Teoría de los Conjuntos I: Propiedades del producto cartesiano

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada demostraremos algunas de las propiedades del producto cartesiano. Discutiremos sobre si esta operación en conjuntos es conmutativa o asociativa. Para algunos de nuestros ejemplos usaremos los conjuntos $0,1,2,3,4$ que recuerda que definimos en la entrada de axioma de la unión y axioma del par.

Producto cartesiano

Recordemos la definición de producto cartesiano.

Definición. Sean $A$ y $B$ conjuntos cualesquiera, definimos el producto cartesiano de $A$ y $B$, como:

$A\times B=\set{(a,b): a\in A\ y\ b\in B}$.

Ejemplo.

Consideremos los conjuntos $A=\set{0,1}$ y $B=\set{0,1,2,3}$. Tenemos que $A\times B=\set{(0,0),(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)}$. De hecho, podemos representar geométricamente a este conjunto como se muestra en la siguiente imagen:

Imagen representación geométrica del producto cartesiano.

Por supuesto, esta representación es un poco informal pues estamos usando la recta numérica con números reales (que no hemos dicho qué son) y estamos asumiendo cierto orden (del cuál no hemos hablado). Por el momento, piensa que esta representación es sólo para conectar la idea de producto cartesiano con conceptos que has visto en otros cursos.

$\square$

Conmutatividad del producto cartesiano

En general el producto cartesiano no es conmutativo, es decir, si $A$ y $B$ son conjuntos, no necesariamente es cierto que $A\times B=B\times A$.

Ejemplo.

Sean $A=\set{\emptyset}$ y $B=\set{\set{\emptyset}}$, tenemos que:

$A\times B=\set{(\emptyset, \set{\emptyset})}$.

Por otro lado,

$B\times A=\set{(\set{\emptyset},\emptyset)}$.

Dado que tanto $A\times B$ y $B\times A$ sólo tienen un elemento, para que pase que $A\times B=B\times A$, tendría que ocurrir que $(\emptyset,\set{\emptyset})=(\set{\emptyset}, \emptyset)$. Usando el teorema que vimos en la entrada pasada tendríamos que $\emptyset=\set{\emptyset}$ y $\set{\emptyset}=\emptyset$, lo cual no ocurre. Por lo tanto, $A\times B\not=B\times A$.

$\square$

Veamos ahora bajo qué condición el producto cartesiano sí conmuta.

Proposición. Sean $A$ y $B$ conjuntos. Entonces $A\times B=B\times A$ si y sólo si $A=B$ o $A=\emptyset$ o $B=\emptyset$.

Demostración.

$\rightarrow$] Supongamos que $A$ y $B$ son conjuntos tales que $A\times B=B\times A$.

Caso 1: Si $A=\emptyset$ se cumple la proposición.

Caso 2: Si $B=\emptyset$ se cumple la proposición.

Caso 3: Si $A$ y $B$ son conjuntos no vacíos. Sea $x\in A$. Como $B\not=\emptyset$, existe $y\in B$ y así la pareja $(x,y)\in A\times B$. Por hipótesis $A\times B=B\times A$, por lo que $(x,y)\in B\times A$, esto es $x\in B$ y $y\in A$. En particular, $x\in B$ y por lo tanto, $A\subseteq B$.

Para ver que $B\subseteq A$ seguimos un argumento análogo al anterior. Por lo tanto, $A=B$.

$\leftarrow$] Si $A=B$, tenemos que $A\times B=B\times A$. Si $A=\emptyset$, entonces por definición de producto cartesiano $A\times B=\emptyset\times B=\emptyset$ y $B\times A=B\times \emptyset= \emptyset$, por lo que $A\times B=B\times A$. Análogamente si $B=\emptyset$.

$\square$

Asociatividad del producto cartesiano

Además de preguntarnos acerca de la conmutatividad podemos preguntarnos si el producto cartesiano es asociativo. Para tratar la asociatividad de una operación son necesarios tres conjuntos, sin embargo, no hemos visto la definición de producto cartesiano para más de dos conjuntos.

Definición. Sean $A,B$ y $C$ conjuntos. Definimos el producto cartesiano de $A$, $B$ y $C$ como:

$A\times B\times C=(A\times B)\times C$.

Ejemplo.

Sean $A=B=C=\set{\emptyset}$. Tenemos que:

\begin{align*}
A\times B\times C&=(A\times B)\times C\\
&=(\set{\emptyset}\times\set{\emptyset})\times\set{\emptyset}\\
&= \set{(\emptyset,\emptyset)}\times\set{\emptyset}\\
&=\set{((\emptyset, \emptyset), \emptyset)}.
\end{align*}

$\square$

Una manera alternativa de hacer lo anterior es la siguiente.

Definición. Sean $A,B$ y $C$ conjuntos. Definimos

$(A\times B\times C)_2=A\times (B\times C)$.

Ejemplo.

Sean $A=B=C=\set{\emptyset}$ conjuntos,

\begin{align*}
A\times (B\times C)&=\set{\emptyset}\times (\set{\emptyset}\times\set{\emptyset})\\
&=\set{\emptyset}\times \set{(\emptyset, \emptyset)}\\
&= \set{(\emptyset,(\emptyset,\emptyset))}.
\end{align*}

$\square$

Revisando los dos ejemplos anteriores tenemos que $A\times(B\times C)\not=(A\times B)\times C$ pues $(\emptyset,(\emptyset,\emptyset))\in A\times (B\times C)$ y $((\emptyset, \emptyset), \emptyset)\in (A\times B)\times C$ son tales que $(\emptyset, (\emptyset, \emptyset))\not=((\emptyset, \emptyset), \emptyset)$. Concluimos que las definiciones de $A\times B\times C$ y $(A\times B\times C)_2$ son distintas, y en cierto sentido, concluimos que el producto cartesiano no es asociativo.

Tarea moral

  • Demuestra que para $a,b,c$ conjuntos se tiene que $(a,b,c)$ es conjunto, y que para $A,B,C$ conjuntos se tiene que $A\times B \times C$ también es conjunto.
  • Prueba que $(a,b,c)=(d,e,f)$ si y sólo si $a=d$, $b=e$ y $c=f$.
  • Prueba que si $A\not=\emptyset$, entonces $(A\times A)\times A\not=A\times (A\times A)$.
  • Demuestra que $A\times B=\emptyset$ si y sólo si $A=\emptyset$ o $B=\emptyset$.
  • Muestra que si $C\times D\not=\emptyset$ entonces $C\times D\subseteq A\times B$ si y sólo si $C\subseteq A$ y $D\subseteq B$.

Más adelante…

En la siguiente entrada veremos cómo se comporta el producto cartesiano con las operaciones que tratamos en entradas anteriores como: la unión, la intersección y la diferencia. Esto lo podremos hacer pues, como vimos, el producto cartesiano es un conjunto cuyos elementos son parejas ordenadas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I – Videos: Sistemas de ecuaciones no lineales. Las nulclinas y el plano fase

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio cualitativo a los sistemas de ecuaciones no lineales de primer orden. A través de algunos ejemplos vimos la complejidad de los planos fase para dichos sistemas, por lo que no es posible clasificar a dichos planos y a sus puntos de equilibrio como lo hicimos en el caso lineal, y tratar de interpretarlos de manera completa también es muy complicado.

Un paso importante que dimos fue estudiar las curvas solución cercanas a los puntos de equilibrio del sistema. Por medio de la matriz jacobiana del campo vectorial asociado, es decir la matriz $$\textbf{DF}(x,y)=\begin{pmatrix} \frac{\partial{F_{1}}}{\partial{x}}(x_{0},y_{0}) & \frac{\partial{F_{1}}}{\partial{y}}(x_{0},y_{0}) \\ \frac{\partial{F_{2}}}{\partial{x}}(x_{0},y_{0}) & \frac{\partial{F_{1}}}{\partial{y}}(x_{0},y_{0}) \end{pmatrix}$$ logramos linealizar el sistema y gracias a el Teorema de Hartman – Grobman, logramos hallar el comportamiento de las soluciones cerca de los puntos de equilibrio, siempre y cuando los valores propios del sistema lineal tuvieran parte real no nula. En tal caso, las soluciones se comportan de una manera similar a las soluciones del sistema lineal que obtuvimos mediante la linealización. Nuestro objetivo sigue siendo tratar de entender el plano fase completo de un sistema no lineal.

En esta entrada vamos a estudiar uno de los métodos que nos puede ayudar a resolver este problema. Dado un sistema de ecuaciones $$\dot{\textbf{X}}=\textbf{F}(\textbf{X})=(F_{1}(\textbf{X}),…,F_{n}(\textbf{X}))$$ vamos a definir la $x_{i}$-nulclina como el conjunto de puntos tales que la función $F_{i}$ se anula. Para sistemas de dos ecuaciones vamos a definir la $x$-nulclina y la $y$-nulclina. Veremos cómo se comporta el campo vectorial sobre estos conjuntos, y dado que podemos dibujar en el plano las curvas que los representan (ya que son las curvas de nivel dadas por $F_{1}(x,y)=0$ y $F_{2}(x,y)=0$), estas curvas van a separar al plano en distintas regiones. Lo que haremos será estudiar el campo vectorial, y por tanto el comportamiento de las soluciones sobre cada una de estas regiones. Al final podremos hacer un esbozo del plano fase para el sistema no lineal.

Las nulclinas y el plano fase

En el primer video definimos de forma general las nulclinas de un sistema de ecuaciones $$\dot{\textbf{X}}=\textbf{F}(\textbf{X})=(F_{1}(\textbf{X}),…,F_{n}(\textbf{X})).$$ Como siempre, nos restringimos al caso de sistemas de dos ecuaciones para destacar los aspectos más importantes de la $x$-nulclina y la $y$-nulclina.

En el segundo video aplicamos el método de las nulclinas para esbozar el plano fase de dos sistemas de ecuaciones no lineales.

Los campos vectoriales que aparecen en los videos fueron realizados en el siguiente enlace.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Considera el sistema $$\begin{array}{rcl} \dot{x} & = & F_{1}(x,y) \\ \dot{y} & = & F_{2}(x,y) \end{array}.$$ Muestra que el conjunto de puntos de equilibrio del sistema es la intersección de la $x$-nulclina y la $y$-nulclina.
  • Para el sistema $$\begin{array}{rcl} \dot{x} & = & x^{2}-x \\ \dot{y} & = & x^{2}-y \end{array}$$ determina las nulclinas, dibújalas en el plano, y con ayuda de estas esboza el plano fase del sistema.
  • Utilizando el método de las nulclinas, esboza el plano fase para el sistema $$\begin{array}{rcl} \dot{x} & = & y \\ \dot{y} & = & x-x^{2} \end{array}.$$
  • Haz lo mismo que en el ejercicio anterior para el sistema $$\begin{array}{rcl} \dot{x} & = & 2x^{2}+xy-2x \\ \dot{y} & = & y^{2}-y \end{array}.$$
  • Considera el sistema de Volterra – Lotka $$\begin{array}{rcl} \dot{x} & = & x(10-x-y) \\ \dot{y} & = & y(30-2x-y) \end{array}$$ el cual modela una interacción del tipo depredador – presa. Mediante el método de las nulclinas esboza el plano fase del sistema e interpreta su significado respecto a la interacción de las dos especies en competencia. (Recuerda que el número de especies es no negativa, así que enfócate únicamente en el primer cuadrante del plano).

Más adelante

Hemos logrado conocer el plano fase completo de algunos sistemas no lineales a través del método de las nulclinas. Sin embargo, este método está sujeto a la forma del campo vectorial asociado al sistema. Entre más complejo sea el campo, más difícil será encontrar las nulclinas y hacer el estudio del plano fase.

En la próxima entrada veremos un tipo de sistemas en particular, que tienen un plano fase que podremos estudiar por completo mediante las curvas de nivel de una función que va a definir al sistema. Estos son los sistemas hamiltonianos, y la función que los define será llamada función hamiltoniana.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Teoría de los Conjuntos I: Pares ordenados y producto cartesiano

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada hablaremos de pares ordenados. Esto nos llevará a muchas ideas importantes en teoría de conjuntos como el producto cartesiano, las relaciones, las funciones y los órdenes.

En estra entrada comenzaremos definiendo qué es un par ordenado. Estudiaremos cuándo dos pares ordenados son iguales. Veremos algunas definiciones alternativas de par ordenado que tienen la misma propiedad crucial. A partir de la idea de par ordenado, definiremos al producto cartesiano y daremos algunos ejemplos sobre este concepto.

Par ordenado

Anteriormente vimos el concepto de par no ordenado. Dados $a$ y $b$ conjuntos , podíamos construir un conjunto cuyos elementos son solamente $a$ y $b$. Sin embargo, el orden de los elementos no es importante. Si $a,b$ son conjuntos, el par no ordenado $\set{a,b}$ resulta ser igual al par no ordenado $\set{b,a}$ por el axioma de extensión.

Pero en matemáticas muchas veces necesitamos poder distiguir cuándo «$a$ va en la primera posición y $b$ va en la segunda». A continuación daremos una definición que nos permitirá hacer esto.

Definición. Sean $a$ y $b$ conjuntos. Definimos al par ordenado $(a, b)$ como el conjunto:

$(a,b)=\set{\set{a}, \set{a,b}}$.

Esta definición fue dada por Kazimierz Kuratowski en 1921. Lo que permite tener una expresión matemática que nos deja «darle orden» a las parejas. Esto es lo que enuncia de manera más precisa el siguiente resultado.

Teorema. Sean $a, b, c, d$ conjuntos, entonces $(a,b)=(c, d)$ si y sólo si $a=c$ y $b=d$.

Demostración.

$\leftarrow$] Supongamos que $a=c$ y $b=d$. Resulta que $(a,b)=\set{\set{a},\set{a,b}}=\set{\set{c}, \set{c,d}}=(c,d)$.

$\rightarrow$] Supongamos que $(a,b)=(c,d)$. Veamos que $a=c$ y $b=d$.

Caso 1: $a=b$

Si $a=b$, entonces $(a,b)=\set{\set{a}, \set{a,b}}=\set{\set{a},\set{a,a}}=\set{\set{a},\set{a}}=\set{\set{a}}$. Dado que $(a,b)=(c,d)=\set{\set{c},\set{c,d}}$ tenemos que $\set{a}=\set{c}$ y $\set{a}=\set{c,d}$, por lo que $a=c=d$. Por lo tanto, $a=c$ y $b=d$.

Caso 2: $a\not=b$

Como $\set{a}\in \set{\set{a},\set{a,b}}=\set{\set{c},\set{c,d}}$, entonces $\set{a}\in \set{\set{c}, \set{c,d}}$. Así, $\set{a}=\set{c}$ o $\set{a}=\set{c,d}$.

El caso en el que $\set{a}=\set{c, d}$ no puede ocurrir, pues de ser así $c=d=a$, de donde $(c, d)=\set{\set{c}, \set{c,d}}=\set{\set{c}}$. Además, como $(a,b)=\set{\set{a}, \set{a,b}}$ y $a\not=b$, se tiene que $(a,b)$ tiene dos elementos y $(c, d)$ tiene un elemento, por lo que no es posible que $(a,b)=(c,d)$. Así, este caso no puede ocurrir. Por lo tanto, $\set{a}=\set{c}$ y así $a=c$.

Por otro lado, como $\set{a,b}\in \set{\set{a},\set{a,b}}=\set{\set{c}, \set{c,d}}$ entonces $\set{a,b}=\set{c}$ o $\set{a,b}=\set{c,d}$.

No puede ocurrir que $\set{a,b}=\set{c}$, pues de ser así $a=b=c$, pues contradice el hecho de que $a\not =b$. Así, debe ocurrir que $\set{a,b}=\set{c,d}$. Como $a=c$, entonces $b=d$.

$\square$

La definición de Hausdorff de par ordenado

Aunque la definición que dio Kuratowski es la más conocida y es la que usaremos en nuestro curso, no es la única definición de par ordenado que existe, en el sentido de que la teoría de conjuntos nos permite dar otras definiciones que también cumplen con la propiedad crucial que demostramos en el teorema anterior. La siguiente definición fue dada por Felix Hausdorff en su texto Grundzüge der Mengenlehre de1914.

Definición. Sean $a,b$ conjuntos. Definimos

$(a,b)_{H}=\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}$.

Ejemplo.

El siguiente ejemplo muestra cómo el orden sí importa.

$(\set{\emptyset,\set{\emptyset}},\set{\set{\emptyset}})_{H}=\set{\set{\set{\emptyset,\set{\emptyset}},\emptyset}, \set{\set{\set{\emptyset}},\set{\emptyset}}}$ y $(\set{\set{\emptyset}},\set{\emptyset,\set{\emptyset}})_{H}=\set{\set{\set{\set{\emptyset}},\emptyset}, \set{\set{\emptyset,\set{\emptyset}}, \set{\emptyset}}}$.

Se puede observar que los conjuntos $(\set{\emptyset,\set{\emptyset}},\set{\set{\emptyset}})_{H}\not=(\set{\set{\emptyset}},\set{\emptyset,\set{\emptyset}})_{H}$.

$\square$

Teorema. Se cumple que $(a,b)_{H}=(c,d)_{H}$ si y sólo si $a=c$ y $b=d$.

Demostración.

Supongamos que $(a,b)_{H}=(c,d)_{H}$, esto es $\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}= \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}}$. Luego, $\set{a,\emptyset}\in \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}}$, por lo que $\set{a,\emptyset}= \set{c,\emptyset}$ o $\set{a,\emptyset}=\set{d,\set{\emptyset}}$.

Hagamos primero el caso en el que $\{a,\emptyset\}=\{d,\{\emptyset\}\}$. En este caso, $\{b,\{\emptyset\}\}=\{c,\emptyset\}$. Como $\emptyset\neq \{\emptyset\}$, entonces la primera igualdad implica $a=\{\emptyset\}$ y $d=\emptyset$. La segunda igualdad implica $b=\emptyset$ y $c=\{\emptyset\}$. Así, en efecto tenemos $a=c$ y $b=d$.

El otro caso es que $\set{a,\emptyset}= \set{c,\emptyset}$ y $\set{b,\set{\emptyset}}= \set{d,\set{\emptyset}}$. En la primera igualdad, debemos tener entonces $a=c$, y en la segunda $b=d$.

Por lo tanto, en cualquier caso si $(a,b)_{H}=(c,d)_{H}$ entonces $a=c$ y $b=d$.

Por otro lado, si $a=c$ y $b=d$ se cumple que $(a,b)_{H}=\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}= \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}} =(c,d)_{H}$.

$\square$

La definición de Wiener de par ordenado

Veamos una tercera posible definición. Esta fue dada por Norbert Wiener en 1914, en su texto A simplification of the logic of relations.

Definición. Sean $a$ y $b$ conjuntos. Definimos

$(a,b)_{W}=\set{\set{\set{a},\emptyset},\set{\set{b}}}$.

Ejemplo.

En el siguiente ejemplo mostraremos que el orden de las parejas según la definición de Wiener importa:

$(\emptyset,\set{\emptyset})_{W}=\set{\set{\set{\emptyset}, \emptyset}, \set{\set{\set{\emptyset}}}}$

y $(\set{\emptyset},\emptyset)_{W}=\set{\set{\set{\set{\emptyset}}, \emptyset}, \set{\set{\emptyset}}}$.

Dado que los conjuntos $\set{\set{\set{\emptyset}, \emptyset}, \set{\set{\set{\emptyset}}}}$ y $\set{\set{\set{\set{\emptyset}}, \emptyset}, \set{\set{\emptyset}}}$ son distintos, tenemos que $(\emptyset,\set{\emptyset})_{W}\not=(\set{\emptyset},\emptyset)_{W}$.

$\square$

Como te imaginarás, esta tercera definición también cumple que dos parejas serán iguales si y sólo si son iguales en cada entrada. La verificación de esto queda como uno de los ejercicios.

Producto cartesiano

Si tenemos conjuntos $A$ y $B$, podemos construir muchos pares ordenados $(a,b)$ tomando $a\in A$ y $b\in B$. ¿Qué obtenemos cuando consideramos a todos estos posibles pares?

Definición. Sean $A$ y $B$ conjuntos arbitrarios. Definimos al producto cartesiano de $A$ y $B$, como el conjunto:

$A\times B= \set{(x,y):x\in A\ y\ y\in B}$.

Por supuesto, para que esta definición sea correcta, debemos primero demostrar que en efecto la colección que estamos considerando es un conjunto. Esto está garantizado por la siguiente proposición.

Proposición. Si $A$, $B$ son conjuntos, entonces $A\times B$ es un conjunto.

Demostración.

Sean $A$ y $B$ conjuntos. Se sigue por axioma de la unión que $A\cup B$ es conjunto y por axioma del conjunto potencia tenemos que $\mathcal{P}(A\cup B)$ es conjunto. Y de nuevo, por axioma del conjunto potencia tenemos que $\mathcal{P}(\mathcal{P}(A\cup B))$ es conjunto.

Sean $a\in A$ y $b\in B$ arbitrarios. Veamos que $(a,b)\subseteq \mathcal{P}(\set{a,b})$ y $\mathcal{P}(\set{a,b})\subseteq \mathcal{P}(A\cup B)$.

En efecto, $(a,b)=\set{\set{a},\set{a,b}}$ y $\mathcal{P}(\set{a,b})=\set{\emptyset, \set{a},\set{b},\set{a,b}}$, por lo que se verifica que $(a,b)\subseteq \mathcal{P}(\set{a,b})$. La contención $\mathcal{P}(\set{a,b})\subseteq \mathcal{P}(A\cup B)$ se deduce de la propiedad más general de la potencia que dice que si $X\subseteq Y$, entonces $\mathcal{P}(X)\subseteq \mathcal{P}(Y)$.

Así, $(a,b)\subseteq \mathcal{P}(A\cup B)$, o bien $(a, b)\in \mathcal{P}(\mathcal{P}(A\cup B))$.

Luego por el esquema de comprensión, tenemos que

$$\set{x\in \mathcal{P}(\mathcal{P}(A\cup B)): \exists a\in A\exists b\in B (x=(a,b))}$$

es conjunto, pero esto es precisamente la colección $A\times B$.

$\square$

Ejemplo.

Sean $A=\set{\emptyset, \set{\emptyset}}$ y $B=\set{\set{\emptyset},\set{\set{\emptyset}}}$ conjuntos. Tenemos que:

\begin{align*}
A\times B&=\set{ \emptyset, \set{\emptyset}}\times \set{\set{\emptyset},\set{\set{\emptyset}}}\\
&=\set{(\emptyset,\set{\emptyset}), (\emptyset, \set{\set{\emptyset}}),(\set{\emptyset}, \set{\emptyset}), (\set{\emptyset},\set{\set{\emptyset}}) }.
\end{align*}

$\square$

Tarea moral

  1. Calcula el producto cartesiano de $A\times B$, $B\times A$ y $A\times C$ si $A=\set{\emptyset}$, $B=\set{\emptyset, \set{\emptyset}}$ y $C=\emptyset$.
  2. Justifica por qué para $a$ y $b$ conjuntos se tiene que $(a,b)$, $(a,b)_H$ y $(a,b)_W$ son conjuntos.
  3. Demuestra que $(a,b)_{W}=(c,d)_{W}$ si y sólo si $a=c$ y $b=d$.
  4. Si usáramos las definiciones $(a,b)_H$ y $(a,b)_W$, podríamos de manera análoga a la que creamos $A\times B$, también crear productos cartesianos $A\times_H B$ y $A\times_W B$. Justifica que en este caso también estas colecciones serían conjuntos.

Más adelante…

En la siguiente entrada demostraremos algunas de las propiedades del producto cartesiano. Veremos si para el caso de esta nueva operación para conjuntos se da la conmutatividad, la asociatividad y algunas de las propiedades que tratamos para la unión y la intersección.

Entradas relacionadas

Entradas relacionadas:

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Moderna I: Paridad de una permutación

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la entrada anterior descubrimos que toda permutación se puede factorizar en producto de transposiciones. Mas aún, el polinomio de Vandermonde nos permite saber que, aunque hayan varias factorizaciones, en realidad, todas siempre tienen una cantidad par (o un cantidad impar) de transposiciones. Con esto, podemos definir el signo de una permutación. La secuencia que se seguirá para abordar el signo de una permutación es la presentada en el libro de Avella, Mendoza, Sáenz y Souto, es decir se usarán los resultados de la entrada previa de acuerdo al enfoque de Herstein, para introducir la función signo y probar que es multiplicativa, y con ello obtener la fórmula del signo que aparece en el libro de Rotman (todos estos libros son los que se mencionan en la bibliografía).

Ya teniendo una noción de la paridad de una permutación podemos jugar con las consecuencias: podemos deducir qué pasa si multiplicamos dos permutación con la misma paridad, qué sucede cuando tienen distinta paridad y además, como es raro en los cursos de matemáticas… ¡podemos agrupar por paridad! En esta entrada, descubrimos que el conjunto de transposiciones con signo par, es en realidad un grupo con $\frac{n!}{2}$ elementos. Este conjunto es llamado el grupo alternante.

¿Pares o impares?

Definición. Sea $\alpha \in S_n$, $\alpha$ es par si $\alpha = \text{id}$ o si $\alpha$ es un producto de un número par de transposiciones. Por otro lado, $\alpha$ es impar si es un producto de un número impar de transposiciones.

La función signo es $sgn: S_n \to \{+1, -1\}$ definida como
\begin{align*}
sgn \; \alpha = \begin{cases} +1 & \text{si } \alpha \text{ es par} \\
-1 & \text{si } \alpha \text{ es impar}
\end{cases}
\end{align*}

Observación. Sean $\alpha = \tau_{1} \cdots \tau_r \in S_n$, con $\tau_{1}, \cdots, \tau_r$ transposiciones. Entonces $sgn\;\alpha = (-1)^r$.

Demostración.
La definición nos asegura que $sgn\;\alpha = +1$ si y sólo si $r$ es par.

$\blacksquare$

Proposición. Sean $\alpha, \beta \in S_n$. Entonces $$sgn \;(\alpha \, \beta) = sgn\, \alpha \; sgn \, \beta.$$

Esto nos dice que la función signo ($sgn$) es multiplicativa. Esto lo hace más sencilla de trabajar.

Demostración.

Esto es bastante fácil de demostrar, para usar lo que vimos tenemos que expresar a estas permutaciones como producto de transposiciones.

Sean $\alpha, \beta \in S_n$, con $\alpha = \tau_{1} \cdots \tau_r$, $\beta = \rho_1 \cdots \rho_t$. Donde, $\tau_1, \cdots, \tau_r, \rho_{1}, \cdots, \rho_t$ son transposiciones.

Si calculamos el signo del producto $\alpha\,\beta$ y usando la observación anterior, obtenemos lo siguiente:
\begin{align*}
sgn(\alpha \, \beta) &= sgn(\tau_1 \cdots \tau_r \, \rho_1 \cdots \rho_t) \\
& = (-1)^{r+t} & \text{Observación anterior}\\
& = (-1)^r \, (-1)^t & \text{Propiedades de las potencias}\\
& = sgn\, \alpha \; sgn\, \beta &\text{Observación anterior}
\end{align*}

Esto es precisamente lo que queríamos probar.

$\blacksquare$

Podemos concluir que para calcular el signo de un producto, basta entender el signo de cada uno de los factores.

Calculando el signo de una permutación

Seguiremos puliendo la idea que nos dio la proposición anterior hasta llegar a una fórmula para sacar el signo de una permutación. Pero por ahora, veamos qué sucede con los $r$-ciclos.

Lema. Sea $\sigma = (i_1 \cdots i_r) \in S_n$ un $r$-ciclo. Entonces $sgn\, \sigma = (-1)^{r-1}$.

Demostración.
Recordemos que en la entrada anterior vimos que podemos ver a $\sigma$ como producto de transposiciones:
\begin{align*}
\sigma &= (i_1 \cdots i_r) = (i_1\,i_r) \cdots (i_1 \, i_2).
\end{align*}
Intuitivamente, estamos intercambiando a $i_1$ con los elementos que le siguen, esto nos da $r-1$ transposiciones. Por lo tanto, $\sigma$ es un producto de $r-1$ transposiciones. De acuerdo con la observación, podemos concluir que $sgn \, \sigma = (-1)^{r-1}$.

$\blacksquare$

Estamos listos para enunciar y probar  la fórmula del signo que aparece en el libro de Rotman que se menciona en la bibliografía, y que resulta muy útil para calcular el signo de una permutación.

Teorema. Sea $\alpha \in S_n$, $\alpha = \beta_1 \cdots \beta_t$ una factorización completa de $\alpha$. Entonces $sgn\,\alpha = (-1)^{n-t}$, donde $t$ es la cantidad de factores que tiene la factorización completa de $\alpha$.

Demostración.
Como el signo es multiplicativo,
\begin{align*}
sgn\,\alpha = \prod_{i=1}^t sgn\,\beta_i.
\end{align*}
Estamos tomando una factorización completa de $\alpha$, entonces todos los $\beta_i$ son ciclos disjuntos. Así que su signo está dado por la longitud del ciclo (de acuerdo al lema dado):
\begin{align*}
sgn\,\beta_i = (-1)^{\text{long}\,\beta_i-1} \qquad \forall i\in\{1,\dots,t\}.
\end{align*}
Juntando ambas ecuaciones y sumando los $t$ exponentes obtenemos las siguientes igualdades
\begin{align*}
sgn\,\alpha &= \prod_{i = 1}^{t} sgn \,\beta_i & \text{Proposición}
\\&= \prod_{i = 1}^t (-1)^{\text{long}\,\beta_i – 1} &\text{Lema}\\
& = (-1)^{\left(\sum_{i = 1}^t \text{long}\,\beta_i \right) -\;\large{ t}} = (-1)^{n-t}. &\text{Leyes de exponentes}
\end{align*}

Como la factorización es completa, la siguiente igualdad se cumple: $$\sum_{i = 1}^t \text{long}\,\beta_i = n.$$

Por lo tanto $sgn\,\alpha = (-1)^{n-t}$.

$\blacksquare$

Esta forma resulta útil porque ya no necesito descomponer una permutación en producto de transposiciones, nos basta con encontrar una factorización completa. Veamos esto con un ejemplo.

Ejemplo.
Consideremos $\alpha \in S_{10}$ como
\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\
2 & 4 & 7 & 5 & 1 & 8 & 3 & 9 & 6 & 10
\end{pmatrix}.
\end{align*}

También podemos escribirla como $\alpha = (1\;2\;4\;5)(3\;7)(6\;8\;9)(10)$. Esto nos muestra que $\alpha$ es una factorización completa con 4 factores.

Entonces, de acuerdo con el teorema que acabamos de probar, $$sgn\,\alpha = (-1)^{10-4} = (-1)^6 = +1.$$

Por otro lado podemos sacar una factorización de $\alpha$ en transposiciones: $\alpha = (1 \; 5)(1 \; 4)(1 \; 2)(3 \; 7)(6 \; 9)(6 \; 8)$ que tiene 6 transposiciones. Entonces, efectivamente $\alpha$ es un producto de un número par de transposiciones.

Hora de Agrupar

Hemos visto que la función $sgn$ es una función mutliplicativa. Esto nos da como consecuencia que al multiplicar dos permutaciones con la misma paridad, te da como resultado una permutación par. En caso contrario, el resultado es impar. Ahora nos fijaremos solamente en las permutaciones pares.

Definición. El grupo alternante para $n$ elementos está definido como

$$A_n = \{\alpha \in S_n | sgn \, \alpha = +1\}.$$

Observación. $A_n$ efectivamente es un subgrupo de $S_n$.

Demostración.
Si $\alpha = \text{id}$, por definición del signo, $sgn\,\text{id} = +1$. Así, $\text{id}\in A_n$.

Sean $\alpha, \beta \in A_n$.
Como la función signo es multiplicativa:
\begin{align*}
sgn\,\alpha\beta = sgn \, \alpha \; sgn \, \beta = (+1)(+1) = +1.
\end{align*}
Así, $\alpha\beta \in A_n$. Es decir, $A_n$ es cerrada bajo el producto.

Por último, sea $\alpha \in A_n$.

Por un lado, usando la propiedad multiplicativa del signo obtenemos:
\begin{align*}
sgn\,(\alpha\alpha^{-1}) = sgn \, \alpha \; sgn \, \alpha^{-1} = (+1)\, sgn\, \alpha^{-1}.
\end{align*}

Por otro lado, como $\alpha \,\alpha^{-1} = \text{id}$, tenemos:
\begin{align*}
sgn\,(\alpha\,\alpha^{-1}) = sgn\, \text{id} = +1.
\end{align*}

Por lo tanto $sgn\,(\alpha\, \alpha^{-1}) = +1$, así $\alpha^{-1} \in A_n$. Es decir, $A_n$ es cerrada bajo inversos.

Por lo tanto $A_n$ es un subgrupo de $S_n$.

$\blacksquare$

El siguiente resultado nos muestra que el grupo alternante $A_n$ «parte en dos» a las permutaciones, es decir, la mitad de permutaciones son pares.

Proposición. Sea $n>1$, entonces $|A_n| = \frac{n!}{2}$.

Demostración. Podemos ver a $S_n$ como la unión de las permutaciones pares e impares, esto se expresa así $$S_n = A_n \cup (S_n\setminus A_n).$$
Pero, podemos dar una biyección definida como $\phi: A_n \to S_n\setminus A_n$, definida como $\phi \, \alpha = (1\;2)\alpha$.

Entonces, $|A_n| = \# S_n \setminus A_n$.

Así, como dijimos que

$n! = |S_n| = |A_n| + \# S_n\setminus A_n = 2 |A_n|$.

Por lo tanto $|A_n| = \frac{n!}{2}$.

Notación. Para denotar la cardinalidad u orden de un conjunto $A$, usamos dos notaciones:
\begin{align*}
|A| \to & \;\text{Si $A$ es un grupo.}\\
\# A \to & \;\text{Si $A$ no es un grupo (o si no sabemos si $A$ es un grupo o no).}
\end{align*}

Tarea moral

  1. Considera el elemento $\alpha \in S_{12}$ como
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 &10&11&12\\
    2 & 11&4& 1 & 8 &12& 3 & 6 & 9 & 5 & 7 & 10
    \end{pmatrix}
    \end{align*}
    1. Encuentra $\alpha^{-1}$, el signo de $\alpha$ y el de $\alpha^{-1}$.
    2. En general, ¿qué pasará con el signo de una permutación y de su inversa?
  2. Sea $\alpha$ un $r$ ciclo en $S_n$. ¿Podemos determinar el signo de $\alpha$ a partir de la paridad de $r$?
  3. Dada $\alpha \in S_n$ decimos que los números $i,j \in \{1,2,\dots,n\}$ forman una inversión si $i<j$ pero $\alpha(i) > \alpha(j)$. ¿Qué relación existe entre la paridad y el número de inversiones de $\alpha$?
  4. Encuentra todos los elementos de $A_4$.

Más adelante…

Esta entrada nos sirvió para construir los cimientos, es importante que lo tengamos claro antes de avanzar. En la siguiente entrada definiremos el producto de $S$ con $T$, veremos en qué situaciones el producto de los subconjuntos conmuta, cuándo se cumple que $ST$ es un subgrupo de $G$. Esto nos ayudará para definir las clases laterales. Más adelante, estas clases nos ayudarán a definir una nueva relación de equivalencia.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio

Por Eduardo Vera Rosales

Introducción

En entradas anteriores hemos estudiado a detalle sistemas de dos ecuaciones lineales homogéneas con coeficientes constantes de la forma $$\dot{\textbf{X}}=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$. Resolvimos tales sistemas de manera analítica, hallando su solución general, y también estudiamos el comportamiento de las curvas solución en el plano fase. Vimos que los valores propios asociados al sistema determinan la estabilidad de los puntos de equilibrio y la forma del plano fase. Finalmente, en la entrada anterior clasificamos las formas de los planos fase y los puntos de equilibrio, según la traza y el determinante de la matriz asociada al sistema.

Ahora que tenemos esta información a nuestra disposición, podemos estudiar sistemas de ecuaciones no lineales. Como en el caso lineal, nos enfocaremos en sistemas autónomos, donde la variable independiente $t$ no aparece explícitamente en el sistema. Lo primero que haremos será analizar algunos sistemas y sus campos vectoriales asociados, los cuales van a sugerir soluciones que ya no tienen un comportamiento conocido o fácil de interpretar como en los sistemas lineales. Necesitaremos nuevos métodos para conocer el plano fase por completo.

De tu curso de Cálculo de varias variables, sabes que la mejor aproximación lineal a una función $\textbf{F}:\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ en un punto $(x_{0},y_{0})$ está dada por la matriz jacobiana evaluada en dicho punto. En nuestro caso, tenemos que $$\textbf{F}(x,y)=(F_{1}(x,y).F_{2}(x,y))$$ entonces la matriz jacobiana se convierte en $$\textbf{DF}(x_{0},y_{0})= \begin{pmatrix} \frac{\partial{F_{1}}}{\partial{x}}(x_{0},y_{0}) & \frac{\partial{F_{1}}}{\partial{y}}(x_{0},y_{0}) \\ \frac{\partial{F_{2}}}{\partial{x}}(x_{0},y_{0}) & \frac{\partial{F_{1}}}{\partial{y}}(x_{0},y_{0}) \end{pmatrix}.$$ Esta matriz tendrá coeficientes constantes, y al sistema $$\dot{\textbf{X}}=\textbf{DF}(x_{0},y_{0})\textbf{X}$$ ya sabemos analizarlo.

El teorema de Hartman – Grobman nos garantizará que las soluciones al sistema no lineal cercanas al punto de equilibrio se comportarán de una manera similar a las curvas del plano fase del sistema lineal obtenido por la linealización. Con este método, podremos conocer una parte del plano fase.

Sistemas de ecuaciones no lineales. Linealización de puntos de equilibrio

En el primer video revisamos tres ejemplos de sistemas de ecuaciones no lineales, estudiamos sus planos fase a través del campo vectorial asociado y vemos las dificultades que se presentan. Posteriormente linealizamos un sistema de ecuaciones cerca de sus puntos de equilibrio mediante la matriz jacobiana del campo asociado. Finalmente enunciamos el teorema de Hartman – Grobman.

En el segundo video linealizamos dos sistemas de ecuaciones no lineales, y estudiamos el comportamiento de las curvas solución cerca de los puntos de equilibrio.

El péndulo simple

Estudiamos el sistema de ecuaciones asociado al movimiento simple de un péndulo. Linealizamos los puntos de equilibrio, estudiamos el plano fase y por último, interpretamos las curvas solución del plano fase.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Construye un sistema de dos ecuaciones no lineal tal que $(0,0)$ sea el único punto de equilibrio, y tal que las soluciones cerca del origen se comporten como espirales. Justifica tu respuesta.
  • Prueba que el sistema $$\begin{array}{rcl} \dot{x} & = & x^{2}-xy^{3} \\ \dot{y} & = & x+y^{2} \end{array}$$ tiene dos puntos de equilibrio. Linealiza cerca de los puntos de equilibrio y determina el comportamiento de las soluciones cercanas, siempre y cuando esto sea posible.
Campo vectorial del ejercicio 1
Campo vectorial del ejercicio 1
  • Determina los puntos de equilibrio y el comportamiento de las soluciones cerca de estos, del sistema $$\begin{array}{rcl} \dot{x} & = & -2x+y \\ \dot{y} & = & x^{2}-y. \end{array}$$
Campo vectorial del ejercicio 2
Campo vectorial del ejercicio 2
  • Calcula los puntos de equilibrio del sistema $$\begin{array}{rcl} \dot{x} & = & x^{2}-y^{2} \\ \dot{y} & = & x^{2}-y. \end{array}$$ Determina el comportamiento de los puntos de equilibrio, cuando esto sea posible.
Campo vectorial del ejercicio 3
Campo vectorial del ejercicio 3
  • Encuentra los puntos de equilibrio y el comportamiento de las soluciones cerca de estos, para el sistema $$\begin{array}{rcl} \dot{x} & = & \sin{x} \\ \dot{y} & = & \cos{y} \end{array}$$ cuando sea posible.

Más adelante

Hemos avanzado un poco en nuestro propósito de estudiar el plano fase de sistemas de dos ecuaciones no lineales. Al obtener la linealización de los puntos de equilibrio conocemos, al menos, el comportamiento de las curvas solución cerca de estos.

En la siguiente entrada estudiaremos el método de las nulclinas, que nos permitirá conocer más aspectos del plano fase a un sistema no lineal, no solamente cerca de los puntos de equilibrio, sino que además nos permitirá conocer el comportamiento de soluciones lejanas. Las nulclinas son los conjuntos de puntos donde las funciones coordenadas $\textbf{F}_{i}$ del campo vectorial asociado al sistema se anulan. En el caso de sistemas de dos ecuaciones, las nulclinas dividirán el plano $x(t)-y(t)$ en regiones. Estudiaremos el comportamiento de las soluciones en cada región y podremos tener un mejor conocimiento del plano fase entero.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»