Archivo de la etiqueta: campos

Álgebra Lineal II: Aplicaciones de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

Clasificación de matrices por similaridad

Una pregunta que aún no hemos podido responder es la siguiente: si nos dan dos matrices A y B en Mn(F), ¿son similares? Con la maquinaria desarrollada hasta ahora podemos dar una muy buena respuesta.

Proposición. Sean A y B matrices en Mn(F) tales que el polinomio característico de A se divide en F. Entonces, A y B son similares si y sólo si se cumplen las siguientes dos cosas:

  • El polinomio característico de B también se divide en Mn(F) y
  • A y B tienen la misma forma canónica de Jordan.

Demostración. Sea J la forma canónica de Jordan de A.

Si A y B son similares, como A es similar a J, se tiene que B es similar a J. Entonces, B tiene el mismo polinomio característico que A y por lo tanto se divide en F. Además, como J es similar a B, entonces por la unicidad de la forma canónica de Jordan, precisamente J es la forma canónica de Jordan de B. Esto es un lado de nuestra proposición.

Supongamos ahora que el polinomio característico de B también se divide en Mn(F) y que la forma canónica de Jordan de B también es J. Por transitividad de similaridad, A es similar a B.

◻

Veamos un ejemplo de cómo usar esto en un problema específico.

Problema. Encuentra dos matrices en M2(R) que tengan como polinomio característico a x23x+2, pero que no sean similares.

Solución. Las matrices A=(1002) y B=(1102) ya están en forma canónica de Jordan y son distintas, así que por la proposición anterior no pueden ser similares. Además, por ser triangulares superiores, en ambos casos el polinomio característico es (X1)(X2)=X23X+2.

El problema anterior fue sumamente sencillo. Piensa en lo difícil que sería argumentar con cuentas de producto de matrices que no hay ninguna matriz PM2(R) tal que A=P1BP.

Forma canónica de Jordan «para cualquier matriz»

Como en C[X] todos los polinomios se dividen, entonces tenemos el siguiente corolario del teorema de Jordan.

Corolario. Toda matriz en Mn(C) tiene una única forma canónica de Jordan.

Aquí C es muy especial pues es un campo completo, es decir, en el cual cualquier polinomio no constante tiene por lo menos una raíz. En general esto no es cierto, y es muy fácil dar ejemplos: x22 no tiene raíces en Q y x2+1 no tiene raíces en R.

Sin embargo, existe toda un área del álgebra llamada teoría de campos en donde se puede hablar de extensiones de campos. Un ejemplo de extensión de campo es que C es una extensión de R pues podemos encontrar «una copia de» R dentro de C (fijando la parte imaginaria igual a cero).

Un resultado importante de teoría de campos es el siguiente:

Teorema. Sea F un campo y P(X) un polinomio en F[X]. Existe una extensión de campo G de F tal que P(X) se divide en G.

¿Puedes notar la consecuencia que esto trae para nuestra teoría de álgebra lineal? Para cualquier matriz en Mn(F), podemos considerar a su polinomio característico y encontrar campo G que extiende a F en donde el polinomio se divide. Por el teorema de Jordan, tendríamos entonces lo siguiente.

Corolario. Sea A una matriz en Mn(F). Entonces, A tiene una forma canónica de Jordan en un campo G que extiende a F.

Por supuesto, la matriz P invertible que lleva A a su forma canónica quizás sea una matriz en Mn(G).

Toda matriz compleja es similar a su transpuesta

Ya demostramos que para cualquier matriz A en Mn(F) se cumple que χA(X)=χ(AT)(X). Esto implica que A y su transpuesta AT tienen los mismos eigenvalores, traza y determinante. También vimos que μA(X)=μAT(X). Las matrices A y AT comparten muchas propiedades. ¿Será que siempre son similares? A continuación desarrollamos un poco de teoría para resolver esto en el caso de los complejos.

Proposición. Sea Jλ,n un bloque de Jordan en Mn(F). Entonces, Jλ,n y Jλ,nT son similares.

Demostración. Para bloques de Jordan, podemos dar explícitamente la matriz de similitud. Es la siguiente matriz, con unos en la diagonal no principal:

P=(0001001001001000).

Esta matriz es invertible, su inversa es ella misma y cumple lo siguiente (ver ejercicios). Si A es una matriz en Mn(F), entonces:

  • Si A tiene columnas C1,,Cn, entonces AP tiene columnas Cn,,C1.
  • Si A tiene filas R1,,Rn, entonces PA tiene filas Rn,,R1.

Para los bloques de Jordan, si revertimos el orden de las filas y luego el de las columnas, llegamos a la transpuesta. Así, Jλ,nT=PJλ,nP es la similitud entre las matrices dadas.

◻

La prueba anterior no funciona en general pues para matrices arbitrarias no pasa que AT=PAP (hay un contraejemplo en los ejercicios). Para probar lo que buscamos, hay que usar la forma canónica de Jordan.

Teorema. En Mn(C), toda matriz es similar a su transpuesta.

Demostración. Sea A una matriz en Mn(C). Como en C todo polinomio se divide, tanto A como AT tienen forma canónica de Jordan. Digamos que la forma canónica de Jordan es

(1)J=(Jλ1,k10000Jλ2,k20000Jλ3,k30000Jλd,kd).

Si P es la matriz de similitud, tenemos que A=P1JP y al transponer obtenemos que:

AT=PT(Jλ1,k1T0000Jλ2,k2T0000Jλ3,k3T0000Jλd,kdT)(PT)1.

Como por la proposición anterior cada bloque de Jordan es similar a su transpuesta, existen matrices invertibles Q1,,Qd tales Jλi,kiT=Qi1Jλi,kiQi para todo i{1,,d}. Pero entonces al definir Q como la matriz de bloques

Q=(Q1000Q20000Qd),

obtenemos la similaridad

AT=PTQ1(Jλ1,k10000Jλ2,k20000Jλ3,k30000Jλd,kd)Q(PT)1.

Así, A y AT tienen la misma forma canónica de Jordan y por lo tanto son matrices similares.

◻

Más adelante…

¡Hemos terminado el curso de Álgebra Lineal II! Por supuesto, hay muchos temas de Álgebra Lineal adicionales que uno podría estudiar.

Un tema conectado con lo que hemos platicado es qué hacer con las matrices cuyo polinomio característico no se divide en el campo con el que estamos trabajando. Por ejemplo si tenemos una matriz A en Mn(R) cuyo polinomio característico no se divide, una opción es pensarla como matriz en Mn(C) y ahí encontrar su forma canónica de Jordan. ¿Pero si queremos quedarnos en R? Sí hay resultados que llevan una matriz a algo así como una «forma canónica» en R muy cercana a la forma canónica de Jordan.

Otro posible camino es profundizar en la pregunta de cuándo dos matrices en Mn(F) son similares. Si tienen forma canónica de Jordan, ya dimos una buena caracterización en esta entrada. En los ejercicios encontrarás otra. Pero, ¿y si no tienen forma canónica de Jordan? Podríamos extender el campo a otro campo G y comprar las formas canónicas ahí, pero en caso de existir la similaridad, sólo la tendremos en Mn(G). Existe otra manera de expresar a una matriz en forma canónica, que se llama la forma canónica de Frobenius y precisamente está pensada para determinar si dos matrices son similares sin que sea necesario encontrar las raíces del polinomio característico, ni extender el campo.

Estos son sólo dos ejemplos de que la teoría de álgebra lineal es muy extensa. En caso de que estés interesado, hay mucho más por aprender.

Tarea moral

  1. Sea A una matriz en Mn(F) y tomemos P en Mn(F) la matriz
    P=(0001001001001000).
    • Demuestra que si A tiene columnas C1,,Cn, entonces AP tiene columnas Cn,,C1.
    • Demuestra que si A tiene filas R1,,R1, entonces PA tiene filas Rn,,Rn.
    • Concluye con cualquiera de los incisos anteriores que P es invertible y su inversa es ella misma.
    • Tomemos explicitamente n=2 y A=(1234). Encuentra explícitamente PAP. ¿Es AT?
  2. ¿Cuál es la máxima cantidad de matrices que se pueden dar en M5(C) de manera que cada una de ellas tenga polinomio característico x2(x2+1)(x+3) y tales que no haya dos de ellas que sean similares entre sí.
  3. Sea A una matriz en Mn(R) tal que su polinomio característico se divide en R, con forma canónica de Jordan J. Sea P(X) un polinomio en R[X].
    • Demuestra que el polinomio característico de P(A) se divide en R.
    • La forma canónica de Jordan de P(A) no necesariamente será P(J) pues puede que el polinomio altere el orden de los eigenvalores pero, ¿cómo se obtiene la forma canónica de P(A) a partir de J?
  4. Sean A y B matrices en Mn(F) cuyo polinomio característico se divide en F. Muestra que A y B son similares si y sólo si para cualquier polinomio P(X) en F[X] se tiene que rango(P(A))=rango(P(B)).
  5. Investiga sobre la forma canónica de Frobenius y sobre la variante a la forma canónica de Jordan restringida a R.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: Divisibilidad en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos del algoritmo de la división. Dados dos números enteros a y b, con b0, nos permite poner de manera única a a de la forma a=qb+r, en donde q y r son enteros, y además 0r<|b|. En otras palabras, nos permite poner a un número como «copias de otro», más un residuo «chiquito». En esta entrada hablaremos de la divisibilidad en los enteros.

La divisibilidad se da cuando pasa una situación especial en el algoritmo de la división: cuando el residuo obtenido es igual a cero. Es decir, cuando podemos escribir a=qb. Cuando esto sucede, diremos que b divide a a, o bien que a es múltiplo de b. En esta entrada daremos una definición formal que contemple este caso y estudiaremos varias de sus propiedades.

Definición de divisibilidad

La noción fundamental que estudiaremos en esta entrada es la de divisibilidad. La definición crucial es la siguiente.

Definición. Sean m y n enteros. Diremos que m divide a n si existe un entero k tal que n=km. En notación, escribiremos m|n. También diremos que n es un múltiplo de m, o bien que n es divisible entre m.

Ejemplo. El número 35 es divisible entre 5 pues podemos encontrar un entero k tal que 35=k5. Concretamente, podemos escribir 35=75. Así mismo, este número también es divisible entre 7 pues podemos encontrar un entero k tal que 35=k(7), en concreto, podemos escribir 35=(5)(7).

Por otro lado, el 35 no es múltiplo de 8. ¿Cómo sabemos esto? Al hacer el algoritmo de la división obtenemos que 35=48+3. Como esta es la única forma de escribir a 35 como un múltiplo de 8 más un residuo entre 0 y 7, entonces es imposible escribirlo como un múltiplo de 8 más residuo 0. En otras palabras, no es múltiplo de 8.

Propiedades básicas de divisibilidad

La siguiente proposición habla de algunas de las propiedades básicas de la divisibilidad. Las enunciaremos y daremos sus demostraciones para poner en práctica nuestra definición de divisibilidad.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Los enteros 1 y 1 dividen a cualquier otro entero.
  • El entero 0 es divisible por cualquier entero.
  • Es reflexiva, es decir para cualquier entero n se tiene que n|n.
  • Es transitiva, es decir si l,m,n son enteros tales que l|m y m|n, entonces l|n.

Demostración. A continuación demostramos la demostración, inciso por inciso.

  • Recordemos que si n es un entero, entonces n=n1. Esto nos dice que 1 divide a n. Además, por las propiedades de las operaciones en los números enteros tenemos lo siguiente:
    n=n1=n((1)(1))=(n(1))(1)=(n)(1).
    Aquí estamos usando que (1)(1)=1, la asociatividad del producto en los números enteros y que (1)n=n. En resumen, obtenemos que n=(n)(1), lo cual nos dice que 1|n.
  • Aquí notamos que para cualquier entero n tenemos que 0=0n. Así, n|0.
  • Anteriormente usamos que n=n1 para concluir 1|n. Así mismo, al usar n=1n obtenemos que n|n.
  • Veamos la transitividad. Supongamos que l,m,n son enteros tales que l|m y m|n. Por definición de divisibilidad podemos encontrar enteros q y r tales que m=ql y n=rm. Substituyendo el valor de m de la primera igualdad en la segunda y usando asociatividad obtenemos que: n=rm=r(ql)=(rq)l. Esto precisamente nos dice que l|n.

◻

Divisibilidad y operaciones en los enteros

La divisibilidad se comporta bien con las operaciones en los números enteros. En la siguiente proposición encontramos algunas de las propiedades que vuelven esto un poco más preciso.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Para enteros l,m,n, si l|m y l|n, entonces l|m+n.
  • Para enteros l,m,n, si l|m, entonces l|mn.
  • Para enteros l, a, b, c, d se cumple que si l|m y l|n, entonces l|am+bn.

Demostración. Daremos la demostración inciso por inciso:

  • Como l|m y l|n, por definición existen enteros r y s tales que m=rl y n=sl. Al hacer la suma y usar la distributividad del producto sobre la suma obtenemos que m+n=rl+sl=(r+s)l. Esto por definición está diciendo que l divide a m+n.
  • Aquí podemos utilizar una propiedad anterior. Tenemos que mn=nm, por lo cual mn es divisible entre m. Es decir, tenemos l|m y m|mn. Así, por la transitividad de la divisibilidad, que ya probamos anteriormente, tenemos que l|mn.
  • Este inciso es consecuencia de los dos anteriores y, de hecho, ya no tenemos que usar la definición. Por el segundo inciso, como l|m, entonces l|am. Así mismo, como l|n, entonces l|bn. Finalmente, por el primer inciso, como l|am y l|bn, entonces l|am+bn.

◻

Observa que si ponemos a=1 y b=1 en la última propiedad obtenemos el siguiente corolario: si l|m y l|n, entonces l|mn.

Divisibilidad y orden en los enteros

Hay una tercera clase de propiedades que cumple la noción de divisibilidad: aquellas relacionadas con el orden en los enteros. Veamos esto.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Si m y n son enteros distintos de cero tales que m|n, entonces |m||n|.
  • Si m y n son enteros positivos tales que m|n, entonces mn.
  • Si m y n son enteros tales que m|n y n|m, entonces |m|=|n|.

Demostración. Demostraremos la primera afirmación a detalle, pues a partir de ella salen las otras dos de manera prácticamente inmediata.

Tomemos dos enteros m y n tales que m|n. Por definición de divisibilidad, tenemos que existe un entero k tal que n=km. Al tomar valor absoluto de esta expresión, obtenemos que |n|=|km|. Por propiedades del valor absoluto, tenemos que |km|=|k||m|. Como n es distinto de cero, entonces k también es distinto de cero, así que |k|1. De esta manera, tenemos la siguiente cadena de igualdades y desigualdades: |n|=|km|=|k||m|1|m|=|m|.

Esto es lo que queríamos demostrar.

Para el segundo inciso, como m y n son positivos, entonces entran en el caso del primer inciso. Además, por ser positivos tenemos |m|=m y |n|=n. De este modo, por el primer inciso tenemos mn.

En el tercer inciso primero tenemos que descartar algunos casos. Si m=0, entonces la divisibilidad 0|n nos dice que n=k0 para alguna k entera, pero entonces n=0 también, y entonces se cumple |m|=0=|n|. El caso n=0 es análogo. Ya descartados estos casos, podemos suponer que m y n son distintos de cero. Por el primer inciso tendríamos entonces |m||n| y |m||n|. Así, |m|=|n|, como queríamos.

◻

Un ejemplo que usa varias propiedades de divisibilidad

¿Por qué es bueno recordar y saber cuándo usar propiedades de la divisibilidad? Porque nos permite simplificar ciertos problemas y resolverlos más fácilmente. Veamos un ejemplo.

Problema. Encuentra todos los divisores del número 12.

Solución. Supongamos que d es un divisor de 12. Tenemos entonces que |d||12|=12, así, d es un número entre 12 y 12. Fuera de este rango no pueden existir divisores de 12.

Por reflexividad tenemos que 12|12. Por la propiedad de 1 y 1 tenemos que 1|12 y 1|12. Es fácil ver 12=26 y 12=34, así que 2, 3, 4 y 6 son todos ellos divisores de 12. Los negativos de estos números también serán divisores entonces pues, por ejemplo, como 12=34, también tenemos 12=(3)(4).

De este modo, hasta ahora hemos visto que 12,6,4,3,2,1,1,2,3,4,6,12 son todos ellos divisores de 12.

El 5 claramente no es, pues al hacer el algoritmo de la división obtenemos 12=25+2, con residuo 2. Entonces el 5 tampoco puede ser divisor.

Podríamos hacer lo mismo con 7,8,9,10,11. Pero una forma fácil de ver que ninguno de ellos va a funcionar es que si intentáramos escribir 12=7k, por ejemplo, se tiene que k no puede ser 1 (pues 127) y si ponemos k2 entonces el producto es al menos 14, que ya se pasa de 12. Así, ni estos números, ni 7,8,9,10,11 son divisores de 12.

Más adelante…

La noción de divisibilidad da pie a varios otros conceptos en la teoría de números enteros. Dentro de algunas entradas hablaremos de dos conceptos importantes: el de máximo común divisor y mínimo común múltiplo en los enteros. Sin embargo, antes de hacer esto tomaremos una pequeña desviación para hablar de un concepto un poco abstracto pero bastante útil: los ideales.

Tarea moral

  1. Encuentra todos los divisores del número 24 (tanto los positivos, como los negativos) y verifica que en efecto cumplen con la definición dada en esta entrada.
  2. Encuentra contraejemplos para las siguientes afirmaciones:
    1. Si l, m y n son enteros tales que l|m y n|m, entonces l+n|m.
    2. Si l,m,n son enteros tales que l|mn, entonces o bien l|m o bien l|n.
  3. Demuestra las siguientes dos propiedades de la noción de divisibilidad:
    1. Si m y n son enteros positivos tales que m|n y n|m, entonces m=n.
    2. Si m es divisor de n con n=km, entonces k también es divisor de n.
  4. Sean m y n enteros. Demuestra que m divide a n si y sólo si m2 divide a n2.
  5. Sea n un entero positivo, m un entero, a1,,an enteros y b1,,bn enteros. Demuestra que si m|bi para todo i=1,,n, entonces m|i=1naibi.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Grupos, anillos y campos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En estas entradas hemos visto cómo distintas herramientas de álgebra nos pueden ayudar en la resolución de problemas. En las primeras dos entradas, hablamos de identidades algebraicas básicas y un par de avanzadas. Luego, hablamos de factorización en polinomios y del teorema de la identidad. Ahora platicaremos de cómo estructuras un poco más abstractas nos pueden ayudar. De manera particular, nos enfocaremos en aplicaciones de teoría de grupos a la resolución de problemas. Sin embargo, hacia el final de la entrada también hablaremos un poco acerca de anillos, dominios enteros y campos.

Teoría de grupos básica

Una de las nociones de álgebra abstracta más básicas, y a la vez más flexibles, es la de grupo. La teoría de grupos es muy rica y se estudia a profundidad en un curso de álgebra abstracta o álgebra moderna. Aquí veremos únicamente un poco de esta teoría y algunas aplicaciones a resolución de problemas. Comenzamos con la definición.

Definición. Un grupo es un conjunto no vacío G con una operación binaria que cumple lo siguiente:

  • Asociatividad: Para cualesquiera elementos x,y,z en G tenemos que x(yz)=(xy)z.
  • Neutro: Existe un elemento e en G tal que xe=x=ex para todo elemento x.
  • Inversos: Para cada elemento x en G, existe un elemento y en G tal que xy=e=yx.

Usualmente se simplifica la notación de la siguiente manera. Por un lado, en vez de poner el símbolo de producto, simplemente se ponen elementos consecutivos, por ejemplo ab=ab. Además, por la asociatividad, muchas veces no se ponen los paréntesis, de modo que expresiones como (ab)c se escriben simplemente como abc, a menos que los paréntesis ayuden a entender un argumento.

Hay que tener cuidado con invertir el orden de factores. En grupos, no necesariamente sucede que la operación es conmutativa, es decir, que ab=ba para todo par de elementos a y b. Si ab=ba decimos que a y b conmutan y si todo par de elementos de G conmutan, decimos que G es conmutativo. Un elemento siempre conmuta consigo mismo. Para n un entero positivo definimos an como el producto formado por n veces el elemento a.

A partir de la definición se puede ver que el neutro es único, pues si hubiera dos neutros e y e tendríamos e=ee=e, en donde primero usamos que e es neutro y después que e lo es. Para a en G, definimos a0 como e.

En grupos se vale «cancelar». Por ejemplo, si ab=ac, entonces podemos multiplicar esta igualdad a la izquierda por un inverso d de a y obtendríamos b=eb=dab=dac=ec=c. Del mismo modo, la igualdad ba=ca implica b=c.

En particular, si d y d son inversos de a, tenemos da=e=da, de donde d=d. Esto muestra que los inversos también son únicos, así que al inverso de a le llamamos a1. Observa que e1=e. Nota que si a y b son elementos de G, entonces ab(b1a1)=aea1=aa1=e, de modo que el inverso de un producto ab es el producto b1a1. Para n un entero positivo, definimos an como el inverso de an, que por lo anterior, es precisamente (a1)n. De hecho, ya definido an para todo entero, se puede verificar que se satisfacen las leyes usuales de los exponentes.

Problema. Sean a y b dos elementos en un grupo G con neutro e tales que aba=ba2b, a3=e y b2021=e. Muestra que b=e.

Sugerencia pre-solución. Observa que si a y b conmutaran, entonces el resultado se deduce fácilmente de la primer igualdad. Así, intenta modificar el problema a demostrar que a y b conmutan. Para ello tienes que hacer un paso intermedio que necesita inducción.

Solución. Lo primero que veremos es que a y b2 conmutan. Poniendo una identidad entre ambas b en el producto ab2, tenemos que ab2=abaa1b=ba2ba1b. De a3=e, tenemos a1=a2, así que siguiendo con la cadena de igualdades, ba2ba1b=ba2ba2b=ba2aba=bba=b2a. Así, ab2=b2a.

Ahora veremos que a y b conmutan. Para ello, como a y b2 conmutan, tenemos que a y b2k conmutan para cualquier entero k. Esto se puede probar por inducción. El caso k=1 es lo que ya probamos. Si es válido para cierta k, se sigue que ab2k+2=b2kab2=b2k+2a. Por hipótesis, b2020=b, así que el resultado anterior nos dice que a y b conmutan.

Por esta razón, la primer hipótesis aba=ba2b se puede reescribir como a2b=a2b2, que por cancelación izquierda da e=b, como queríamos mostrar.

◻

Subgrupos y órdenes

Dentro de un grupo pueden vivir grupos más pequeños.

Definición. Un subgrupo de un grupo G es un subconjunto H de G que es un grupo con las operaciones de G restringidas a H.

Para que H sea subgrupo, basta con que no sea vacío y que sea cerrado bajo la operación de grupos y la operación «sacar inverso».

Por ejemplo, se puede ver que Z12, los enteros módulo 12 con la suma, forman un grupo. De aquí, H1={0,3,6,9} es un subgrupo y H2={0,4,8} es otro.

Proposición. Si a es un elemento de un grupo G, entonces o bien 1,a,a2,a3, son todos elementos distintos de G, o bien existe un entero positivo n tal que an=1 y 1,a,,an1 son todos distintos. En este segundo caso, {1,a,,an1} es un subgrupo de G.

Sugerencia pre-demostración. Divide en casos. Luego, usa el principio de cancelación o las leyes de exponentes para grupos.

Demostración. Si todos los elementos son distintos, entonces no hay nada que hacer. De otra forma, existen i<j tales que aj=ai, de donde por la ley de cancelación tenemos que aji=e y ji1. Así, el conjunto de enteros positivos m tales que am=e es no vacío, de modo que por el principio de buen orden tiene un mínimo, digamos n.

Afirmamos que 1,a,a2,,an1 son todos distintos. En efecto, de no ser así, como en el argumento de arriba existirían 0i<jn1 tales que aji=e, pero jin1 sería una contradicción a la elección de n como elemento mínimo.

Probemos ahora que A={1,a,,an1} es subgrupo de G. Si tenemos ak y al en A, su producto es ak+l. Por el algoritmo de la división, k+l=qn+r, con r{0,,n1}, de modo que akal=aqn+r=(an)qar=eqar=ar, así que A es cerrado bajo productos. Además, si 1kn1, entonces 1nkn1 y akank=an=e. Así, A es cerrado bajo inversos. Esto muestra que A es subgrupo de G.

◻

En teoría de grupos, la palabra «orden» se usa de dos maneras. Por un lado si G es un grupo, su orden ord(G) es la cantidad de elementos que tiene. Por otro, dado un elemento a, el orden ord(a) de a es el menor entero positivo n tal que an=e, si es que existe.

Definimos al subgrupo generado por a como a:={an:nZ}. La proposición anterior dice que si a es finito, entonces es un subgrupo de G de orden ord(a)=ord(a). A los grupos de la forma a se les llama cíclicos.

Teorema de Lagrange

Cuando estamos trabajando con grupos finitos, el orden de un subgrupo debe cumplir una condición de divisibilidad.

Teorema (de Lagrange). Sea G un grupo finito y H un subgrupo de G. Entonces ord(H) divide a ord(G).

No daremos la demostración de este teorema, pero veremos algunos corolarios que sirven en la resolución de problemas.

Proposición. Sea G un grupo finito.

  • Si ord(G) es un primo p, entonces G es cíclico.
  • El orden de cualquier elemento a de G divide al orden de G, y por lo tanto aord(G)=1.
  • Si a es un elemento de G de orden n y am=e, entonces n divide a m.

Demostración. Para la primer parte, si tomamos un elemento a de G que no sea e, ya vimos que a es un subgrupo cíclico de G. Por el teorema de Lagrange, su orden debe dividir al primo p. Pero el orden de a es al menos 2, así que el orden de a debe ser p y por lo tanto a=G.

Como vimos arriba, el orden de a es el orden de a, que divide a G. Así,
aord(G)=(aorda)ord(G)/ord(a)=eord(G)/ord(a)=e. Con esto queda probado el segundo punto.

Para el último punto, usamos el algoritmo de la división para escribir m=qn+r, con r entre 0 y n1. Tenemos que e=am=aqn+r=ar. Por lo visto en la sección anterior, necesariamente r=0, así que n divide a m.

◻

Veamos cómo se pueden aplicar algunas de las ideas anteriores a un problema de teoría de grupos concreto.

Problema. En un grupo G, tenemos elementos a y b tales que a7=1 y aba1=b2. Determina qué posibles valores puede tener el orden de b.

Sugerencia pre-solución. Conjetura una fórmula para b2n buscando un patrón. Establécela por inducción.

Solución. El orden de a debe dividir a 7, así que es o 1 o 7. Si es 1, entonces a=e, por lo que por la hipótesis tenemos b=b2. De aquí b=e, así que el orden de b es 1. La otra opción es que el orden de a sea 7.

Afirmamos que para todo entero n se tiene que anban=b2n. Esto se prueba inductivamente. Es cierto para n=1 por hipótesis. Si se cumple para cierta n y elevamos la igualdad al cuadrado, tenemos que
b2n+1=(b2n)2=anbananban=anb2an=an+1ba(n+1),

lo cual termina la inducción.

En particular, para n=7 tenemos que a7=a7=e, por lo que b=b27, y por lo tanto b127=e. Como 127 es primo, el orden de b puede ser 1 ó 127.

◻

En realidad, en el problema anterior falta mostrar que en efecto existe un grupo que satisfaga las hipótesis, y para el cual el orden de b sea exactamente 127. Esto no lo verificaremos aquí.

Teoría de grupos en teoría de números

Lo que hemos platicado de teoría de grupos se vale para grupos en general. Cuando aplicamos estos resultados a grupos particulares, tenemos nuevas técnicas para resolver problemas. Uno de los casos que aparecen más frecuentemente es aplicar teoría de grupos en problemas de teoría de números.

Si tomamos un entero n, los enteros entre 1 y n1 que son primos relativos con n forman un grupo con la operación de producto módulo n. Si llamamos φ(n) a la cantidad de primos relativos con n entre 1 y n1, el teorema de Lagrange da el siguiente corolario.

Teorema (de Euler). Para todo entero positivo n y a un entero primo relativo con n, se tiene que aφ(n)1(modn).

Como corolario al teorema de Euler, tenemos el pequeño teorema de Fermat, que hemos discutido previamente aquí en el blog.

Teorema (pequeño teorema de Fermat). Para p un primo y a un entero que no sea múltiplo de p, se tiene que ap11(modp).

Así, cuando p es primo y a no es múltiplo de p, se tiene que el orden de a divide a p1. Veamos un ejemplo en donde esta idea forma parte fundamental de la solución.

Problema. Muestra que para ningún entero n>1 se tiene que n divide a 2n1.

Sugerencia pre-solución. Procede por contradicción, suponiendo que sí existe. Considera un primo p que divida a n y que además sea extremo en algún sentido. Trabaja módulo p.

Solución. Supongamos que existe un entero n>1 tal que n divide a 2n1. Sea p el primo más pequeño que divide a n. Tomemos a el orden de 2 en el grupo multiplicativo Zp.

Por un lado, como p divide a n y n divide a 2n1, se tiene que p divide a 2n1 y por lo tanto 2n1(modp). De esta forma, a divide a n.

Por otro lado, por el pequeño teorema de Fermat, tenemos que 2p11(modp), así que a divide a p1 y por lo tanto ap1.

Si a1, entonces a tiene un divisor primo que divide a n y es menor que ap1, lo cual es imposible pues elegimos a p como el menor divisor primo de n. De esta forma, a=1. Pero esto da la contradicción 21(modp).

◻

Anillos, dominios enteros y campos

Cuando se están resolviendo problemas, es importante tener en mente que existen otras estructuras algebraicas. Definiremos sólo las más comunes y veremos un problema ejemplo.

Definición. Un anillo es un conjunto R con dos operaciones binarias suma y producto tales que:

  • R con la suma es un grupo conmutativo.
  • El producto en R es asociativo, es decir (ab)c=a(bc) para a,b,c en R.
  • Se cumple la ley distributiva, es decir a(b+c)=ab+ac y (b+c)a=ba+ca para a,b,c en R.

El producto en R no tiene por qué ser un grupo. De hecho, ni siquiera tiene que tener neutro.

Definición. Si un anillo R tiene neutro, decimos que R es un anillo con 1. Si la multiplicación de R es conmutativa, decimos que R es conmutativo.

Definición. Un dominio entero es un anillo conmutativo con uno en donde además se vale cancelar, es decir, ab=ac implica b=c y ba=ca implica b=c.

Definición. Un campo es un anillo conmutativo con uno en donde cada elemento distinto de la identidad aditiva tiene inverso multiplicativo. En otras palabras, es un anillo en donde la suma y el producto son grupos.

Problema. Muestra que todo dominio entero finito es un campo.

Sugerencia pre-solución. Usa el principio de las casillas.

Solución. Supongamos que R={a1,,an} es un dominio entero con una cantidad finita de elementos. Lo único que falta para que sea campo es que los elementos tengan inversos multiplicativos.

Sea a un elemento de R y supongamos que a no tiene inverso multiplicativo. Entonces, los números a1a,a2a,,ana sólo pueden tomar a lo más n1 valores diferentes, de modo que por principio de las casillas existen dos de ellos que son iguales, digamos aia=aja para ij.

Como R es dominio entero, se vale cancelar, lo cual muestra ai=aj. Esto es una contradicción, pues ai y aj eran elementos distintos de R. Así, todo elemento tiene inverso multiplicativo.

◻

En cursos de matemáticas a nivel superior se ven muchos ejemplos de estas estructuras algebraicas. En cursos de Álgebra Superior se construye el dominio entero de enteros Z. Se construyen los campos R, Q y C. También, se construyen los anillos de polinomios F[x]. La noción de campo es fundamental cuando se construye la teoría de Álgebra Lineal. Como se puede ver, la teoría de álgebra es muy amplia, así que esta entrada sólo queda como invitación al tema.

Más problemas

Puedes encontrar más problemas de estructuras algebraicas en la Sección 4.4 del libro Problem Solving through Problems de Loren Larson.