Álgebra Lineal I: Problemas de rango de transformaciones y matrices.

Por Ayax Calderón

Introducción

Con anterioridad vimos el concepto de rango de una matriz y rango de una transformación lineal, además del muy importante teorema de rango-nulidad y la desigualdad de Sylvester. Vimos también, como contenido optativo, el versátil teorema de la factorización $PJQ$. En esta ocasión nos enfocaremos en resolver problemas de rango que nos servirán para repasar dichos conceptos.

Problemas resueltos

Problema 1. Encuentra el kernel y el rango de la transformación lineal $T:\mathbb{R}_2[x] \longrightarrow \mathbb{R}_3[x]$ definida por $$T(f(x))=2f'(x) + \int _{0}^{x} 3f(t)dt.$$

Antes de comenzar a leer la solución, es conveniente que te convenzas de que $T$ es una transformación lineal y que está bien definida, es decir, que en efecto toma un polinomio de grado a lo más dos con coeficientes reales y lo lleva a un polinomio de grado a lo más tres con coeficientes reales.

Solución. Consideremos $\mathcal{B}=\{1, x, x^2\}$ la base canónica de $\mathbb{R}_2[x]$.
Entonces
\begin{align*}
\Ima(T)&=\text{span}(\{T(1),T(x),T(x^2)\})\\
&= \text{span}(\{3x,2+\frac{3}{2}x^2,4x+x^3\}).
\end{align*}

Para determinar el rango de $\Ima{T}$, colocamos a las coordenadas de estas imágenes en la siguiente matriz $A$,

$$A=\begin{pmatrix}
0 & 3 & 0 & 0\\
2 & 0 & \frac{3}{2} & 0\\
0 & 4 & 0 & 1 \end{pmatrix}$$

y con el algoritmo de reducción gaussiana llegamos a que

$$A_{red}=\begin{pmatrix}
1 & 0 & \frac{3}{4} & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 \end{pmatrix}$$

Como $A_{red}$ tiene $3$ pivotes se sigue que $\rank(T)=3$.

Luego, por el teorema de rango nulidad se tiene que

\begin{align*}
3&=\dim(\mathbb{R}_2[x])\\
&= \dim (\ker (T))+\rank(T)\\
&=\dim(\ker(T))+3.
\end{align*}

Así, $\dim(\ker(T))=0$, por lo tanto $\ker(T)=\{0\}$.

$\triangle$

La desigualdad de Sylvester nos ayuda a acotar el rango de una suma de matrices por abajo. La desigualdad $$\rank(A+B)\leq \rank(A)+\rank(B)$$ nos ayuda a acotarlo por arriba. Combinar ambas ideas puede ser útil en problemas de rango de matrices.

Problema 2. Sea $A\in M_n(\mathbb{C})$ una matriz idempotente. Prueba que $$\rank(A)+\rank(I_n-A)=n.$$

Recuerda que una matriz es idempotente si $A^2=A$.

Solución. Como $A^2=A$, entonces $A(I_n – A)=O_n$.
Luego, por la desigualdad de Sylvester se tiene que
\begin{align*}
0&=\rank(O_n)\\
&=\rank(A(I_n-A))\\
&\geq \rank(A) + \rank(I_n-A)-n,
\end{align*}

entonces $$\rank(A)+\rank(I_n-A)\leq n.$$

Por otro lado, como para cualesquiera matrices $X,Y$ se tiene
$\rank(X+Y)\leq \rank(X)+\rank(Y)$, entonces
$$n=\rank(I_n)\leq \rank(A) + \rank(I_n-A),$$
de modo que $$n\leq \rank(A)+\rank(I_n – A).$$

Combinando ambas desigualdades, $$\rank(A)+\rank(I_n-A)=n.$$

$\square$

Problema 3. Encuentra el rango de la transformación lineal $T:\mathbb{R}_2[x]\longrightarrow M_2(\mathbb{R})$ definida por
$$T(f(x))=\begin{pmatrix}
f(1)-f(2) & 0\\
0 & f(0)\end{pmatrix}.$$

Solución. Para determinar el rango, basta tomar una base, encontrar la imagen de sus elementos bajo $T$ y determinar cuántos de estos elementos son linealmente independientes. Considera $\mathcal{B}=\{1,x,x^2\}$ la base canónica de $\mathbb{R}_2[x]$. Tenemos que

\begin{align*}
\Ima(T)&=\text{span}(T(\mathcal{B}))\\
&=\text{span}(\{T(1), T(x), T(x^2)\})\\
&=\text{span}\left(\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}, \begin{pmatrix}
-3 & 0\\
0 & 0\end{pmatrix} \right\} \right )\\
&=\text{span}\left (\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix} \right\} \right ).
\end{align*}

Notemos también que $\mathcal{C}=\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}} \right\}$ es linealmente independiente.

Por lo tanto $\mathcal{C}$ es una base para $\Ima(T)$ y así $\rank(T)=2$.

$\triangle$

Problema 4. Sean $A\in M_{3,2}(\mathbb{R})$ y $B\in M_{2,3}(\mathbb{R})$ matrices tales que
$$AB=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix} $$

Muestra que $BA$ es la identidad.

El enunciado no parece mostrar que este sea uno de los problemas de rango de matrices. Sin embargo, para poder resolverlo usaremos las herramientas que hemos desarrollado hasta ahora.

Partiremos el problema en los siguientes pasos.

  1. Verificar que $(AB)^2=AB$ y que $\rank(AB)=2$.
  2. Probar que $BA$ es invertible.
  3. Probar que $(BA)^3=(BA)^2$ y deducir que $BA=I_2$.

Solución.

1. Realizamos la operación matricial:

$$\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}$$

Ahora, aplicando reducción gaussiana en $AB$ obtenemos que $$(AB)_{red}=\begin{pmatrix}
1 & 0 & -1\\
0 & 1 & 1\\
0 & 0 & 0\end{pmatrix}.$$

Como $(AB)_{red}$ tiene sólo dos pivotes, entonces $\rank(AB)=2$.

2. Usando la desigualdad de rango para producto de matrices, obtenemos que
\begin{align*}
\rank(BA)&\geq \rank(A(BA)B)\\
&=\rank((AB)^2)\\
&=\rank(AB)=2.
\end{align*}

Entonces, $\rank(BA)\geq 2$. Por otro lado, como $BA\in M_2(\mathbb{R})$, entonces $\rank(BA)\leq 2$. Así, $\rank(BA)=2$ y $BA$ es una matriz en $M_2(\mathbb{R})$, así que es invertible.

3. Como $(AB)^2=AB$, entonces $B(AB)^2 A=B(AB)A=(BA)^2$. Por consiguiente $BABABA=(BA)^2$ y así $(BA)^3=(BA)^2$ y como $BA$ es invertible, podemos multiplicar en ambos lados de esta última igualdad por $((BA)^{-1})^2$ para obtener $BA=I_2$.

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Racionales y expansiones decimales

Por Claudia Silva

Introducción

En la entrada anterior hablamos acerca de cómo se construyen los números racionales y los números reales. A los números reales que no son racionales les llamamos irracionales. En esta entrada, queremos hablar de algunas formas en las que podemos determinar si un número es racional o irracional.

Expresión decimal de un racional

A los reales los construimos como clases de equivalencia de cierto tipo de sucesiones, pero otra forma de pensarlos es mediante su expresión decimal. Una forma de detectar la racionalidad o irracionalidad de un número es mediante su expresión decimal.

Lo primero que haremos en esta entrada será verificar la validez de la observación 88 del libro Álgebra Superior de Bravo, Rincón, Rincón. Para quienes tiene dificultades para ver los vídeos, pueden seguir la demostración del libro tal cual. Recuerden que pueden conseguir el libro de manera gratuita en la página Plaza Prometeo.

El resultado es el siguiente.

Proposición. Un número $r$ es racional si y sólo si tiene una expresión decimal que se vuelva periódica.

Lo haremos desglosando el «sí» y el «sólo sí» en dos vídeos separados.

La ida:

Demostración de que un número real es racional, entonces éste tiene una expresión decimal periódica

El regreso:

Un número real con expansión decimal periódica es racional

Ejercicios de determinar si un número es racional

Ahora, un par de ejemplos (éstos también vienen el libro, son el 126 y uno similar al 127):

Dos ejemplos del Teorema: un real es racional sii tiene expansión decimal periódica.

Por último, probaremos que $\sqrt7$ no es racional:

Demostración de que raíz de 7 no es racional.

Este último ejercicio se los dejo escrito, para los que no puedan ver el video con tanta facilidad:

Ejercicio de mostrar que raiz de 7 no es racional

Más ejemplos

Aquí en el blog puedes ver otros ejemplos en los que se usa la expansión decimal de un número y otros argumentos de bases numéricas.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: El teorema del valor intermedio

Por Fabian Ferrari

Introducción

El teorema del valor intermedio nos dice que si $f: [a, b] \to \mathbb{R}$ es una función continua, entonces para todo $y$ entre $f(a)$ y $f(b)$, existe un número $c \in [a, b]$ tal que $f(c)=y$. La forma de pensar este teorema es que «las funciones continuas no se pueden saltar valores que quedan entre dos valores que ya tomaron», o bien «las funciones continuas no dan brincos en su imagen».

Veamos algunos problemas que se resuelven usando este teorema

Una aplicación directa del teorema del valor intermedio

Problema 1. Muestra que la ecuación $2x^3+7x^2-27x=-18$ tiene una solución en el intervalo $[-7,-5]$.

Sugerencia pre-solución. Formula un problema equivalente definiendo una función continua $f$ para la cual si $f(x)=0$, entonces $x$ es solución a la ecuación.

Solución. La ecuación la podemos ver como $2x^3+7x^2-27x+18=0$. Consideremos la función $$f(x)=2x^3+7x^2-27x+18.$$ Como $f(x)$ es una función polinomial, sabemos que es continua en $\mathbb{R}$, así que es continua en el intervalo $[-7,-5]$. Lo que queremos ver es que existe un $c$ entre $-7$ y $-5$, tal que $f(c)=0$. Para esto, tenemos que evaluar la función en $-7$ y en $-5$.

Tenemos que:

$f(-7)=-136$ y $f(-5)=78$.

Tenemos que $0$ está entre $-136$ y $78$. Así, por el teorema del valor intermedio, debe de existir un número $c$ entre $-7$ y $-5$ de tal forma que $f(c)=0$. Por lo tanto $2x^3+7x^2-27x=-18$ tiene una solución entre $-5$ y $-7$.

$\square$

Notemos que no se encontró el valor de la raíz de la ecuación, sin embargo mostramos la existencia de esta. Esta es una de las características del teorema del valor intermedio: exhibir la existencia de algo sin necesidad de encontrarlo explícitamente.

Definir una buena función

En ocasiones podemos definir dos funciones para un problema y hacerlas interactuar para obtener una sola función continua que nos permite resolver un problema.

Problema 2. Un montañista empezó a escalar una montaña el sábado a las 8:00 hrs y llegó a la cima a las 18:00 hrs del mismo día. Decidió pasar la noche en la cima de la montaña. El día domingo empezó a descender a las 8:00 hrs y llegó al punto de partida a las 18:00 hrs. Prueba que hubo una hora en la que en ambos días estuvo a la misma altura de la montaña.

Sugerencia pre-solución. Plantea el problema usando dos funciones continuas que denoten la altura conforme pasa el tiempo en ambos días. Tienes mucha flexibilidad, así que usa notación efectiva para simplificar los cálculos.

Solución. Veamos que para este problema, podemos establecer dos funciones continuas para describir el cambio de altura con respecto al tiempo en horas, una para el ascenso y otra para el descenso del montañista en ambos días.

Sean $h_1(t)$, y $h_2(t)$ las funciones que representan el ascenso y el descenso del montañista respectivamente. En otras palabras, $h_1(t)$ y $h_2(t)$ denotan la altura en la que está el montañista tras $t$ horas después de haber comenzado su ascenso y descenso, respectivamente. Como amabas funciones son continuas en el intervalo de tiempo $[0, 10]$ (esto es porque tardó $10$ horas para ascender y $10$ horas para descender), tenemos que la función $g(t)=h_2(t)-h_1(t)$ tiene que ser continua en $[0, 10]$ también.

Ahora bien, sea $M$ la altura en la cima de la montaña. Tenemos lo siguiente:

$h_1(0)=0$, $h_1(10)=M$ y $h_2(0)=M$, $h_2(10)=0$.

Así, $g(0)=M$ y $g(10)=-M$. A su vez, $0$ está entre $-M$ y $M$, por lo que aplicando el teorema del valor intermedio, debe de existir un $t_0$ en el intervalo $[0, 10]$ tal que $g(t_0)=0$.

Y como

$g(t)=h_2(t)-h_1(t)$,

entonces

$g(t_0)=h_2(t_0)-h_1(t_0)$

$0=h_2(t_0)-h_1(t_0)$

$h_1(t_0)=h_2(t_0).$

Con esto podemos concluir que en el tiempo $t_0$ el día domingo estuvo a la misma altura que el día sábado al tiempo $t_0$.

$\square$

Definir un buen intervalo

En algunas ocasiones no es directo qué valores tenemos que usar como los extremos del intervalo al que aplicaremos el teorema del valor intermedio. Un ingrediente adicional que se necesita en el siguiente problema es elegir de manera correcta el extremo derecho.

Problema 3. Prueba que si $n$ es un entero positivo y $x_0 > 0$, entonces existe un único número positivo $x$ tal que $x^n=x_0$.

Sugerencia pre-solución. Necesitarás modificar el problema un poco. Se quiere encontrar una solución a $x^n=x_0$. Limítate a encontrarla en el intervalo $[0,c]$ para una buena elección de $c$.

Solución. Sea $c$ un número mayor que $1$ de tal forma que $0<x_0<c$. Si consideramos la función $f(x)=x^n$, tenemos que dicha función es continua en el intervalo $[0, c]$, y tenemos que

$f(0)=0$ y $f(c)=c^n.$

Como $$0<x_0<c<c^n,$$ tenemos que $x_0$ está en el intervalo $(0,c)$, y por el teorema del valor intermedio, tenemos que existe $x$ en el intervalo $(0,c)$ tal que $f(x)=x_0$, que usando la definición de $f$ quiere decir que $$x^n=x_0.$$

No puede existir otro además de $x_0$ ya que la función $f(x)=x^n$ es creciente en el intervalo $[0,c]$.

$\square$

Más ejemplos

Puedes encontrar más problemas que se pueden resolver usando el teorema del valor intermedio en el libro Problem Solving Strategies de Loren Larson, en la Sección 6.2.

Un problema de saltamontes en cuarentena

Por Adán Medrano

Nota de Leo: Esta es una entrada invitada de Adán Medrano Martín del Campo. Nos platicará de un problema de saltamontes (de hecho, de dos) y de funciones en los enteros.

$$\text{Tu}\in \text{Casa}$$

$$\text{Tu}\in \text{Casa}$$

$$\text{Tu}\in \text{Casa}$$

Esto nos aconsejó muy atinadamente el Dr. Hugo López-Gatell Ramírez hace unos pocos días, ya que México y la mayoría del mundo está en cuarentena a causa de la enfermedad COVID19.

Cada vez más y más personas buscamos nuevas actividades para hacer en casa. Junto con Leo Martínez, David Torres (aka Gato) y Pablo Meré, administro el grupo de facebook InsOMMnia, el cual sirve de plataforma para discutir y realizar actividades olímpicamente productivas. A modo de amenizar la cuarentena, hice un video en vivo explicando la solución a un problema que me pareció particularmente agradable por varias razones:

En esta entrada, quisiera platicarles el problema y su solución. Antes de esto, recordemos el problema que apareció en la OMM 2019.

La Momia: OMM 2019

Problema 5. Sean $a>b$ dos números enteros positivos, primos relativos entre sí. En un camino recto, en el cual está marcado cada centímetro $n$, para todo entero $n$, un saltamontes hará algunos saltos comenzando en la marca de $0$ cm y siguiendo las siguientes reglas:

  • Cuando cierto minuto sea múltiplo de $a$ y no múltiplo de $b$, saltará $a$ centímetros hacia adelante.
  • Cuando cierto minuto sea múltiplo de $b$ y no múltiplo de $a$, saltará $b$ centímetros hacia atrás.
  • Cuando cierto minuto sea múltiplo de $a$ y múltiplo de $b$, saltará $a-b$ centímetros hacia adelante.
  • Cuando un minuto no es múltiplo de $a$ ni de $b$, el saltamontes no se mueve del lugar en el que está.

Determina todas las marcas a las que puede llegar el saltamontes.

Nota de Leo: Este es un excelente problema para explorarse buscando un patrón.

Sin dar un spoiler de la solución a dicho problema, el enunciado puede traducirse al siguiente problema de equivalente.

Problema 5′: Sean $a>b$ enteros primos positivos primos relativos entre sí y sea $f:\mathbb{N}\to\mathbb{Z}$ la función dada por
$$f(n)=a\left\lfloor\frac{n}{a}\right\rfloor-b\left\lfloor\frac{n}{b}\right\rfloor.$$
Determina la imagen de $f$.

Uno puede jugar un poco con la función definida arriba, y llegar a la respuesta usando propiedades de dicha función. El objetivo de mostrarles este enunciado equivalente, es que muchas veces ciertos problemas que hablan de ciertos procesos pueden describirse (y resolverse) en términos de funciones construidas apropiadamente.

El problema que resolveremos cae en la categoría opuesta, pues es un problema sobre una función, al cual se le puede dar una interpretación de un saltamontes haciendo… algo.

El Vampiro: Romania TST 2019

Problema: Sean $a<b<c$ enteros positivos y sea $f:\mathbb{N}\to \mathbb{N}$ una función dada por
$$f(n)=\begin{cases}
n-a & n>c \\
f(f(n+b)) & n\leq c
\end{cases}$$
Determina la cantidad de enteros positivos $n$ tales que $f(n)=n$.

«Y eso qué tiene que ver con un saltamontes?» podrías pensar en este momento. ¡Ha ha! Mira ahora este problema de saltamontes.

Problema’: Sean $a<b<c$ enteros positivos. Un saltamontes se encuentra sobre un entero $n>0$ en la recta real positiva, donde hay pasto en los enteros positivos menores o iguales que $c$, y lava en los enteros mayores a $c$. Inicialmente, el saltamontes tiene una vida, y mientras el saltamontes tenga al menos una vida, se dispondrá a saltar de la siguiente manera:

  • Si el saltamontes se encuentra en el pasto, el saltamontes gana una vida y salta $b$ enteros hacia adelante.
  • Si el saltamontes se encuentra en la lava, el saltamontes pierde una vida y salta $a$ enteros hacia atrás.

Cuando el saltamontes tiene $0$ vidas, este muere y deja de moverse. Determina todas las posiciones iniciales del saltamontes tal que el saltamontes morirá en su posición inicial.

Saltamontes, lava, pasto y vidas
Problema visto como vidas, pasto, lava y saltamontes.

A que no se lo esperaban. (Honestamente yo tampoco, pero últimamente tengo más tiempo libre). Tal vez este problema inspire algún mini juego en alguna entrega futura de The Legend of Zelda.

Y, ¿cómo resolvemos algo así?

El Santo: venciendo a la momia y al vampiro

Spoiler Alert:

A continuación resolveremos los problemas, en caso que estés intentándolos y no quieras ver sus soluciones

La clave para ambos problemas es: ¡usar residuos y propiedades de las funciones en juego!

Solución al problema 5 del nacional

Notemos que al dividir $n$ entre $a$ y entre $b$, obtenemos
$$n=a\left\lfloor \frac{n}{a}\right\rfloor+r_{a}$$ y $$n=b\left\lfloor \frac{n}{b}\right\rfloor+r_{b}$$
donde

$$0\leq r_{a}\leq a-1$$ y $$0\leq r_{b}\leq b-1$$
son precisamente los residuos que resultan de la división. Notemos entonces que

\begin{align*}
f(n)&=a\left\lfloor\frac{n}{a}\right\rfloor-b\left\lfloor\frac{n}{b}\right\rfloor\\
&=\left(n-b\left\lfloor \frac{n}{b}\right\rfloor\right)-\left(n-a\left\lfloor \frac{n}{a}\right\rfloor\right)\\
&=r_{b}-r_{a}
\end{align*}

por lo que $f(n)$ simplemente depende de la diferencia entre $r_{b}$ y $r_{a}$. Por el Teorema Chino del Residuo, o simplemente mirando exclusivamente a los múltiplos de $a$ y de $b$ entre $1$ y $ab$, aparecen como diferencia todos los posibles enteros en el intervalo

$$[-a+1, b-1]$$
lo cual compone la imagen de $f$, que es lo que buscábamos.

$\square$

¡Genial! Mirar los residuos fue clave en el problema de saltamontes del nacional. En particular, no lo usamos en nuestra solución, pero $f$ resulta ser una función periódica, con periodo $ab$. Esto es gracias a que $a$ y $b$ son primos relativos, y por lo tanto cada pareja de residuos $r_{a}, r_{b}$ se repiten exactamente cada $ab$ enteros.

La periodicidad será una propiedad clave en la solución del problema del selectivo rumano. Comenzamos mostrando una exploración del problema.

Exploración del problema del selectivo rumano

Los puntos $n$ tales que $f(n)=n$ son llamados puntos fijos. En la formulación como problema de saltamontes, corresponden a que el saltamontes muera justo donde empezó: «muera» es que ya no haya $f$, empieza con una vida, osea una $f$.

Notemos que si $n>c$, entonces $n$ no es un punto fijo, pues

$$f(n)=n-a\neq n.$$
Esto nos dice que los puntos fijos son menores o iguales que $c$. Ahora, notemos que (recordemos que $a<b<c$)

\begin{align*}
f(c)&=f(f(c+b))\\
&=f(c+b-a)=c+b-2a
\end{align*}

y esto nos lleva a considerar que números cercanos a $c$, dentro de un intervalo de tamaño $b-a$, tendrán un valor similar. En efecto, si $0\leq r<b-a$ entonces

\begin{align*}f(c-r)&=f(f(c-r+b))\\&=f(c-r+b-a)\\&=c-r+b-2a.\end{align*}
Ahora, veamos que restando $b-a$ a $c$, perdemos este patrón, pues

\begin{align*}f(c-b+a)&=f(f(c+a))\\&=f(c)\\&=c+b-2a\end{align*}
¡Hemos regresado a un valor ya conocido! Esto nos lleva a la hipótesis de que $f$ es periódica con periodo $b-a$ en el intervalo $[1, c]$. Formalicemos estas observaciones.

Un par de lemas para el problema rumano

La manera de enunciar formalmente las observaciones anteriores esto es, por ejemplo, via el siguiente lema:

Lema 1: Sea $n=c-r-k(b-a)$ un entero positivo menor o igual que $c$ donde $k\geq 0$ y $0\leq r<b-a$. Entonces
$$f(n)=c-r+b-2a.$$

(Prueba del lema 1): Procederemos por descenso en los enteros positivos. Construiremos una secuencia de valores iguales, con distinta cantidad de $f$’s compuestas, de la siguiente manera: comenzamos con
$$z_{0}=n=c-r-k(b-a)$$
y definimos

$$z_{i+1}=\begin{cases}
z_{i}-a & z_{i}>c \\
z_{i}+b & z_{i}\leq c
\end{cases}$$

para todo $i\geq 0$. Además, escribiremos

$$z_{i}=c-r-y_{i}b+x_{i}a$$
donde $x_{0}=y_{0}=k$, y ambas secuencias $\left\{x_{i}\right\}$ y $\left\{y_{i}\right\}$ decrecen, definiendo

$$x_{i+1}=\begin{cases}
x_{i}-1 & z_{i}>c \\
x_{i} & z_{i}\leq c
\end{cases}$$ y

$$y_{i+1}=\begin{cases}
y_{i} & z_{i}>c \\
y_{i}-1 & z_{i}\leq c
\end{cases}$$
Habiendo definido esto, tenemos que

$$f(n)=f^{(1+x_{i}-y_{i})}(z_{i})$$
para todo $i\geq 0$.


Observemos que si $y_{i}=-1$ entonces $z_{i}=c-r+b+x_{i}a>c$ si se cumple que $x_{i}\geq -1$. Más aún, observemos el siguiente lema:

Lema 2: Para todo $i\geq 0$, tenemos que $y_{i}\geq 0$ implica que $y_{i+1}\leq x_{i+1}$.

(Prueba del lema 2): Procedemos por inducción. Para $i=0$ esto es claro, pues
$$y_{1}=k-1<k=x_{1}.$$
Ahora, supongamos que $x_{i}\geq y_{i}\geq 0$. Si $x_{i}>y_{i}$ entonces

$$x_{i+1}\geq x_{i}-1\geq y_{i}\geq y_{i+1}.$$
Si $x_{i}=y_{i}$ entonces tenemos que

$$z_{i}=c-r-y_{i}(b-a)\leq c$$
por lo que $z_{i+1}=z_{i}+b$ y esto implica que

$$x_{i+1}=x_{i}>y_{i}-1=y_{i+1}.$$

$\square$

Hemos probado pues que las secuencias $\left\{x_{i}\right\}$ y $\left\{y_{i}\right\}$ decrecen, y mientras $y_{i}\geq 0$, tendremos que $x_{i+1}\geq y_{i+1}$. ¿Cómo hemos de proseguir con esto?

La clave es notar la existencia de la menor $m$ tal que $y_{m}=-1$, donde es claro que $y_{m-1}=0$. Si $m=1$ entonces $y_{0}=x_{0}=k=0$, y ya hemos cubierto ese caso arriba, así que asumiremos que $m>1$. Tenemos que $y_{m-2}\geq 0$ por lo que, por el lema 2,

$$x_{m-1}\geq y_{m-1}=0$$
y como $y_{m}=y_{m-1}-1$ entonces $x_{m}=x_{m-1}\geq 0$. Esto implica que

\begin{align*}z_{m}&=c-r+b+x_{m}a\\&\geq c-r+b\\&>c\end{align*}
por lo que para todo $j>m$ se tiene que $x_{j+1}=x_{j}-1$

$$z_{m+x_{m}+1}=c-r+b-a$$
y tenemos que $y_{m+x_{m}+1}=x_{m+x_{m}+1}=-1$, lo que muestra que

\begin{align*}f(n)&=f(z_{m+x_{m}+1})\\&=f(c-r+b-a)\\&=c-r+b-2a.\end{align*}

$\square$

Juntando todo

Vaya, después de arduo trabajo hemos mostrado la periodicidad de $f$. Lo que falta únicamente, es usar esto para hacer una conclusión sobre los puntos fijos. Notemos que los únicos valores de $f$ en el dominio $[1, c]$ son $c-r+b-2a$ para $0\leq r<b-a$, así que solo estos valores pueden ser puntos fijos de $f$. De hecho, cada uno de esos valores es un punto fijo si y solo si podemos encontrar una $k\geq 0$ tal que

$$c-r-k(b-a)=c-r+b-2a$$, lo cual sucede si y sólo si $(k+1)(b-a)=a$, o bien justo cuando $b-a\mid a$, por lo que si $b-a$ divide a $a$, todos nuestros $b-a$ valores son puntos fijos, y si $b-a$ no divide a $a$, ningún valor es un punto fijo. Hemos concluido entonces.

$\square$

Antes de regresar a la cuarentena

Espero que hayan pasado un rato agradable pensando en este problema, y espero que hayan entendido 4 lecciones:

  • Quédate en casa
  • Quédate en casa
  • Quédate en casa
  • Es una buena idea usar residuos y secuencias jugando con enteros.

Con esto me despido y, ¡hasta la próxima!

Seminario de Resolución de Problemas: Funciones continuas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores platicamos de propiedades aritméticas de los números enteros, del anillo de enteros módulo $n$ y de los números complejos. Vimos cómo pueden ser de utilidad para resolver problemas de matemáticas de distintos tipos. Ahora veremos temas de funciones continuas.

En esta entrada, y las subsecuentes, entraremos al mundo del cálculo y de la continuidad. En el transcurso de diez entradas veremos cómo aprovechar distintas herramientas de continuidad, cálculo diferencial e integral.

Seguiremos con la costumbre de no demostrar los teoremas principales que usemos, pero podemos recomendar al lector las siguientes fuentes para consultar los fundamentos

El orden de presentación de los temas viene del libro Problem Solving Strategies de Loren Larson.

Recordatorio de límites y continuidad

Sea $A$ un subconjunto de $\mathbb{R}$ y $f:A\to \mathbb{R}$ una función. Intuitivamente, el límite de $f(x)$ cuando $x$ tiende a $a$ es $c$ si al acercarnos a $x$ en $A$ tenemos que $f(x)$ se acerca a $c$.

De manera formal, tenemos que $$\lim_{x\to a} f(x) = c$$ si para todo $\epsilon>0$ tenemos que existe un $\delta >0$ tal que si $x\in A$ y $|x-a|<\delta$, entonces $|f(x)-c|<\epsilon$. Esta es la definición épsilon-delta. Otra forma de denotar lo mismo es decir que $f(x)\to c$ cuando $x\to a$. Los límites se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f(x)\to c$ y $g(x)\to d$ cuando $x\to a$, entonces

  • $f(x)+g(x)\to c+d$ cuando $x\to a$
  • $f(x)g(x)\to cd$ cuando $x\to a$
  • Si $d\neq 0$, $f(x)/g(x)\to c/d$ cuando $x\to a$

Definición. Sea $f:A\to \mathbb{R}$ una función real y $a\in A$. Decimos que $f$ es continua

  • en $a$ si $f(x)\to f(a)$ cuando $x\to a$.
  • en $S\subset A$ si es continua en todo $a\in S$.

Si $f$ es continua en $A$, simplemente decimos que es continua.

Como los límites se comportan bien con las operaciones, tenemos que las funciones continuas también se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f$ y $g$ son continuas en $a$, entonces

  • $f+g$ es continua en $a$
  • $fg$ es continua en $a$
  • Si $g(a)\neq 0$, $f/g$ es continua en $a$

Ejercicio. Muestra que $\frac{x^2+3x+1}{x+1}$ es continua para todo $x\neq -1$.

Sugerencia. No uses la definición épsilon-delta directamente en la función, pues será complicado. Demuestra que $f(x)=x$ es continua con la definición epsilon-delta y de ahí usa las demás propiedades enunciadas en las proposiciones.

Funciones continuas y sucesiones

Las funciones continuas y las sucesiones están cercanamente relacionadas. Recuerda que una sucesión de reales es un conjunto ordenado de reales, uno por cada entero positivo, al cual denotaremos así: $$\{x_n\}=\{x_1,x_2,x_3,x_4,\ldots\}.$$

Decimos que la sucesión $\{x_n\}$ converge a $c$, en símbolos $$\lim_{n\to \infty} x_n = c$$ si para cada $\epsilon >0$ existe un natural $N$ tal que si $n\geq N$, entonces $|x_n-c|<\epsilon$. También decimos esto como $x_n\to c$ cuando $n\to \infty$, o simplemente $x_n\to c$.

Teorema. La función $f:A\to \mathbb{R}$ es continua en $a\in A$ si y sólo si para toda sucesión de reales $\{x_n\}$ en $A$ tal que $\{x_n\}\to a$ se tiene que $f(x_n)\to f(a)$.

Este teorema tiene múltiples usos. Nos dice que para verificar que una sucesión sea continua en un punto $a$, nos basta ver qué le hace a todas las sucesiones que convergen a $a$. Si alguna de ellas no converge a $f(a)$, entonces la función no es continua. Si todas ellas convergen a $f(a)$, entonces la función sí es continua. Veamos un ejemplo de su aplicación

Problema. Considera la función $f:[0,1]\to \mathbb{R}$ la función tal que a cada irracional le asigna $0$ y a cada racional $p/q$ (expresado con $p$ y $q$ positivos y primos relativos) le asigna $1/q$. Estudia la continuidad de esta función.

Sugerencia pre-solución. La continuidad de la función se comporta distinto para los racionales y para los irracionales. Para ver qué sucede en los racionales, acércate con una sucesión de irracionales.

Solución. Demostraremos que $f$ es continua en los irracionales y no es continua en los racionales.

Tomemos un racional $r=p/q<1$. Observa que la sucesión $x_n=r+\frac{\sqrt{3}}{n}$ para $n$ suficientemente grande cae en $[0,1]$ y $x_n\to r$. Cada término de la sucesión es irracional. Así, $f(x_n)=0$ para todo término, de modo que $f(x_n)\to 0\neq 1/q = f(r)$. Esto muestra que $f$ no es continua en $r$. Para $r=1$ podemos hacer el mismo truco con $x_n=r-\frac{\sqrt{3}}{n}$ para ver que no es continua.

Tomemos ahora un número irracional $r\in[0,1]$. Tenemos que $f(r)=0$. Mostraremos que para toda sucesión $\{x_n\}$ tal que $x_n\to r$, tenemos que $f(x_n)\to 0$. Tomemos $M$ un entero positivo. Consideremos el conjunto $A_M$ de todos los números racionales en $[0,1]$ con denominador a lo más $M$.

Como $r$ es irracional, las distancias de $r$ a los números de $A_M$ son todas positivas, así que su mínimo es un real positivo $\epsilon$. Como $x_n\to r$, existe un $N$ tal que si $n\geq N$, entonces $|x_n-r|<\epsilon$. Así, para $n\geq N$, no se puede que $x_n$ esté en $A_M$. De este modo, para $n\geq N$ tenemos que $|f(x_n)|<1/M$. Esto muestra que $f(x_n)\to 0$. Así, $f$ es continua en los irracionales.

$\square$

Por supuesto, algunas veces es útil regresar a la definición epsilon-delta para funciones continuas.

Problema. Sea $f:\mathbb{R}\to\mathbb{R}$ una función inyectiva y continua tal que $f(2x-f(x))=x$ y tal que tiene por lo menos un punto fijo. Muestra que $f(x)=x$ para todo $x\in \mathbb{R}$.

Sugerencia pre-solución. Antes de intentar cualquier idea de cálculo, hay que demostrar que si se cumple $f(y)=y+r$, entonces $f(y+nr)=(y+nr)+r$. Para demostrar esto para $n$ negativa, usa inducción. Para $n$ positiva necesitarás jugar un poco con la hipótesis. Aplica la hipótesis $f(2x-f(x))=x$ para $x=f(z)$ y usa la inyectividad. De ahí obtendrás una igualdad que te servirá para encontrar $f(y+nr)$ para $n$ positivas.

Solución. La primera observación es que el conjunto de puntos fijos de una función continua es cerrado, pues si $\{x_n\}$ es una sucesión de puntos fijos que converge a un punto $c$, entonces por un lado $\{f(x_n)\}=\{x_n\}$ también converge a $c$, y por otro por continuidad converge a $f(c)$. Como los límites, cuando existen, son únicos, tenemos que $f(c)=c$.

Si $f(y)\neq y$ para alguna $y\in \mathbb{R}$, entonces tendremos $f(y)=y+r$ para alguna $r\neq 0$. Mostraremos que $f(y+nr)=(y+nr)+r$ para todo entero $n$. Aplicando la hipótesis $f(2x-f(x))=x$ para $x=y$, obtenemos que $f(y-r)=y=(y-r)+r$, de modo que inductivamente tenemos $f(y-nr)=(y-nr)+r$ para $n$ entero positivo.

Aplicando la hipótesis $f(2x-f(x))=x$ para $x=f(x)$ obtenemos $f(2f(z)-f(f(z)))=f(z)$, de modo que por inyectividad tenemos $2f(z)-f(f(z))=z$. Usando esta ecuación para $z=y$ obtenemos que $2f(y)-f(f(y))=y$, de donde $f(y+r)=2(y+r)-y=(y+r)+r$, y de aquí inductivamente $f(y+nr)=(y+nr)+r$ para $n$ enteros positivos. De esta forma, $f(y+nr)=(y+nr)+r$ para todo entero.

Ahora sí viene la parte en la que usamos la continuidad. Supongamos que $f(x)\neq x$. Sea $\epsilon=|f(x)-x|>0$. Como $f$ es continua en $x$, existe un $\delta>0$ que podemos suponer menor a $\frac{\epsilon}{4}$ tal que si $|z-x|<\delta$, entonces $|f(z)-f(x)|<\frac{\epsilon}{4}$.

Sea $x_0$ un punto frontera del conjunto de puntos fijos. Como $f$ es continua en $x_0$, podemos encontrar un $\alpha>0$ y $\alpha<\delta$ tal que si $|w-x_0|<\alpha$, entonces $|f(w)-f(x_0)|<\delta$. Como el conjunto de puntos fijos es cerrado, $x_0$ está en él. Ya que $x_0$ es punto frontera, existe un $y$ tal que $f(y)\neq y$ y $|x_0-y|\leq \alpha$. Para este $y$ tenemos por las cotas que hemos encontrado y la desigualdad del triángulo que $$|f(y)-y|\leq |f(y)-f(x_0)|+|x_0-y|\leq \delta +\alpha <2\delta.$$

Así, $r=f(y)-y$ es un número de norma entre $0$ y $2\delta$, de modo que existe una $n$ para la cual $y+nr \in (x-\delta,x+\delta)$. Por lo que probamos previamente, $f(y+nr)=(y+nr)+r$. A partir de todo esto concluimos que:

\begin{align*}
\epsilon&=|f(x)-x|\\
&\leq |f(x)-f(y+nr)|+|f(y+nr)-x|\\
&<\frac{\epsilon}{4}+|(y+nr)-x|+|r|\\
&<\frac{\epsilon}{4}+3\delta\\
&<\frac{\epsilon}{4}+\frac{3\epsilon}{4}=\epsilon.
\end{align*}

Esto es una contradicción, así que todos los reales deben ser puntos fijos de $f$.

$\square$

Dos teoremas importantes de continuidad

Las funciones continuas satisfacen dos propiedades muy importantes.

Teorema (teorema del valor intermedio). Sea $f:[a,b]\to \mathbb{R}$ una función continua. Entonces para todo $y$ entre $f(a)$ y $f(b)$ existe un real $c \in [a,b]$ tal que $f(c)=y$.

Aquí, si $f(a)\leq f(b)$ entonces «entre $f(a)$ y $f(b)$» quiere decir en el intervalo $[f(a),f(b)]$ y si $f(b)\leq f(a)$, quiere decir en el intervalo $[f(b),f(a)]$. Dicho en otras palabras, si una función continua toma dos valores, entonces toma todos los valores entre ellos.

Teorema (teorema del valor extremo). Sea $f:[a,b] \to \mathbb{R}$ una función continua. Entonces existen números $c$ y $d$ en $[a,b]$ para los cuales $f(c)\leq f(x) \leq f(d)$ para todos los $x$ en $[a,b]$.

Dicho de otra forma, una función continua definida en un intervalo cerrado «alcanza su máximo y su mínimo».

En siguientes entradas hablaremos de aplicaciones de estos teoremas. Por el momento sólo los enunciamos, y en la siguiente sección demostraremos uno de ellos.

El método de la bisección de intervalos

Una de las herramientas más útiles para trabajar con reales y con funciones continuas es el método de la bisección de intervalos. Se trata a grandes rasgos de lo siguiente:

  • Se comienza con un intervalo $[a,b]$. Definimos $a_0=a$ y $b_0=b$.
  • Partimos ese intervalo por su punto medio $m_0=m$ en dos intervalos $[a,m]$ y $[m,b]$. En alguno de esos dos pasa algo especial. Si es en el primero, definimos $a_1=a$, $b_1=m$. Si es en el segundo, definimos $a_1=m$, $b_1=b$, para conseguir un intervalo $[a_1,b_1]\subset [a_0,b_0]$ especial.
  • Continuamos recursivamente. Ya que definimos al intervalo $[a_n,b_n]$, consideramos a su punto medio $m_n$. De entre los intervalos $[a_n,m_n]$ y $[m_n,b_n]$ elegimos a uno de ellos que sea «especial» para definir $[a_{n+1},b_{n+1}]$.

Los $a_i$ forman una sucesión no decreciente acotada superiormente por $b$ y los $b_i$ una sucesión no creciente acotada inferiormente por $a$. De esta forma, ambas sucesiones tienen un límite. Además, notemos que $|b_n-a_n|=|b-a|/2^n$, de modo que $|b_n-a_n|\to 0$, por lo que ambas situaciones convergen al mismo límite $L$, y este límite está en todos los intervalos $[a_n,b_n]$. Si elegimos a los intervalos $[a_n,b_n]$ de manera correcta, podemos hacer que este límite $L$ tenga propiedades especiales.

Veamos cómo aplicar esta idea para demostrar el teorema del valor extremo.

Demostración (teorema del valor extremo). Comenzamos con una función contínua $f:[a,b]\to \mathbb{R}$. Basta con probar que $f$ alcanza su máximo, pues para ver que alcanza su mínimo basta aplicar las siguientes ideas a $-f$.

Usaremos el método de bisección de intervalos. Definimos $a_0=a$ y $b_0=b$. Suponiendo que ya definimos $a_n$ y $b_n$, consideremos el punto medio $m_n$ del intervalo $[a_n,b_n]$.

  • Si algún $x$ en $[a_n,m_n]$ cumple que $f(x)\geq f(y)$ para todo $y\in [m_n,b_n]$, elegimos $a_{n+1}=a_n$ y $b_{n+1}=m_n$.
  • En otro caso, para todo $x$ en $[a_n,m_n]$ tenemos algún $y\in [m_n,b_n]$ que cumple $f(x)<f(y)$ y elegimos $a_{n+1}=m_n$ y $b_{n+1}=b_n$.

En cualquier caso, notemos que se cumple que «para cualquier $x$ en el intervalo no elegido hay una $y$ en el intervalo sí elegido tal que $f(y)\geq f(x)$».

Como discutimos anteriormente, las sucesiones $\{a_n\}$ y $\{b_n\}$ convergen a un mismo límite $d$. Afirmamos que $f(d)\geq f(x)$ para todo $x$ en $[a,b]$. Si $x=d$, esto es claro. Si no, $x\neq d$ y definimos $x_0=x$.

Vamos a definir recursivamente una sucesión $\{x_n\}$ para la cual $$f(x_0)\leq f(x_1)\leq f(x_2)\leq f(x_3)\leq \ldots$$ mediante un proceso que haremos mientras $x_n\neq d$.

Ya que definimos $x_n$ tal que $x_n\neq d$, notemos que $d$ y $x_n$ están en el mismo intervalo $[a_0,b_0]$, pero como son distintos existe un primer $m\geq 1$ tal que en el intervalo $[a_m,b_m]$ está $d$ pero $x_n$ no. Como es la menor $m$, sí están ambos en el intervalo $[a_{m-1},b_{m-1}]$.

Por cómo definimos la elección de intervalos, hay un $y$ en el intervalo $[a_m,b_m]$ tal que $f(y)\geq f(x_n)$. Si $y=d$, terminamos (por la cadena de desigualdades). Si no, definimos $x_{n+1}$ como este $y$. Así, cuando el proceso se detiene, terminamos por la cadena de desigualdades. Si el proceso no se detiene, tenemos una sucesión infinita $\{x_n\}$ que converge a $d$, de modo que $f(d)=\lim{f(x_n)}\geq f(x_0)=f(x)$, pues cada término es mayor o igual a $f(x_0)$. Esto muestra la desigualdad $f(d)\geq f(x)$ que queríamos.

$\square$

Más problemas

Se pueden encontrar más problemas de este tema en la Sección 6.1 del libro Problem Solving through Problems de Loren Larson.