Archivo de la etiqueta: eigenvectores

Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En la entrada anterior platicamos acerca de eigenvectores, eigenvalores y eigenespacios de matrices y transformaciones lineales. Vimos algunos ejemplos básicos. En esta entrada profundizaremos en el estudio de estos objetos y exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

Primeras observaciones

A partir de la proposición de la entrada anterior que nos dice cómo calcular eigenvalores se desprenden algunas consecuencias sencillas pero útiles.

Por ejemplo, recuerda que el determinante de una matriz y su transpuesta es igual. En particular, si $A\in M_n(F)$ entonces

\begin{align*}
\det(\lambda I_n -\ ^{t}A)= \det(\ ^{t}(\lambda I_n- A))= \det(\lambda I_n-A).
\end{align*}

Luego $\det (\lambda I_n-A)=0$ si y sólo si $\det(\lambda I_n-\ ^{t}A)=0$. Recordando que las raíces de estos polinomios son precisamente los eigenvalores, se sigue que los eigenvalores de $A$ y $^{t}A$ son iguales.

Por otro lado, como los eigenvalores son las raíces de un polinomio de grado $n$, sabemos que hay a lo más $n$ soluciones. Entonces toda matriz tiene a lo más $n$ eigenvalores.

Esto también ocurre para transformaciones lineales en espacios de dimensión finita y lo podemos enunciar como sigue:

Corolario. Sea $V$ un espacio de dimensión finita sobre $F$ y $T:V\to V$ lineal. Entonces $T$ tiene a lo más $\dim V$ eigenvalores distintos.

Sin embargo, si el espacio no es de dimensión finita no podemos hacer tal afirmación. Si $V$ es el espacio de todas las funciones suaves (es decir con derivadas de todos los órdenes) de $\mathbb{R}$ en $\mathbb{R}$ y $T:V\to V$ es la función lineal que a cada función la manda en su derivada, entonces tenemos «muchos» eigenvalores. Haciendo esto más preciso, para cada real $r$ la función $e^{rx}$ es un eigenvector con eigenvalor $r$ puesto que

\begin{align*}
T(e^{rx})= \left(e^{rx}\right)’= re^{rx}.
\end{align*}

Así, tenemos al menos tantos eigenvalores como números reales. De hecho, estos son exactamente los eigenvalores de $T$, lo cual puede demostrarse mediante el teorema de existencia y unicidad de soluciones de ecuaciones diferenciales, que estudiarás en otro momento de tu formación matemática.

Matrices triangulares superiores

Parte del interés de «triangular» matrices (es decir, encontrar una matriz similar que sea triangular superior) está dada por la facilidad de calcular sus eigenvalores. Exploramos esto mediante los siguientes dos problemas.

Problema 1. Sea $A=[a_{ij}]$ una matriz triangular superior en $M_n(F)$. Demuestra que los eigenvalores de $A$ son precisamente los elementos en la diagonal.

Solución. Ya establecimos que encontrar los valores propios se reduce a encontrar las raíces del polinomio $\det(\lambda I_n-A)$. Notamos que si $A$ es triangular superior, entonces $\lambda I_n-A$ también es triangular superior. Más aún, las entradas de la diagonal son simplemente $\lambda-a_{ii}$. Pero sabemos que el determinante de una matriz triangular superior es el producto de sus entradas diagonales. Así

\begin{align*}
\det(\lambda I_n -A)= (\lambda-a_{11})(\lambda-a_{22})\cdots (\lambda -a_{nn})
\end{align*}

cuyas raíces son exactamente los elementos $a_{ii}$.

$\square$

Podemos combinar el resultado anterior con otras propiedades de matrices triangulares superiores para resolver a mano algunos problemas que de entrada parecen complicados.

Problema 2. Encuentra los eigenvalores de $A^{3}$ donde

\begin{align*}
A=\begin{pmatrix} 1 & 2 &3 &4 \\ 0 & 5 & 6 & 7\\ 0 & 0 & 8 & 9\\ 0 &0 &0 & 10\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. En realidad no hace falta hacer el producto de matrices para encontrar la matriz $A^3$. Sabemos que el producto de dos matrices triangulares superiores es triangular superior y que de hecho las entradas de la diagonal son solo el producto de las entradas correspondientes. Es decir, si $[a_{ij}]$ y $[b_{ij}]$ son dos matrices triangulares superiores, las entradas de la diagonal son $a_{ii}b_{ii}$. En nuestro caso, las entradas de la diagonal son $1^3, 5^3, 8^3$ y $10^3$, y por el problema anterior, estos son precisamente los eigenvalores de $A^3$.

$\triangle$

Relaciones con independencia lineal y combinaciones polinomiales

El resultado principal de esta entrada es el siguiente teorema, que en particular afirma que si dos eigenvalores son distintos, sus eigenvectores son linealmente independientes. En realidad, el resultado es un poco más general y lo enunciamos a continuación

Teorema. Sean $\lambda_1,\dots, \lambda_k$ eigenvalores distintos dos a dos de una transformación lineal $T:V\to V$. Entonces los $\lambda_i$-eigenespacios están en posición de suma directa.

Demostración. Por definición, tenemos que demostrar que si tenemos una colección $\{v_i\}$ de vectores con $T(v_i)=\lambda_i v_i$ y $v_1+\dots+v_k=0$ entonces $v_1=\dots=v_k=0$. Procedemos por inducción sobre $k$.

Nuestro caso base es una tautología, pues si $k=1$ entonces tenemos que mostrar que si $v_1=0$ entonces $v_1=0$.

Asumamos que el resultado se cumple para $k-1$ y verifiquemos que se cumple para $k$. Supongamos que $v_1+\dots+v_k=0$. Aplicando $T$ de ambos lados de esta igualdad llegamos a

\begin{align*}
T(v_1+\dots+v_k)&= T(v_1)+\dots+T(v_k)\\
&=\lambda_1 v_1+\dots +\lambda _k v_k=0.
\end{align*}

Por otro lado, si multiplicamos a la igualdad $v_1+\dots+v_k=0$ por $\lambda_k$ de ambos lados llegamos a

\begin{align*}
\lambda_k v_1+\dots +\lambda _k v_k=0.
\end{align*}

Sustrayendo y factorizando estas dos igualdades se sigue que

\begin{align*}
(\lambda_k -\lambda_1)v_1+\dots +(\lambda_k-\lambda_{k-1})v_{k-1}=0.
\end{align*}

Esto es una combinación lineal de los primeros $k-1$ vectores $v_i$ igualada a cero. Luego, la hipótesis inductiva nos dice que $(\lambda_k-\lambda_i)v_i=0$ para todo $i=1,\dots, k-1$. Como $\lambda_k\neq \lambda_i$ entonces $\lambda_k-\lambda_i\neq 0$ y entonces $v_i=0$. Sustituyendo en la igualdad original, esto implica que $v_k=0$ inmediatamente.

$\square$

Enseguida veremos que si formamos un polinomio $P(T)$, entonces $P(\lambda)$ es un eigenvalor de $P(T)$ para cualquier eigenvalor $\lambda$ de $T$. Esto lo veremos en el siguiente problema.

Problema. Sea $\lambda$ un eigenvalor de $T:V\to V$ y sea $P$ un polinomio en una variable con coeficientes en $F$. Demuestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

Solución. Como $\lambda$ es un eigenvalor de $T$, existe $v$ un vector no cero tal que $T(v)=\lambda v$. Inductivamente, se cumple que $T^{k}(v)=\lambda^{k} v$. En efecto

\begin{align*}
T^{k+1}(v)&=T(T^{k}(v))\\
&= T(\lambda^{k} v)\\
&= \lambda^{k}T(v)\\
&=\lambda^{k+1}v.
\end{align*}

Usando esto, si $P(X)=a_n X^{n}+\dots+a_1 X+a_0$ se tiene que

\begin{align*}
P(T)(v)&= a_nT^{n}(v)+\dots +a_1 T(v)+ a_0 v\\
&= a_n\lambda^{n}v+\dots +a_1\lambda v+a_0v\\
&= (a_n\lambda^{n}+\dots +a_1\lambda +a_0)v\\
&= P(\lambda) v.
\end{align*}

Esto muestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

$\square$

Relación con el polinomio mínimo

Una consecuencia del problema previo es la siguiente proposición.

Proposición. Sea $A\in M_n(\mathbb{C})$ una matriz y $P\in \mathbb{C}[X]$ un polinomio tal que $P(A)=O_n$. Entonces cualquier eigenvalor $\lambda$ de $A$ satisface $P(\lambda)=0$.

Solución. Por el problema anterior, $P(\lambda)$ es un eigenvalor de $P(A)$, pero $P(A)=O_n$ y el único eigenvalor de la matriz cero es $0$. Luego $P(\lambda)=0$.

$\square$

De esto, podemos por fin establecer una conexión con el polinomio mínimo, que enunciamos en forma de teorema.

Teorema. Sea $T:V\to V$ una transformación lineal sobre un espacio de dimensión finita sobre un campo $F$. Los eigenvalores de $T$ son precisamente las raíces en $F$ del polinomio mínimo $\mu_T$.

Demostración. Dado que $\mu_T(T)=0$, el problema que acabamos de resolver nos dice que todos los eigenvalores de $T$ son raíces de $\mu_T$.

Conversamente, supongamos que existe $\lambda$ una raíz de $\mu_T$ que no es eigenvalor. Entonces la transformación $T-\lambda \operatorname{Id}$ es invertible. Como $\mu_T(\lambda)=0$, podemos factorizar la raíz y escribir $\mu_T(X)=(X-\lambda)Q(X)$ para algún $Q\in F[X]$. Dado que $\mu_T(T)=0$ deducimos que

\begin{align*}
(T-\lambda \operatorname{Id})\circ Q(T)=0.
\end{align*}

Recordando una vez más que $T-\lambda \operatorname{Id}$ es invertible, esta ecuación implica que $Q(T)=0$. Ya que $\mu_T$ es el polinomio mínimo, por una propiedad que mostramos anteriormente obtendríamos que $\mu_T$ divide a $Q$. Pero esto se contradice con la igualdad $\mu_T(X)=(X-\lambda)Q(X)$, que nos dice que $\mu_T$ tiene grado mayor. Esto concluye la demostración.

$\square$

Ejercicios

Terminamos con un par de ejercicios para repasar el material de estas secciones. El primero de entre ellos toma prestados nombres de la probabilidad (lo lo cuál puede sugerirte en qué tipo de texto te podrías encontrar con estas matrices).

Problema 1. Una matriz $A\in M_n(\mathbb{R})$ se dice estocástica si $a_{ij}\geq 0$ para todo $i,j\in \{1,\dots, n\}$ y $\sum_{j=1}^{n} a_{ij}=1$ para todo $i\in \{1,\dots, n\}$.

Demuestra que $1$ es un eigenvalor de cualquier matriz estocástica.

Solución. Consideremos el vector $v=(1,\dots, 1)$. Nota que

\begin{align*}
A\cdot v&= \begin{pmatrix}
a_{11} & a_{12} &\dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots & \dots\\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
1\\
1\\
\vdots\\
1
\end{pmatrix}\\
&= \begin{pmatrix}
a_{11}+a_{12}+\dots+a_{1n}\\
a_{21}+a_{22}+\dots+a_{2n}\\
\vdots\\
a_{n1}+a_{n2}+\dots+a_{nn}
\end{pmatrix}\\
&=\begin{pmatrix}
1\\
1\\
\vdots\\
1\end{pmatrix}.
\end{align*}

Es decir $A\cdot v=v$, por lo que $v$ es un eigenvector de $A$ con eigenvalor asociado $1$.

$\square$

Problema 2. Sea $V$ el espacio de todos los polinomios con coeficientes reales. Sea $T:V\to V$ la transformación lineal dada por $P(X)\mapsto P(1-X)$. ¿Cuáles son los eigenvalores de $T$?

Solución. Observa que
\begin{align*}T^2(P)&=T\circ T(P)\\&= T(P(1-X))\\&= P(1-(1-X))\\&= P(X).\end{align*} Así $T^2=\operatorname{Id}$, o bien $T^2-\text{Id}=0$. Luego, el polinomio mínimo $\mu_T$ tiene que dividir al polinomio $X^2-1$. Sin embargo, los únicos factores de este polinomio son $X-1$ y $X+1$. Dado que $T\neq \pm \operatorname{Id}$ se tiene que $\mu_T(X)=X^2-1$. Por el último teorema que vimos, los eigenvalores de $T$ son precisamente las raíces de $\mu_T$ en $\mathbb{R}$, es decir $\pm 1$.

$\triangle$

Más adelante…

En las entradas subsecuentes iremos más a fondo en el concepto de polinomio característico, para eventualmente llegar al teorema de Cayley-Hamilton. Para eso tendremos que equiparnos de bastante teoría y repasar varias propiedades de dicho polinomio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $V$ el espacio de polinomios con coeficientes reales de grado a lo más $n$. Encuentra los eigenvalores de la transformación $T:P(X)\mapsto P(X)-(1+X)P'(X)$.
  • Si $V$ es el espacio de polinomios con coeficientes reales, encuentra los eigenvalores de $T:P(X)\mapsto P(3X)$.
  • Sean $A,B$ matrices en $M_n(\mathbb{C})$ tales que $AB-BA=B$. Demuestra que para todo $k\geq 1$ se cumple que $AB^{k}-B^{k}A=kB^{k}$ y de esto deduce que $B$ es nilpotente: existe $m$ tal que $B^{m}=0$. Sugerencia: ¿Cuántos eigenvalores puede tener $T:X\mapsto AX-XA$?
  • ¿Puedes generalizar el último problema de la sección de matrices triangulares superiores?
  • Sea $A$ una matriz cuadrada con entradas reales. Supón que $\lambda$ es un real positivo que es eigenvalor de $A^2$. Demuestra que $\sqrt{\lambda}$ o $-\sqrt{\lambda}$ es un eigenvalor de $A$. ¿Sucederá a veces que sólo una de estas es eigenvalor?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Estos son esenciales para entender a las transformaciones lineales, y tienen un rango de aplicabilidad impresionante: aparecen en la física, las ecuaciones diferenciales parciales, la ciencia de datos, la topología algebraica y la probabilidad.

Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.

Eigen-definiciones

Comenzamos con $V$ un espacio vectorial sobre $F$ y $T:V\to V$ una transformación lineal.

Definición. Un eigenvalor (también conocido como valor propio) de $T$ es un escalar $\lambda \in F$ tal que $\lambda \cdot \operatorname{Id}-T$ no es invertible. Un eigenvector (también conocido como vector propio o $\lambda$-eigenvector) correspondiente a $\lambda$ es un vector no-cero de $\ker (\lambda \cdot \operatorname{Id}-T)$. A este kernel se le conoce como el eigenespacio correspondiente a $\lambda$ (o $\lambda$-eigenespacio).

Entonces un $\lambda$-eigenvector es por definición distinto de cero y satisface

\begin{align*}
T(v)=\lambda v.
\end{align*}

Hay que tener cuidado. se permite que $\lambda=0$ sea eigenvalor, pero no se permite que $v=0$ sea eigenvector.

La colección de todos los eigenvectores, junto con el vector cero, es el eigenespacio asociado a $\lambda$. Podemos enunciar definiciones análogas con matrices.

Definición. Sea $A\in M_n(F)$ una matriz cuadrada. Un escalar $\lambda \in F$ es un eigenvalor de $A$ si existe un vector $X\in F^n$ distinto de cero (un eigenvector) tal que $AX=\lambda X$. En este caso el subespacio

\begin{align*}
\ker(\lambda I_n-A):=\lbrace X\in F^n\mid AX=\lambda X\rbrace
\end{align*}

es el $\lambda$-eigenespacio de $A$.

Puedes verificar que ambas definiciones se corresponden en el siguiente sentido:

Si $V$ es un espacio de dimensión finita y $T:V\to V$ es una transformación lineal, podemos escoger cualquier base de $V$ y asociarle a $T$ su forma matricial, digamos $A$, en esta base. Los eigenvalores de $T$ son precisamente los eigenvalores de $A$. ¡Pero cuidado! Los eigenvectores de $A$ dependerán de la base elegida.

Un primer ejemplo

Seguimos con un sencillo pero importante ejemplo.

Ejemplo 1. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Busquemos los eigenvectores y eigenvalores de $A$, pensando a $A$ como una matriz con entradas complejas. Sea $\lambda\in \mathbb{C}$ un eigenvalor y $X$ un eigenvector asociado. Entonces se cumple la relación $AX=\lambda X$. Si $X=(x_1,x_2)$ entonces la condición mencionada es equivalente al par de ecuaciones

\begin{align*}
-x_2=\lambda x_1, \hspace{5mm} x_1=\lambda x_2.
\end{align*}

Sustituyendo una en la otra obtenemos

\begin{align*}
-x_2=\lambda^2 x_2.
\end{align*}

Si $x_2=0$ entonces $x_1=0$ y así $X$ es un vector nulo, lo que es imposible por definición (recuerda que pedimos que los eigenvectores sean distintos de cero). Entonces $x_2\neq 0$ y podemos dividir por $x_2$ a la ecuación previa, de manera que $\lambda^2=-1$, o sea $\lambda=\pm i$. Conversamente, $i$ y $-i$ son eigenvalores. En efecto, podemos tomar $x_2=1$ y $x_1=\lambda$ como soluciones del problema anterior y obtener un vector propio asociado. De hecho, el eigenespacio está dado por

\begin{align*}
\ker (\lambda I_2-A)=\lbrace (\lambda x_2, x_2)\mid x_2\in \mathbb{C}\rbrace
\end{align*}

y esto no es más que la recta generada por el vector $v=(\lambda,1)\in \mathbb{C}^2$. Por lo tanto, vista como una matriz compleja, $A$ tiene dos eigenvalores distintos $\pm i$ y dos eigenespacios, los generados por $(i,1)$ y $(-i,1)$.

Por otro lado, veamos qué pasa si pensamos a $A$ como una matriz con entradas reales. Haciendo las mismas cuentas llegamos a la misma ecuación, $-x_2=\lambda^2 x_2$. Podemos reescribirla factorizando el término $x_2$:

\begin{align*}
(\lambda^2+1)x_2=0.
\end{align*}

Como $\lambda$ esta vez es un número real, $\lambda^2+1$ siempre es distinto de cero. Entonces para que el producto sea cero, tiene que ocurrir que $x_2=0$, ¡pero entonces $x_1=0$ y así $X=0$! En conclusión: vista como una matriz con entradas reales, $A$ no tiene eigenvalores, y por tanto no tiene eigenespacios. La moraleja es que los eigenvalores y eigenvectores dependen mucho del campo en el que trabajemos.

¿Cómo calcularlos?

Si bien el ejemplo anterior resultó simple, no es difícil imaginar que matrices más complicadas y más grandes pueden resultar en procedimientos menos claros. En general:

  • ¿Cómo podemos calcular los eigenvalores?
  • ¿Cómo podemos calcular los eigenespacios de manera eficiente?
  • ¿Cómo podemos calcular los eigenvectores?

Una vez calculados los eigenvalores, calcular los eigenespacios se reduce a resolver el sistema de ecuaciones homogéneo $(A-\lambda I_n)X=0$, lo cual ya hemos hecho muchas veces mediante reducción gaussiana. Luego, calcular los eigenvectores simplemente es tomar los elementos no cero del eigenespacio. Sin embargo, el cálculo de eigenvalores involucra encontrar raíces de polinomios lo cual de entrada no es obvio. Un primer paso es la siguiente observación que enunciamos como proposición.

Proposición. Un escalar $\lambda \in F$ es un eigenvalor de $A\in M_n(F)$ si y sólo si

\begin{align*}
\det(\lambda I_n-A)=0.
\end{align*}

Demostración. El sistema $(\lambda I_n-A)X=0$ tiene soluciones no triviales si y sólo si la matriz $\lambda I_n-A$ no es invertible. A su vez, la matriz $\lambda I_n-A$ no es invertible si y sólo si su determinante es nulo. El resultado se sigue.

$\square$

Regresemos a nuestra pregunta. Si

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots& \dots\\
a_{n1} & a_{n2}& \dots & a_{nn}
\end{pmatrix}
\end{align*}

entonces la proposición nos dice que podemos calcular los valores propios de $A$ resolviendo la ecuación polinomial

\begin{align*}
\begin{vmatrix}
\lambda- a_{11} & -a_{12} & \dots & -a_{1n}\\
-a_{21} & \lambda -a_{22} & \dots & -a_{2n}\\
\dots & \dots & \dots & \dots \\
-a_{n1} & -a_{n2} & \dots & \lambda-a_{nn}
\end{vmatrix}
=0
\end{align*}

en $F$. Esta es una ecuación polinomial de grado $n$, y si el grado es mayor a $4$ en general no existe una fórmula para resolverla en términos de radicales (aunque claro que hay casos particulares que si podemos resolver sin mucho problema).

Problema 2. Queremos calcular los eigenvalores de $A$, donde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 &-1\\
0 & 1 & 0
\end{pmatrix}.
\end{align*}

Solución. Como vimos en la proposición, esto se reduce a calcular las raíces del polinomio

\begin{align*}
\begin{vmatrix}
\lambda -1 & 0 & 0\\
0 & \lambda & 1\\
0 &-1 & \lambda
\end{vmatrix}=0.
\end{align*}

Calculando el determinante vemos que esto es de hecho

\begin{align*}
(\lambda-1)(\lambda^2+1)=0.
\end{align*}

Sin embargo tenemos que recordar que las raíces dependen de nuestro campo de elección. Como no comentamos nada sobre el campo en el cual trabajamos, consideraremos dos casos. Si el campo es $\mathbb{C}$ entonces los eigenvalores son $1$ y $\pm i$. Si trabajamos sobre $\mathbb{R}$ entonces tenemos un único eigenvalor: $1$.

$\triangle$

Ejercicios

Acabamos esta entrada con unos ejercicios para reforzar lo que vimos.

Problema 1. Encuentra todos los números reales $x$ tales que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & x\\
2 & 1
\end{pmatrix}
\end{align*}

tiene exactamente dos eigenvalores distintos. La misma pregunta para ningún eigenvalor.

Solución. El número de eigenvalores va a estar dado por el número de raíces del polinomio $\det(\lambda I_2-A)$. Es decir, tenemos que trabajar la ecuación

\begin{align*}
\det(\lambda I_2-A)=\begin{vmatrix} \lambda -1 & -x\\ -2 & \lambda-1\end{vmatrix}=0.
\end{align*}

Que a su vez se reduce a

\begin{align*}
(\lambda-1)^2-2x=0.
\end{align*}

Y para que tenga dos soluciones basta con que $2x$ sea un número positivo. En efecto, en ese caso podemos despejar y resolver

\begin{align*}
\lambda = 1 \pm \sqrt{2x}.
\end{align*}

Como $2x$ es positivo solo si $x$ lo es, podemos concluir que la condición necesaria y suficiente es que $x$ sea un real positivo. Similarmente, si $x$ es un número negativo no tendremos ningún eigenvalor.

$\triangle$

Problema 2. Sea $V$ el conjunto de todas las matrices $A\in M_2(\mathbb{C})$ tales que $v=\begin{pmatrix} 1\\ 2 \end{pmatrix}$ es un eigenvector de $A$. Demuestra que $V$ es un subespacio de $M_2(\mathbb{C})$ y da una base.

Solución. Supongamos que $v$ es un eigenvector de $A$, con eigenvalor $\lambda$, y que es eigenvector de $B$, con eigenvalor $\mu$. Entonces

\begin{align*}
(A+c B)(v)= Av+c Bv= \lambda v+c\mu v= (\lambda+c\mu)v
\end{align*}

por lo que $v$ es eigenvector de $A+cB$ con eigenvalor $\lambda +c\mu$. Esto demuestra que $V$ es un subespacio. Para darnos una idea de cómo podría ser una base para $V$, comencemos con una matriz genérica $A=\begin{pmatrix} a & b\\ c & d\end{pmatrix}$ tal que $A\in V$. Entonces $A$ tiene que satisfacer $Av=\lambda v$ para algún $\lambda$. Escribamos esto más explícitamente

\begin{align*}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2\end{pmatrix}= \begin{pmatrix}
a+2b\\
c+2d
\end{pmatrix}=\begin{pmatrix} \lambda \\ 2\lambda\end{pmatrix}.
\end{align*}

Así se desprenden dos ecuaciones

\begin{align*}
\begin{cases}
a+2b=\lambda \\
c+2d=2\lambda
\end{cases}.
\end{align*}

Sabemos que $\lambda$ es un parámetro libre, pues puede ser cualquier eigenvalor. Si conocemos a $\lambda$ entonces necesitamos alguna de las variables, $a$ o $b$ para determinar a la otra y lo mismo con $c$ y $d$. Entonces escojamos $b$ y $d$ como variables libres. Enseguida nuestra matriz es de la forma (reemplazando a $a$ y $c$ por sus valores en $b$ y $d$):

\begin{align*}
A&= \begin{pmatrix}
\lambda -2b & b\\
2\lambda -2d & d
\end{pmatrix}\\
&= b\begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}+ d \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix}+\lambda \begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}.
\end{align*}

Entonces proponemos como base

\begin{align*}
\beta = \bigg\lbrace \begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix},\begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}\bigg\rbrace.
\end{align*}

Ya vimos que $\beta$ genera a $V$, y dejamos la independencia lineal como ejercicio.

$\square$

Más adelante…

En las próximas entradas desarrollaremos las propiedades relevantes de los eigenvalores y eigenvectores para eventualmente llegar al polinomio característico y establecer el puente con el polinomio mínimo.

Tarea moral

Aquí unos ejercicios para que repases el material de esta entrada.

  1. Encuentra todos los eigenvalores de la matriz $A=\begin{pmatrix} 1 & 1 &0 \\ 0 & 2 &1\\ 0 & 0 & 1\end{pmatrix}\in M_3(\mathbb{C})$.
  2. Completa la demostración del último ejercicio de la sección de ejercicios, verificando que las soluciones encontradas son matrices linealmente independientes. ¿Puedes generalizar este ejercicio de alguna manera?
  3. Encuentra los eigenvalores de la matriz $A\in M_n(\mathbb{R})$ cuyas entradas son puros $2$.
  4. Da contraejemplos para cada una de las siguientes afirmaciones:
    1. Si $u$ y $v$ son eigenvectores de $A$, entonces $u+v$ es eigenvector de $A$.
    2. Si $\lambda$ es eigenvalor de $A$ y $\mu$ es eigenvalor de $B$, entonces $\lambda \mu$ es eigenvalor de $AB$.
    3. Si $A$ y $B$ son formas matriciales de una misma transformación $T$ y $v$ es eigenvector de $A$, entonces $v$ es eigenvector de $B$.
  5. Considera la transformación derivada en $\mathbb{R}[x]$. ¿Quienes son sus eigenvectores y eigenvalores? Como sugerencia, estudia el coeficiente de mayor grado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Aplicaciones del teorema espectral, bases ortogonales y más propiedades de transformaciones lineales

Por Blanca Radillo

Introducción

Hoy es la última clase del curso. Ha sido un semestre difícil para todas y todos. El quedarnos en casa, obligados a buscar alternativas digitales que sean de fácil acceso para la mayoría de las personas, aprender a realizar toda nuestra rutina diaria en un mismo espacio; sin dudarlo, un semestre lleno de retos que de una u otra manera, haciendo prueba y error, hemos aprendido a sobrellevar.

El día de hoy terminaremos con el tema de teoría espectral. Veremos algunos problemas donde usaremos las técnicas de búsqueda de eigenvalores y eigenvectores, así como aplicaciones de uno de los teoremas más importante: el Teorema Espectral.

Matrices simétricas, matrices diagonalizables

En entradas anteriores hemos discutido sobre qué condiciones me garantizan que una matriz $A$ es diagonalizable. No volveremos a repetir cuál es la definición de matriz diagonalizable ya que en múltiples ocasiones lo hicimos.

Sabemos que una matriz simétrica en $M_n(\mathbb{R})$ siempre es diagonalizable, gracias al teorema espectral, pero el siguiente problema nos ilustra que si cambiamos de campo $F$, no tenemos la garantía de que las matrices simétricas en $M_n(F)$ también lo sean.

Problema 1. Demuestra que la matriz simétrica con coeficientes complejos

$A=\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$

no es diagonalizable.

Solución. Por la primera proposición de la clase «Eigenvalores y eigenvectores de transformaciones y matrices», si $A$ fuese diagonalizable, es decir, que existe una matriz invertible $P$ y una diagonal $D$ tal que $A=P^{-1}DP$, entonces $A$ y $D$ tienen los mismos eigenvalores. Entonces, encontremos los eigenvalores de $A$: buscamos $\lambda \in \mathbb{C}$ tal que $\text{det}(\lambda I-A)=0$,

\begin{align*}
\text{det}(\lambda I-A)&=\begin{vmatrix} \lambda -1 & i \\ i & \lambda +1 \end{vmatrix} \\
&=(\lambda-1)(\lambda+1)-i^2=\lambda^2 -1+1 \\
&=\lambda^2=0.
\end{align*}

Por lo tanto, el eigenvalor con multiplicidad 2 de $A$ (y también el eigenvalor de $D$) es $\lambda =0$. Si $D$ es de la forma

$D=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$,

es fácil ver (y calcular) que sus eigenvalores son $a$ y $b$, pero por lo anterior, podemos concluir que $a=b=0$, y por lo tanto $D$ es la matriz cero. Si fuese así, $A=P^{-1}DP=0$, contradiciendo la definición de $A$.

$\square$

Problema 2. Sea $A$ una matriz simétrica con entradas reales y supongamos que $A^k=I$ para algún entero positivo $k$. Prueba que $A^2=I$.

Solución. Dado que $A$ es simétrica y con entradas reales, todos sus eigenvalores son reales. Más aún son $k$-raíces de la unidad, entonces deben ser $\pm 1$. Esto implica que todos los eigenvalores de $A^2$ son iguales a 1. Dado que $A^2$ también es simétrica, es diagonalizable y, dado que sus eigenvalores son iguales a 1, por lo tanto $A^2=I$.

$\square$

Más propiedades de transformaciones lineales y bases ortogonales

En otras clases como Cálculo, Análisis, hablamos de funciones continuas, discontinuas, acotadas, divergentes; mientras que en este curso nos hemos enfocado únicamente en la propiedad de linealidad de las transformaciones. Si bien no es interés de este curso, podemos adelantar que, bajo ciertas condiciones del espacio $V$, podemos tener una equivalencia entre continuidad y acotamiento de una transformación.

Decimos que la norma de una transformación está definida como

$\norm{T}=\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}$.

Por ende, decimos que una transformación es acotada si su norma es acotada, $\norm{T}<\infty$.

Problema 1. Sea $V$ un espacio euclideano y sea $T$ una transformación lineal simétrica en $V$. Sean $\lambda_1,\ldots,\lambda_n$ los eigenvalores de $T$. Prueba que

$\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}} =\max_{1\leq i\leq n} |\lambda_i|.$

Solución. Renumerando a los eigenvalores, podemos decir que $\max_i |\lambda_i|=|\lambda_n|$. Sea $e_1,\ldots,e_n$ una base ortonormal de $V$ tal que $T(e_i)=\lambda_i e_i$ para todo $i$. Si $x\in V\setminus {0}$, podemos escribirlo como $x=x_1e_1+\ldots+x_n e_n$ para algunos reales $x_i$. Entonces, por linealidad de $T$,

$T(x)=\sum_{i=1}^n \lambda_i x_ie_i.$

Dado que $|\lambda_i|\leq |\lambda_n|$ para toda $i$, tenemos que

$\frac{\norm{T(x)}}{\norm{x}}=\sqrt{\frac{\sum_{i=1}^n \lambda_i^2 x_i^2}{\sum_{i=1}^n x_i^2}}\leq |\lambda_n|,$

por lo tanto

\begin{align*}
\max_{1\leq i\leq n} |\lambda_i|&=|\lambda_n|=\frac{\norm{T(e_n)}}{\norm{e_n}}\\
&\leq \sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}\\
&\leq |\lambda_n|= \max_{1\leq i\leq n} |\lambda_i|.
\end{align*}

Obteniendo lo que queremos.

$\square$

Para finalizar, no olvidemos que una matriz es diagonalizable si y sólo si el espacio tiene una base de eigenvectores, y que está íntimamente relacionado con el teorema espectral.

Problema 2. Encuentra una base ortogonal consistente con los eigenvectores de la matriz

$A=\frac{1}{7}\begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}.$

Solución. Para encontrar los eigenvectores, primero encontrar los eigenvalores y, después, para cada eigenvalor, encontrar el/los eigenvectores correspondientes.

Calculemos:

\begin{align*}
0&=\text{det}(\lambda I-A)=\begin{vmatrix} \lambda+2/7 & -6/7 & 3/7 \\ -6/7 & \lambda-3/7 & -2/7 \\ 3/7 & -2/7 & \lambda-6/7 \end{vmatrix} \\
&= \lambda^3-\lambda^2-\lambda+1 \\
&= (\lambda -1)(\lambda^2 -1),
\end{align*}

entonces los eigenvalores de $A$ son $1,-1$, ($\lambda=1$ tiene multiplicidad 2).

Ahora, hay que encontrar los vectores $v=(x,y,z)$ tal que $Av=\lambda v$, para todo eigenvalor $\lambda$.

Si $\lambda=-1$,

$(\lambda I-A)v=\frac{1}{7}\begin{pmatrix} -5 & -6 & 3 \\ -6 & -10 & -2 \\ 3 & -2 & -13 \end{pmatrix}v=0, $

reduciendo, obtenemos que $v=(3\alpha, -2\alpha, \alpha)$ para todo $\alpha\in \mathbb{R}$.

Si $\lambda=1$, resolviendo de la misma manera $(\lambda I-A)v=(I-A)v=0$, tenemos que $v=(\beta,\gamma,-3\beta+2\gamma)$ para todo $\beta,\gamma$. Entonces el conjunto de eigenvectores es

$B=\{ v_1=(3,-2,1), \quad v_2=(1,0,-3), \quad v_3=(0,1,2) \}.$

Es fácil ver que el conjunto $B$ es linealmente independiente, más aún $\text{dim}(\mathbb{R}^3)=3=|B|$, por lo tanto, $B$ es la base consistente con los eigenvectores de $A$.

$\triangle$

Agradecemos su esfuerzo por llegar hasta el final a pesar de todas las adversidades. Esperamos pronto volver a ser sus profesores/ayudantes. Mucha suerte en la última parcial, es el último esfuerzo. Pero también les deseamos mucho éxito en su proyecto de vida. ¡Gracias!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de eigenvalores, eigenvectores y polinomio característico.

Por Ayax Calderón

Para esta entrada haremos uso de las definiciones y propiedades básicas de eigenvalores y polinomio característico vistas en las clases del miércoles y viernes de la semana pasada.

Problema 1. Encuentra los valores propios de la matriz.
$$A=\begin{pmatrix}
0 & -1\\
1 & 0\end{pmatrix}$$

Solución. Consideremos a $A$ como una matriz con entradas complejas. Sea $\lambda$ un eigenvalor y $x$ un vector no nulo tal que $Ax=\lambda x$. Si $x_1,x_2$ son las coordenadas de $x$, la condición $Ax=\lambda x$ es equivalente a las ecuaciones

$$-x_2=\lambda x_1, \hspace{0.5cm} x_1=\lambda x_2.$$

Sustituyendo $x_1$ en la primera ecuación se sigue que $-x_2=\lambda ^2 x_2.$
Si $x_2=0$, entonces $x_1=0$, lo cual es imposible. Por lo tanto $x_2\neq 0$ y necesariamente $\lambda ^2 =-1$, entonces $\lambda\in \{-i,i\}$. Conversamente, $i$ y $-i$ son ambos eigenvalores, ya que podemos escoger $x_2=1$ y $x_1=\lambda$ como solución del sistema anterior. Así que vista como matriz compleja, $A$ tiene dos valores propios $\pm i$.

Por otro lado, si vemos a $A$ como matriz con entradas reales, y $\lambda\in \mathbb{R}$ es un eigenvalor y $x$ un eigenvector como arriba, entonces

$$(\lambda^2 +1)x_2=0.$$

Como $\lambda$ es real, $\lambda^2 +1$ es distinto de cero y así $x_2=0$, luego $x_1=0$ y $x=0$. Así que, en conclusión, vista como matriz con entradas reales, $A$ no tiene eigenvalores.

Problema 2. Encuentra el polinomio característico y los eigenvalores de la matriz

$$A=\begin{pmatrix}
0 & 1 & 1\\
1 & 0 & 1\\
1 & 1 & 1\end{pmatrix} \in M_3(F_2).$$

Solución. $\chi_A(\lambda)= \det (\lambda I_3 -A)= \det (\lambda I_3 +A)$ (pues $-1=1$ en $F_2$).

$\begin{vmatrix}
\lambda & 1 & 1\\
1 & \lambda & 1\\
1 & 1 & \lambda + 1 \end{vmatrix} = \begin{vmatrix}
1+ \lambda & 0 & 1\\
1 + \lambda & 1+ \lambda & 1\\
0 & \lambda & \lambda + 1 \end{vmatrix}$

La igualdad anterior se obtiene de sumar la segunda columna a la primera y la tercera columna a la segunda.

Ahora vemos que

$\begin{vmatrix}
\lambda +1 & 0 & 1\\
1+ \lambda & 1+ \lambda & 1\\
0 & \lambda & \lambda + 1 \end{vmatrix} = (\lambda +1)\begin{vmatrix}
1 & 0 & 1\\
1 & 1+ \lambda & 1\\
0 & \lambda & \lambda + 1 \end{vmatrix}$

$=(\lambda +1)(\lambda +1)^2=(\lambda +1)^3.$

Por lo tanto, $\chi_A(\lambda)=(\lambda +1)^3$, y así el único eigenvalor es $1$.

$\triangle$

Problema 3. Sean $a_0, a_1, \dots, a_{n-1}\in F$ y sea

$A=\begin{pmatrix}
0 & 0 & 0 & \dots & 0 & a_0\\
1 & 0 & 0 & \dots & 0 & a_1\\
0 & 1 & 0 & \dots & 0 & a_2\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \dots & 1 & a_{n-1}\end{pmatrix}.$

Demuestra que

$$\chi_A=x^n-a_{n-1}x^{n-1}-\dots – a_0.$$

Demostración. Sea $P=x^n-a_{n-1}x^{n-1}-\dots -a_1x- a_0$. Considera la matriz

$$B=xI_n-A=\begin{pmatrix}
x & 0 & 0 & \dots & 0 & -a_0\\
-1 & x & 0 & \dots & 0 & -a_1\\
0 & -1 & x & \dots & 0 & -a_2\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \dots & -1 & x -a_{n-1}\end{pmatrix}.$$

Sumando a la primera fila de $B$ la segunda fila multiplicada por $x$, la tercera fila multiplicada por $x^2$, $\dots$, la $n-$ésima fila multiplicada por $x^{n-1}$ obtenemos la matriz.

$$C=\begin{pmatrix}
0 & 0 & 0 & \dots & 0 & P\\
-1 & x & 0 & \dots & 0 & -a_1\\
0 & -1 & x & \dots & 0 & -a_2\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \dots & -1 & x -a_{n-1}\end{pmatrix}.$$

Tenemos que $\chi_A=\det B = \det C$ y, desarrollando $\det C$ con respecto a la primera fila, obtenemos

$$\det C = (-1)^{n+1}P\cdot \begin{vmatrix}
-1 & x & \dots & 0\\
0 & -1 & \dots & 0\\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & -1\end{vmatrix} = (-1)^{n+1}P(-1)^{n-1}=P. $$

$\square$

Problema 4. Sea $A\in M_n(F)$ una matriz con polinomio característico
$$\chi_A(t)=(-1)^nt^n+\dots +a_1t+a_0.$$
Demuestra que$\chi_A(0)=a_0$. Deduce que $A$ es invertible si y sólo si $a_0\neq 0$.

Demostración. Es fácil ver que $\chi_A(0)=a_0$, ya que $a_0$ es el término independiente. Por otro lado, recordamos que $\chi_A(t)=\det(A-tI_n)$, entonces $\chi_A(0)=\det A$. se sigue que $\chi_A(0)=a_0= \det A$, y por la última igualdad sabemos que $A$ es invertible si y sólo si $a_0\neq 0$.

$\square$

Problema 5. Demuestra que cualquier matriz $A\in M_n(\mathbb{R})$ es suma de dos matrices invertibles.

Demostración. Veamos que existen $B,C\in M_n(\mathbb{R})$ tales que $A=B+C$.
Definimos la matriz $B$ como: $b_{ii}=-1$ si $a_{ii}=0$ y $b_{ii}=\frac{a_{ii}}{2}$ si $a_{ii}\neq 0$,$ b_{ij}=a_{ij}$ si $i>j$ y $b_{ij}=0$ si $i<j$.

Similarmente definimos la matriz $C$ como: $c_{ii}=1$ si $a_{ii}=0$, $c_{ii}=\frac{a_{ii}}{2}$ si $a_{ii}\neq 0$, $ c_{ij}=a_{ij}$ si $i<j$ y $c_{ij}=0$ si $i>j$.

Por construcción $B$ y $C$ son matrices triangulares con todas sus entradas diagonales distintas de cero. Por lo tanto $0\not\in\{\det B, \det C\}$, es decir, $B$ y $C$ son invertibles. Además por la manera en la que construimos las matrices $B$ y $C$ se tiene que $A=B+C$.

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices simétricas reales y sus eigenvalores

Por Leonardo Ignacio Martínez Sandoval

Introducción

Hemos llegado a la cima del curso. En estas últimas entradas probaremos uno de los teoremas más bellos en álgebra lineal: el teorema espectral para matrices simétricas reales. También hablaremos de varias de las consecuencias que tiene.

Hay dos formas equivalentes de enunciar el teorema.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para hablar de la demostración y de las consecuencias del teorema espectral para matrices simétricas reales, necesitaremos usar teoría de todas las unidades del curso. En particular, usaremos las siguientes definiciones:

  • Una matriz $A$ en $M_n(F)$ es simétrica si es igual a su transpuesta.
  • Una matriz $A$ en $M_n(F)$ es ortogonal si es invertible y $A^{-1}= {^tA}$.
  • Si $T:V\to V$ es una transformación lineal de un espacio vectorial $V$ a sí mismo y $W$ es un subespacio de $V$, entonces decimos que $W$ es estable bajo $T$ si $T(W)\subseteq W$.
  • Un producto interior es una forma bilineal simétrica y positiva definida.
  • Un espacio Euclideano es un espacio vectorial de dimensión finita con un producto interior.
  • Si $W$ es un subespacio de un espacio Euclideano $V$, entonces $W^\bot$ es el conjunto de todos los vectores que de $V$ que son ortogonales a todos los vectores de $W$.
  • Una matriz $A$ en $M_n(F)$ es diagonalizable si existen matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible, $D$ diagonal y tales que $A=P^{-1}DP$.

Y los siguientes resultados principales:

En esta entrada enunciaremos tres resultados auxiliares de interés propio. A partir de estos resultados, la demostración del teorema espectral para matrices simétricas reales y la equivalencia entre ambas versiones será mucho más limpia.

Los eigenvalores de matrices simétricas reales

El polinomio característico de una matriz $A$ en $M_n(\mathbb{R})$ tiene coeficientes reales. Por el teorema fundamental del álgebra, debe tener exactamente $n$ raíces en $\mathbb{C}$, contando multiplicidades. Si alguna de estas raíces $r$ no es real, entonces $A$ no puede ser diagonalizable en $M_n(\mathbb{R})$. La razón es que $A$ sería similar a una matriz diagonal $D$, y los eigenvalores de las matrices diagonales (incluso triangulares) son las entradas de la diagonal principal. Como $A$ y $D$ comparten eigenvalores (por ser similares), entonces $r$ tendría que ser una entrada de $D$, pero entonces $D$ ya no sería una matriz de entradas reales.

Lo primero que veremos es que las matrices simétricas reales «superan esta dificultad para poder diagonalizarse». Esta va a ser nuestra primer herramienta para demostrar el teorema espectral.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$ y $\lambda$ una raíz del polinomio característico de $A$. Entonces, $\lambda$ es un número real.

Demostración. El polinomio característico de $A$ es un polinomio con coeficientes reales, así que por el teorema fundamental del álgebra se tiene que $\lambda$ debe ser un número en $\mathbb{C}$. Así, podemos escribirlo de la forma $\lambda = a+ib$, con $a$ y $b$ números reales. Lo que mostraremos es que $b=0$.

Se tiene que $\lambda$ es un eigenvalor de $A$ vista como matriz en $M_n(\mathbb{C})$, y por lo tanto le corresponde un eigenvector $U$ en $\mathbb{C}^n$, es decir, un $U\neq 0$ tal que $$AU=\lambda U.$$ Este vector $U$ lo podemos separar en partes reales e imaginarias con vectores $V$ y $W$ en $\mathbb{R}^n$ tales que $$U=V+iW.$$

En estos términos,
\begin{align*}
AU&=A(V+iW)=AV+iAW \quad\text{y}\\
\lambda U &= (a+ib)(V+iW)\\
&=(aV-bW) + i (aW+bV),
\end{align*}

de modo que igualando partes reales e imaginarias en la expresión $AU=\lambda U$ tenemos que
\begin{align*}
AV&=aV-bW\quad\text{y}\\
AW&=aW+bV.
\end{align*}

Como $A$ es simétrica, tenemos que

\begin{equation}
\langle AV,W \rangle=\langle {^tA}V,W \rangle= \langle V, AW\rangle.
\end{equation}

Estudiemos las expresiones en los extremos, reemplazando los valores de $AV$ y $AW$ que encontramos arriba y usando la bilinealidad del producto interior. Se tiene que

\begin{align*}
\langle AV,W \rangle &= \langle aV-bW,W \rangle\\
&=a\langle V,W \rangle – b \langle W,W \rangle\\
&=a \langle V,W \rangle – b \norm{W}^2,
\end{align*}

y que

\begin{align*}
\langle V,AW \rangle &= \langle V,aW+bV \rangle\\
&=a\langle V,W \rangle + b \langle V,V \rangle\\
&=a \langle V,W \rangle + b \norm{V}^2.
\end{align*}

Substituyendo estos valores en la expresión (1), obtenemos la igualdad

$$a \langle V,W \rangle – b \norm{W}^2 = a \langle V,W \rangle + b \norm{V}^2,$$

que se simplifica a $$b(\norm{V}^2+\norm{W}^2)=0.$$

Estamos listos para dar el argumento final. Como $U=V+iW$ es un eigenvector, entonces no es nulo, de modo que no es posible que $V$ y $W$ sean ambos el vector $0$ de $\mathbb{R}^n$. Como el producto interior es positivo definido, entonces alguna de las normas $\norm{V}$ o $\norm{W}$ no es cero, de modo que $$\norm{V}^2+\norm{W}^2\neq 0.$$

Concluimos que $b=0$, y por lo tanto que $\lambda$ es un número real.

$\square$

La demostración anterior es ejemplo de un truco que se usa mucho en las matemáticas. Aunque un problema o un teorema no hablen de los números complejos en su enunciado, se puede introducir a $\mathbb{C}$ para usar sus propiedades y trabajar ahí. Luego, se regresa lo obtenido al contexto real. Aquí en el blog hay otra entrada en donde damos más ejemplos de «brincar a los complejos».

Un resultado auxiliar de transformaciones simétricas

A continuación damos la segunda herramienta que necesitaremos para probar el teorema espectral. Recuerda que si $V$ es un espacio Euclideano y $T:V\to V$ es una transformación lineal, entonces decimos que $T$ es simétrica si para todo par de vectores $u$ y $v$ en $V$ se tiene que $$\langle T(u),v\rangle = \langle u, T(v) \rangle.$$ Enunciamos el resultado en términos de transformaciones, pero también es válido para las matrices simétricas asociadas.

Teorema. Sea $V$ un espacio Eucideano y $T:V\to V$ una transformación lineal simétrica. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces:

  • $W^\bot$ también es estable bajo $T$ y
  • Las restricciones de $T$ a $W$ y a $W^\bot$ son transformaciones lineales simétricas en esos espacios.

Demostración. Para el primer punto, lo que tenemos que mostrar es que si $w$ pertenece a $W^\bot$, entonces $T(w)$ también, es decir, que $T(w)$ es ortogonal a todo vector $v$ en $W$.

Tomemos entonces un vector $v$ en $W$. Como $W$ es estable bajo $T$, tenemos que $T(v)$ está en $W$, de modo que $\langle w, T(v) \rangle =0$. Como $T$ es simétrica, tenemos entonces que $$\langle T(w),v \rangle = \langle w, T(v) \rangle = 0.$$ Esto es lo que queríamos probar.

Para la segunda parte, si $T_1$ es la restricción de $T_1$ a $W$ y tomamos vectores $u$ y $v$ en $W$, tenemos que
\begin{align*}
\langle T_1(u), v \rangle &= \langle T(u), v \rangle\\
&=\langle u, T(v) \rangle \\
&=\langle u, T_1(v) \rangle,
\end{align*}

lo cual muestra que $T_1$ es simétrica. La prueba para $W^\bot $ es análoga y queda como tarea moral.

$\square$

Matrices diagonalizables y bases ortonormales de eigenvectores

El tercer y último resultado enuncia una equivalencia entre que una matriz en $M_n(F)$ sea diagonalizable, y que exista una base especial para $F^n$. Es lo que usaremos para probar la equivalencia entre ambas formulaciones del teorema espectral para matrices simétricas reales.

Teorema. Sea $A$ una matriz en $M_n(F)$. Las siguientes dos afirmaciones son equivalentes:

  • $A$ es diagonalizable, es decir, existen matrices $P$ y $D$ en $M_n(F)$, con $P$ invertible y $D$ diagonal tales que $A=P^{-1}DP.$
  • Existe una base para $F^n$ que consiste de eigenvectores de $A$.

Demostración. Antes de comenzar la demostración, recordemos que si tenemos una matriz $B$ en $M_n(F)$ de vectores columna $$C_1,\ldots,C_n,$$ entonces los vectores columna del producto $AB$ son $$AC_1,\ldots AC_n.$$ Además, si $D$ es una matriz diagonal en $M_n(F)$ con entradas en la diagonal $d_1,\ldots,d_n$, entonces los vectores columna de $BD$ son $$d_1C_1,\ldots,d_nC_n.$$

Comencemos la prueba del teorema. Supongamos que $A$ es diagonalizable y tomemos matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible y $D$ diagonal de entradas $d_1,\ldots,d_n$, tales que $A=P^{-1}DP$. Afirmamos que los vectores columna $C_1,\ldots,C_n$ de $P^{-1}$ forman una base de $F^n$ que consiste de eigenvectores de $A$.

Por un lado, como son los vectores columna de una matriz invertible, entonces son linealmente independientes. En total son $n$, como la dimensión de $F^n$. Esto prueba que son una base.

De $A=P^{-1}DP$ obtenemos la igualdad $AP^{-1}=P^{-1}D$. Por las observaciones al inicio de la prueba, tenemos al igualar columnas que para cada $j=1,\ldots,n$ se cumple $$AC_j = d_j C_j.$$ Como $C_j$ forma parte de un conjunto linealmente independiente, no es el vector $0$. Así, $C_j$ es un eigenvector de $A$ con eigenvalor $d_j$. Con esto terminamos una de las implicaciones.

Supongamos ahora que existe una base de $F^n$ que consiste de eigenvectores $C_1,\ldots,C_n$ de $A$. Para cada $j=1,\ldots,n$, llamemos $\lambda_j$ al eigenvalor correspondiente a $C_j$, y llamemos $D$ a la matriz diagonal con entradas $\lambda_1,\ldots,\lambda_n$.

Como $C_1,\ldots,C_n$ son vectores linealmente independientes, la matriz $B$ cuyas columnas son $C_1,\ldots, C_n$ es invertible. Además, por las observaciones al inicio de la prueba, se tiene que la columna $j$ de la matriz$AB$ es $AC_j$ y la columna $j$ de la matriz $BD$ es $\lambda_j C_j$. Entonces, por construcción, estas matrices son iguales columna a columna, y por lo tanto lo son iguales. De esta forma, tenemos que $AB=BD$, o bien, reescribiendo esta igualdad, que $$A=BDB^{-1}.$$ Así, la matriz invertible $P=B^{-1}$ y la matriz diagonal $D$ diagonalizan a $A$.

$\square$

Las matrices simétricas reales serán todavía más especiales que simplemente las matrices diagonalizables. Lo que asegura el teorema espectral es que podremos encontrar no sólo una base de eigenvectores, sino que además podemos garantizar que esta base sea ortonormal. En términos de diagonalización, la matriz $P$ no sólo será invertible, sino que además será ortogonal.

Más adelante…

En esta entrada enunciamos dos formas del teorema espectral y hablamos de algunas consecuencias que tiene. Además, repasamos un poco de la teoría que hemos visto a lo largo del curso y vimos cómo nos ayuda a entender mejor este teorema.

En la siguiente entrada, que es la última del curso, demostraremos las dos formas del teorema espectral que enunciamos en esta entrada y haremos un pequeño comentario sobre qué hay más allá del teorema espectral en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un ejemplo de una matriz simétrica en $M_n(\mathbb{C})$ cuyos eigenvalores no sean reales.
  • En el contexto del segundo teorema, muestra que la restricción de $T$ a $W^\bot$ es simétrica.
  • Realiza la demostración de que si $A$ y $B$ son matrices en $M_n(F)$ y los vectores columna de $B$ son $C_1,\ldots,C_n$, entonces los vectores columna de $AB$ son $AC_1,\ldots,AC_n$. También, prueba que si $D$ es diagonal de entradas $d_1,\ldots,d_n$, entonces las columnas de $BD$ son $d_1C_1,\ldots,d_nC_n$.
  • Encuentra una matriz $A$ con entradas reales similar a la matriz $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{pmatrix},$$ tal que ninguna de sus entradas sea igual a $0$. Encuentra una base ortogonal de eigenvectores de $A$ para $\mathbb{R}^3$.
  • Diagonaliza la matriz $$\begin{pmatrix}-2 & 0 & 0 & 0\\0 & 2 & 0 & 0\\ \frac{19}{7} & \frac{30}{7} & \frac{65}{7} & \frac{24}{7}\\ \frac{6}{7} & – \frac{20}{7} & – \frac{48}{7} & – \frac{23}{7}\end{pmatrix}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»