En símbolos, $$S^\bot=\{v\in V: \langle l, v \rangle = 0 \, \forall l\in S\}.$$

Observa que estamos definiendo al ortogonal para subconjuntos de $V$ (y de $V^\ast$), es decir, que $S$ no tiene por qué ser un subespacio vectorial de $V$. Por otro lado, sea o no $S$ un subespacio, siempre tenemos que $S^\bot$ es un subespacio. Por ejemplo, si $S$ es un subconjunto de $V$ y $l_1$, $l_2$ son formas lineales que se anulan en todos los elementos de $S$, entonces para cualquier escalar $c$ también tenemos que $l_1+cl_2$ se anula en todos los elementos de $S$.

Ejercicio. Tomemos $S$ al subconjunto de matrices diagonales con entradas enteras en $M_2(\mathbb{R})$. ¿Quién es $S^\bot$? Ojo: Aquí $S$ no es un subespacio.

Solución. Sabemos que para cualquier forma lineal $l$ de $M_2(\mathbb{R})$ existen reales $p$, $q$, $r$, $s$ tales que $$l\begin{pmatrix}a&b\\c&d\end{pmatrix}=pa+qb+rc+sd.$$

Si $l$ está en $S^\bot$, se tiene que anular en particular en las matrices $A=\begin{pmatrix} 1 & 0\\ 0 & 0\end{pmatrix}$ y $B=\begin{pmatrix} 0 & 0 \\ 0 & 1\end{pmatrix}$, pues ambas están en $S$. En otras palabras, $$0 = l(A) = p$$ y $$0 = l(B) = s.$$ Así, la forma lineal tiene que verse como sigue:

$$l\begin{pmatrix}a&b\\c&d\end{pmatrix}= qb+rc.$$

Y en efecto, todas las formas lineales de esta forma se anulan en cualquier matriz diagonal con entradas enteras, pues en esas matrices $b=c=0$.

$\triangle$

Encontrar el espacio ortogonal de manera práctica

Ya mencionamos que $S$ no necesariamente tiene que ser un subespacio para definir $S^\bot$. Sin embargo, usando la linealidad podemos mostrar que, para cualquiera de las dos definiciones, basta estudiar qué sucede con subespacios vectoriales. La demostración de la siguiente proposición es sencilla, y se deja como tarea moral.

Proposición 1. Para $S$ un subconjunto de $V$ (o de $V^\ast$), tenemos que $$S^\bot = \text{span}(S)^\bot.$$

Esta proposición es particularmente importante pues en espacios vectoriales de dimensión finita nos permite reducir el problema de encontrar ortogonales para subconjuntos de vectores (o de formas lineales), a simplemente resolver un sistema de ecuaciones. El procedimiento que hacemos es el siguiente (lo enunciamos para vectores, para formas lineales es análogo):

  • Tomamos una base $B=\{b_1,\ldots,b_n\}$ de $V$.
  • Tomamos un subconjunto $S$ de vectores de $V$.
  • Usamos la Proposición 1 para argumentar que $S^\bot=\text{span}(S) ^\bot$.
  • Consideramos una base $C=\{c_1,\ldots,c_m\}$ de $\text{span}(S)$ y notamos que una forma lineal $l$ se anula en todo $\text{span}(S)$ si y sólo si se anula en cada elemento de $C$.
  • Escribimos a cada $c_i$ como combinación lineal de elementos de $B$, digamos $$c_i=a_{i1}b_1+\ldots+a_{in}b_n.$$
  • Cada condición $l(c_i)=0$ se transforma en la ecuación lineal $$a_{i1}l(b_1)+\ldots+a_{in}l(b_n)=l(c_i)=0$$ en las variables $l(b_1), l(b_2),\ldots, l(b_n)$ igualada a $0$, de forma que las $m$ condiciones dan un sistema de ecuaciones homogéneo.
  • Podemos resolver este sistema con reducción gaussiana para encontrar todas las soluciones, aunque basta con encontrar a las soluciones fundamentales, pues justo forman la base de $\text{span}(S)^\bot=S^\bot$.

Veamos este método en acción.

Ejemplo de encontrar el espacio ortogonal de manera práctica

Ejercicio. Considera el subconjunto $S$ de $\mathbb{R}^3$ cuyos elementos son $(2,3,-5)$, $(-1,0,1)$, $(3,3,-6)$, $(-3,-2,5)$. Determina $S^\bot$.

Solución. Para encontrar $S^\bot$, basta encontrar $\text{span}(S)^\bot$.

Lo primero que notamos es que todos los vectores de $S$ satisfacen que la suma de sus entradas es $0$, así que todos los vectores en $\text{span}(S)$ también, de modo que $\text{span}(S)$ no es todo $\mathbb{R}^3$, así que es de dimensión a lo más $2$. Notamos también que $(-1,0,1)$ y $(2,3,-5)$ son linealmente independientes, así que $\text{span}(S)$ es de dimensión al menos $2$, de modo que es de dimensión exactamente $2$ y por lo tanto $(-1,0,1)$ y $(2,3,-5)$ es una base.

Para cualquier forma lineal $l$ en $\mathbb{R}^3$ existen reales $a$, $b$, $c$ tales que $l(x,y,z)=ax+by+cz$. Para encontrar aquellas formas lineales que se anulan en $\text{span}(S)$, basta encontrar aquellas que se anulan en la base, es decir, en $(-1,0,1)$ y $(2,3,-5)$. De esta forma, necesitamos resolver el sistema de ecuaciones homogéneo \begin{align*}-a+c&=0\\2a+3b-5c&=0.\end{align*}

Para resolver este sistema, aplicamos reducción gaussiana:

\begin{align*}
&\begin{pmatrix} -1 & 0 & 1\\ 2 & 3 & -5\end{pmatrix}\\
\to & \begin{pmatrix} 1 & 0 & -1\\ 0 & 3 & -3\end{pmatrix}\\
\to & \begin{pmatrix} 1 & 0 & -1\\ 0 & 1 & -1\end{pmatrix}
\end{align*}

La variable libre es $c$ y las pivote son $a$ y $b$. Obtenemos $a=c$ y $b=c$, de donde las soluciones se ven de la forma $(c,c,c)$. Concluimos entonces que $S^\bot$ son las formas lineales tales que $$l(x,y,z)=c(x+y+z)$$ para algún real $c$.

$\triangle$

En el ejemplo anterior, la dimensiones de $\text{span}(S)$ y de $\text{span}(S)^\bot$ suman $3$, que es la dimensión de $\mathbb{R}^3$. Esto no es una casualidad, como veremos en la siguiente sección.

El teorema de dualidad

Las dimensiones de un subespacio de un espacio vectorial de dimensión finita, y de su espacio ortogonal, están relacionadas con la dimensión del espacio. Este es uno de los teoremas más importantes de dualidad.

Teorema. Sea $V$ un espacio vectorial de dimensión finita sobre $F$ y $W$ un subespacio de $V$ (o de $V^\ast)$. Entonces $$\dim W + \dim W^\bot = \dim V.$$

Demostración. Hagamos primero el caso en el que $W$ es un subespacio de $V$. Supongamos que $\dim V = n$ y que $\dim W = m$. Como $W$ es subespacio, tenemos que $m\leq n$. Tenemos que mostrar que $\dim W^\bot = n-m$, así que basta exhibir una base de $\dim W^\bot$ con $n-m$ formas lineales.

Para ello, tomemos $e_1,e_2,\ldots, e_m$ una base de $W$ y tomemos elementos $e_{m+1},\ldots,e_{n}$ que la completan a una base de $V$. Afirmamos que la base de $W^\bot$ que estamos buscando consiste de las formas coordenadas $e_{m+1}^\ast,\ldots,e_{n}^\ast$ correspondientes a $e_{m+1},\ldots,e_n$.

Por un lado, estas formas coordenadas son linealmente independientes, pues son un subconjunto de la base $e_1^\ast,\ldots, e_n^\ast$ de $V^\ast$. Por otro lado, si tenemos a una forma lineal $l$ de $V$, habíamos mostrado que la podemos expresar de la forma $$l=\sum_{i=1}^n \langle l, e_i \rangle e_i^\ast,$$ de modo que si $l$ se anula en todo $W$, en particular se anula en los vectores $e_1,\ldots,e_m$, por lo que $$l=\sum_{i=m+1}^n \langle l, e_i\rangle e_i^\ast,$$ lo cual exhibe a $l$ como combinación lineal de los elementos $e_{m+1}^\ast,\ldots,e_n^\ast$. De esta forma, este subconjunto de formas lineales es linealmente independiente y genera a $W^\bot$, que era justo lo que necesitábamos probar.

Ahora hagamos el caso en el que $W$ es un subespacio de $V^\ast$. Podríamos hacer un argumento análogo al anterior, pero daremos una prueba alternativa que usa la bidualidad canónica $\iota: V\to {V^\ast} ^\ast$. La igualdad $\langle l,v \rangle = 0$ es equivalente a $\langle \iota(v),l \rangle =0$. De esta forma, $v$ está en $W^\bot$ si y sólo si $\iota(v)\in {V^\ast} ^\ast$ se anula en todo $W$. Como $\iota$ es isomorfismo y el espacio de los $g\in {V^\ast} ^\ast$ que se anulan en $W$ tiene dimensión $$\dim V^\ast-\dim W = \dim V – \dim W$$ (por la primer parte del teorema), concluimos entonces que $$\dim W^\bot = \dim V – \dim W,$$ lo cual prueba la otra parte del teorema.

$\square$

Problema. Sea $W$ el subespacio de matrices simétricas de $M_3(\mathbb{R})$ ¿Cuál es la dimensión de $W^\bot$?

Solución. Se puede mostrar que $E_{11}$, $E_{22}$, $E_{33}$, $E_{12}+E_{21}$, $E_{23}+E_{32}$, $E_{13}+E_{31}$ forman una base para $W$. De esta forma, $W$ tiene dimensión $6$. Por el Teorema 1, tenemos que $\dim W^\bot = \dim M_3(\mathbb{R})-6=9-6=3$.

$\triangle$

Aplicar dos veces ortogonalidad en subespacios

Una consecuencia importante del teorema anterior es que aplicarle la operación «espacio ortogonal» a un subespacio de un espacio de dimensión finita nos regresa al inicio. Más formalmente:

Corolario. Si $V$ es un espacio vectorial de dimensión finita sobre un campo $F$ y $W$ un subespacio de $V$ (o de $V^\ast$), entonces $(W^\bot)^\bot=W$.

Demostración. Haremos la prueba para cuando $W$ es subespacio de $V$. La otra es análoga y se deja como tarea moral. Lo primero que vamos a mostrar es que $W\subset (W^\bot)^\bot$. Tomemos $w$ en $W$. Tenemos que mostrar que $l(w)=0$ para cualquier $l$ en $W^\bot$. Por definición, un $l$ en $W^\bot$ se anula en todo elemento de $W$, así que se anula particularmente en $w$, como queremos.

Como $W$ y $(W^\bot)^\bot$ son espacios vectoriales, tenemos que $W$ es subespacio de $(W^\bot)^\bot$. Por el teorema de dualidad, tenemos que $$\dim W^\bot = \dim V – \dim W.$$ Usando esto y de nuevo el teorema de dualidad, tenemos que $$\dim (W^\bot)^\bot = \dim V – \dim W^\bot = \dim W.$$

De esta forma, $W$ es un subespacio de $\dim (W^\bot)^\bot$ de su misma dimensión, y por lo tanto $W= (W^\bot)^\bot$.

$\square$

Hay que tener particular cuidado en usar el corolario anterior. Solamente se puede garantizar su validez cuando $W$ es un subespacio de $V$, y cuando $V$ es de dimensión finita. En efecto, si $S$ es simplemente un subconjunto de $V$ y no es un subespacio, entonces la igualdad $S=(S^\bot)^\bot$ es imposible, pues al lado derecho tenemos un subespacio de $V$ y al izquierdo no.

Más adelante…

En esta entrada hablamos de ortogonalidad y de espacios ortogonales como si fueran un concepto nuevo, dejando de lado, al menos por el momento, nuestras ideas previas de asociar ortogonalidad con perpendicularidad. También vimos cómo encontrar un espacio ortogonal de manera práctica y hablamos de un teorema muy importante: el teorema de la dualidad.

Lo que sigue es hablar de cómo la noción de ortogonalidad nos permite estudiar sistemas de ecuaciones e hiperplanos. En la siguiente entrada estudiaremos estos conceptos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra la proposición enunciada en la entrada.
  • Sea $S$ el subespacio de matrices diagonales en $M_n(\mathbb{R})$. ¿Cuál es la dimensión de $S^\bot$?
  • Considera $\mathbb{R}_3[x]$, el espacio vectorial de polinomios con coeficientes reales y grado a lo más $3$. Considera las formas lineales $\text{ev}_2$ y $\text{ev}_3$ que evalúan a un polinomio en $2$ y en $3$ respectivamente. ¿Quién es el espacio ortogonal de $\{\text{ev}_2,\text{ev}_3\}$?
  • Prueba la segunda parte del teorema de dualidad con un argumento análogo al que usamos para probar la primer parte.
  • Prueba el corolario para cuando $W$ es subespacio de $V^\ast$.
  • Verifica que las matrices propuestas en el último ejercicio en efecto forman una base para el subespacio de matrices simétricas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»