Propiedades de la integral de Riemann-Stieltjes. Parte 2

Por Lizbeth Fernández Villegas

Introducción

El contenido de esta sección se basa predominantemente en el libro
Wheeden, R.L., Zygmund, A., Measure and Integral. An Introduccion to Real Analysis. (2da ed.). New York: Marcel Dekker, 2015, págs 30-34.

Continuaremos viendo condiciones bajo las cuales sea posible afirmar la existencia de la integral $\int_{a}^{b}f \, d\alpha.$ Comencemos con la siguiente:

Proposición: Sean $f, \alpha:[a,b] \to \mathbb{R}.$ Si $\, \int_{a}^{b}\textcolor{RoyalBlue}{f} \, d\textcolor{magenta}{\alpha} \,$ existe, entonces también $\, \int_{a}^{b}\textcolor{magenta}{\alpha} \, d\textcolor{RoyalBlue}{f} \,$ existe y además

\begin{align}
\int_{a}^{b}f \, d\alpha = [f(b)\alpha(b) \, – \, f(a)\alpha(a)] \, – \int_{a}^{b} \alpha \, df.
\end{align}

Demostración:
Considera $P= \{x_0=a,…,x_n=b\}$ una partición de $[a,b] \,$ y sean $\xi_i \in [x_{i-1},x_i], \, i=1,…,n.$ Entonces se siguen las siguientes igualdades:

\begin{align*}
S(P,f,\alpha)&= \sum_{i=1}^{n}f(\xi_i)(\alpha(x_i) \, – \, \alpha(x_{i-1}))\\
&= \sum_{i=1}^{n}f(\xi_i)\alpha(x_i) \, – \, \sum_{i=1}^{n}f(\xi_i)\alpha(x_{i-1})\\
&= \sum_{i=1}^{n}f(\xi_i)\alpha(x_i) \, – \, \sum_{i=0}^{n-1}f(\xi_{i+1})\alpha(x_i)\\
&= \sum_{i=1}^{n-1}f(\xi_i)\alpha(x_i)+ f(\xi_n)\alpha(x_n)\, – \, \sum_{i=1}^{n-1}f(\xi_{i+1})\alpha(x_i) \, – \, f(\xi_1)\alpha(x_0)\\
&=- \sum_{i=1}^{n-1}\alpha(x_i)(f(\xi_{i+1}) \, – \, f(\xi_i))) + f(\xi_n)\alpha(b) \, – \, f(\xi_1)\alpha(a).
\end{align*}

Nota que el lado derecho de la igualdad coincide con

$$[f(b)\alpha(b) \, – \, f(a)\alpha(a)] \, – \, \textcolor{blue}{T_P}$$

donde

$$\textcolor{blue}{T_P}= \sum_{i=1}^{n-1}\alpha(x_i)(f(\xi_{i+1}) \, – \, f(\xi_i))+\alpha(a)(f(\xi_1) \, – \, f(a))+\alpha(b)(f(b) \, – \, f(\xi_n)). $$

Por lo tanto

\begin{align}
S(P,f,\alpha) = [f(b)\alpha(b) \, – \, f(a)\alpha(a)] \, – \, \textcolor{blue}{T_P}.
\end{align}

Observa que $\textcolor{blue}{T_P}$ es una suma de Riemann-Stieltjes para $\textcolor{blue}{\int_{a}^{b} \alpha \, df.}$ Tomando el límite cuando $|P| \to 0$ en (2) vemos que $\int_{a}^{b}f \, d\alpha$ existe si y solo si $\int_{a}^{b} \alpha \, df$ existe y que

\begin{align*}
\int_{a}^{b}f \, d\alpha = [f(b)\alpha(b) \, – \, f(a)\alpha(a)] \, – \int_{a}^{b} \alpha \, df,
\end{align*}

que es lo que queríamos demostrar.

Ya que el valor de las sumas de Riemann-Stieltjes depende de los valores $\xi_i$ elegidos, cuando la función $f$ es acotada, podemos delimitar el valor de $f(\xi_i)$ y, por tanto, acotar las sumas como muestra la siguiente:

Definición: Suma inferior y suma superior de Riemann-Stieltjes. Sea $f$ acotada, $\alpha$ una función monótona creciente en $[a,b]$ y $P=\{x_0=a,…,x_n=b\}.$ Definimos los términos:

\begin{align*}
m_i= \underset{x \, \in \, [x_{i-1}, x_i]}{\text{ínf}} \, f(x)
\end{align*}

Representación del ínfimo en un intervalo de $P.$

\begin{align*}
M_i= \underset{x \, \in \, [x_{i-1}, x_i]}{\text{sup}} \, f(x)
\end{align*}

Representación del supremo en un intervalo de $P.$

Las siguientes sumas

\begin{align}
\underline{S}_P = \sum_{i=1}^{n} m_i \, (\alpha(x_i) \, – \, \alpha(x_{i-1}))\\
\nonumber \\
\overline{S}_P = \sum_{i=1}^{n} M_i \, (\alpha(x_i) \, – \, \alpha(x_{i-1}))
\end{align}

reciben el nombre de suma inferior y suma superior de Riemann-Stieltjes, respectivamente.

Dado que $-\infty < m_i \leq M_i < \infty \,$ y $\, (\alpha(x_i) \, – \, \alpha(x_{i-1}))\geq 0, \,$ (pues $\alpha$ es creciente), podemos ver que

$$\underline{S}_P \leq S(P,f,\alpha) \leq \overline{S}_P.$$

Esta forma de definir sumas permite conocer el comportamiento de la función, como sugiere el siguiente:

Lema: Sea $f:[a,b] \to \mathbb{R}$ acotada y $\alpha:[a,b] \to \mathbb{R}$ creciente. Se cumplen:

a) Si $Q$ es un refinamiento de $P \in \mathcal{P}_{[a,b]},$ entonces

$$\underline{S}_P \leq \underline{S}_Q \leq \overline{S}_Q \leq \overline{S}_P.$$

b) Si $P_1$ y $P_2$ son dos particiones, entonces
$$\underline{S}_{P_1} \leq \overline{S}_{P_2},$$
es decir, cualquier suma inferior de Riemann-Stieltjes es menor igual que cualquier suma superior de Riemann-Stieltjes.

Demostración:
a) Vamos a demostrar que $\overline{S}_Q \leq \overline{S}_P.$ El argumento para las sumas inferiores es análogo y lo dejaremos como ejercicio.

Sea $P=\{x_0=a,…,x_n=b\} \,$ y $\, P \subset Q.$ Para fines prácticos supongamos que $Q$ tiene apenas un punto más que $P.$ Sea $x^*$ ese punto.
Entonces $x^* \in [x_{j-1},x_j]$ para algún $j \in \{1,…,n\}$

entonces

\begin{align*}
\underset{[x_{j-1},x^*]}{sup} \, f(x) &\leq M_j \, \text{ y} \\
\\
\underset{[x^*,x_j]}{sup} \, f(x) &\leq M_j
\end{align*}

Representación de supremos.

en consecuencia
$$\underset{[x_{j-1},x^*]}{sup} \, f(x) \, \, (\alpha(x^*) \, – \, \alpha(x_{i-1})) + \underset{[x^*,x_j]}{sup} \, f(x) \, \, (\alpha(x_j) \, – \, \alpha(x^*)) \leq M_j (\alpha(x_j) \, – \, \alpha(x_{j-1})). $$

Este razonamiento se puede repetir añadiendo uno a uno cada punto de $\, Q \setminus P \,$ hasta obtener $Q.$ Finalmente,

$$\overline{S}_Q \leq \overline{S}_P.$$

b) Nota que $P_1 \cup P_2$ es un refinamiento tanto de $P_1$ como de $P_2.$ Aplicando a) obtenemos:

$$\underline{S}_{P_1} \leq \underline{S}_{P_1 \cup P_2} \leq \overline{S}_{P_1 \cup P_2} \leq \overline{S}_{P_2}$$

con lo cual terminamos la prueba.

El siguiente enunciado muestra condiciones suficientes para la existencia de la integral de Riemann-Stieltjes.

Proposición: Sea $f:[a,b] \to \mathbb{R}$ continua y $\alpha:[a,b] \to \mathbb{R}$ de variación acotada en $[a,b],$ entonces $\int_{a}^{b}$ existe. Más aún

$$\left|\int_{a}^{b}f \, d\alpha \right|\leq \left(\underset{x \in [a,b]}{sup}|f(x)|\right) V[\alpha;a,b]. $$

Demostración:
Para demostrar la existencia recordemos que el teorema de Jordan visto en la entrada Funciones de variación acotada dice que $\alpha, \, $ al ser de variación acotada, puede expresarse como $\alpha = \alpha_1 \, – \, \alpha_2\, $ con $\alpha_1$ y $\alpha_2$ funciones crecientes acotadas en $[a,b].$ Si probamos que existe tanto $\int_{a}^{b}f \, d\alpha_1$ como $\int_{a}^{b}f \, d\alpha_2, \,$ entonces, por lo visto en la entrada anterior también existe la integral buscada pues

\begin{align}
\nonumber \int_{a}^{b}f \, d\alpha_1 \, – \int_{a}^{b}f \, d\alpha_2 &= \int_{a}^{b}f \, d\alpha_1 \, + \int_{a}^{b}f \, d(-\alpha_2) \\
\nonumber&=\int_{a}^{b}f \, d(\alpha_1- \alpha_2)\\
&=\int_{a}^{b}f \, d\alpha.
\end{align}

Sin pérdida de generalidad, probemos que $\int_{a}^{b}f \, d\alpha_1\, $ existe. Sea $P=\{x_1=a,…,x_n=b\}.$ De acuerdo con la proposición que acabamos de ver

$$\underline{S}_P \leq S(P,f, \alpha_1) \leq \overline{S}_P.$$

A continuación vamos a demostrar que $\underset{|P| \to 0}{lim}\, \underline{S}_P \,$ y $\, \underset{|P| \to 0}{lim}\, \overline{S}_P$ existen y son iguales. La condición es evidente si $\alpha_1$ es constante así que supongamos que no lo es.

Sea $\varepsilon>0.$ Ya que $f$ es uniformemente continua en $[a,b]$ sabemos que existe $\delta>0$ tal que si $|P|< \delta,$ entonces

\begin{align*}
\textcolor{PineGreen}{M_i-m_i < \frac{\varepsilon}{\alpha_1(b) \, – \, \alpha_1(a)}}.
\end{align*}

Nota que $\alpha_1(b) \, – \, \alpha_1(a)$ es distinto de cero, pues $\alpha_1$ es monótona no constante.

Si $|P|< \delta \,$ se sigue:

\begin{align*}
0 \leq \overline{S}_P \, – \, \underline{S}_P &= \sum_{i=1}^{n}\textcolor{PineGreen}{(M_i\, – \, m_i)}(\alpha_1(x_i) \, – \, \alpha_1(x_{i-1}))\\
&< \sum_{i=1}^{n}\textcolor{PineGreen}{\left( \frac{\varepsilon}{\alpha_1(b) \, – \, \alpha_1(a)} \right)}(\alpha_1(x_i) \, – \, \alpha_1(x_{i-1}))\\
&= \frac{\varepsilon}{\alpha_1(b) \, – \, \alpha_1(a)} \sum_{i=1}^{n} (\alpha_1(x_i) \, – \, \alpha_1(x_{i-1}))\\
&=\left( \frac{\varepsilon}{\cancel{\alpha_1(b) \, – \, \alpha_1(a)}} \right) \cancel{(\alpha_1(b) \, – \, \alpha_1(a))}\\
&= \varepsilon.
\end{align*}

Por lo tanto
\begin{align}
\underset{|P| \to 0}{lim} \, (\overline{S}_P \, – \, \underline{S}_P) = 0.
\end{align}

A continuación probaremos que existe $\underset{|P| \to 0}{lim} \, \overline{S}_P$ en $\mathbb{R}.$ Si suponemos que no existe entonces, por el criterio de Cauchy visto en la entrada anterior, existen $\varepsilon >0$ y $(P’_k)_{k \in \mathbb{N}}$ y $(P ^{\prime \prime} _k)_{k \in \mathbb{N}} \,$ sucesiones de particiones cuyas normas tienden a cero tales que

$$\textcolor{purple}{\overline{S}_{P’_k} \, – \, \overline{S}_{P^{\prime \prime}_k} > \varepsilon}.$$

Por (6) sabemos que para $k$ suficientemente grande

\begin{align*}
&& \overline{S}_{P’_k} \, – \, \underline{S}_{P’_k} &< \frac{\varepsilon}{2} \\
&\Rightarrow& \underline{S}_{P’_k} \, – \, \overline{S}_{P’_k} &>-\frac{\varepsilon}{2} \\
&\Rightarrow& \textcolor{purple}{\overline{S}_{P’_k} \, – \, \overline{S}_{P^{\prime \prime}_k}}+ \underline{S}_{P’_k} \, – \, \overline{S}_{P’_k} &> \textcolor{purple}{\varepsilon}\, -\frac{\varepsilon}{2}\\
&\Rightarrow& \underline{S}_{P’_k} \, – \, \overline{S}_{P^{\prime \prime}_k} &> \frac{\varepsilon}{2}\\
&\Rightarrow& \underline{S}_{P’_k} \, – \, \overline{S}_{P^{\prime \prime}_k} &> 0
\end{align*}

lo que contradice el hecho de que $\underline{S}_{P’} \leq \overline{S}_{P^{\prime \prime}}$ para cualquier $P’$ y $P^{\prime \prime}.$

Por lo tanto $\underset{|P| \to 0}{lim} \, \overline{S}_P$ existe y en consecuencia $\int_{a}^{b}f \, d \alpha_1$ existe. Análogamente, $\int_{a}^{b}f \, d \alpha_2 \,$ existe, por lo tanto $\int_{a}^{b}f \, d \alpha \,$ también existe.

Para terminar la prueba nota que la desigualdad

$$\left|\int_{a}^{b}f \, d\alpha \right|\leq \left(\underset{x \in [a,b]}{sup}|f(x)|\right) V[\alpha;a,b] $$

se sigue de una suma de Riemann-Stieltjes similar y haciendo tender el límite a cero. La prueba de este hecho se dejará como ejercicio.

Finalizaremos esta sección con un teorema conocido, pero ahora en la versión con la integral de Riemann-Stieltjes.

Teorema. Del valor medio para la integral de Riemann-Stieltjes. Sea $f:[a,b] \to \mathbb{R}$ continua y $\alpha:[a,b] \to \mathbb{R}$ acotada y creciente. Entonces existe $\xi \in [a,b]$ tal que

\begin{align}
\int_{a}^{b} f \, d\alpha = f(\xi) \, (\alpha(b)\, – \, \alpha(a)).
\end{align}

Demostración:
Dado que $\alpha$ es creciente, se satisface para cualquier $P \in \mathcal{P}_{[a,b]}$

$$\left(\underset{x \, \in \, [a,b]}{\text{mín}} f(x)\right) (\alpha(b)\, – \, \alpha(a)) \leq S(P,f,\alpha) \leq \left(\underset{x \, \in \, [a,b]}{\text{máx}} f(x)\right)(\alpha(b)\, – \, \alpha(a))$$

El resultado anterior nos permite afirmar que $\int_{a}^{b} f \, d\alpha$ existe, entonces también se cumple

$$\left(\underset{x \, \in \, [a,b]}{\text{mín}} f(x)\right) (\alpha(b)\, – \, \alpha(a)) \leq \int_{a}^{b} f \, d\alpha \leq \left(\underset{x \, \in \, [a,b]}{\text{máx}} f(x)\right) (\alpha(b)\, – \, \alpha(a)),$$

y como $f$ es continua en $[a,b]$ se sigue del teorema del valor intermedio que existe $\xi \in [a,b]$ tal que

$$\int_{a}^{b} f \, d\alpha = f(\xi) \, (\alpha(b)\, – \, \alpha(a)),$$

que es lo que queríamos demostrar.

Así como definimos la integral de Riemann-Stieltjes en intervalos cerrados, también podemos hacerlo en intervalos abiertos $(a,b) \in \mathbb{R}$ de esta forma: Si $[a’,b’] \subset (a,b)$ y existe $\int_{a’}^{b’}f \, d\alpha,$ haciendo $a’ \to a$ y $b’ \to b$ definimos

$$\int_{a}^{b}f \, d\alpha = \underset{a’ \to a \, ; \, b’ \to b}{lim}\int_{a’}^{b’}f \, d\alpha$$

cuando el límite existe. Así mismo

$$\int_{-\infty}^{\infty}f \, d\alpha = \underset{a \to -\infty \, ; \, b \to \infty}{lim}\int_{a}^{b}f \, d\alpha,$$

cuando el límite existe.

Más adelante…

Hasta el momento no es muy evidente la relacion entre la existencia de la integral de Riemann-Stieltjes con los limites de las sumas inferior y superior de Riemann-Stieltjes, pese a que en Cálculo llegan incluso a considerarse equivalentes cuando coinciden. En la próxima entrada veremos bajo qué condiciones el resultado es válido en la integral que estamos estudiando.

Tarea moral

  1. Sea $f:[a,b] \to \mathbb{R}$ acotada y $\alpha:[a,b] \to \mathbb{R}$ creciente. Sea $Q$ un refinamiento de $P \in \mathcal{P}_{[a,b]}.$ Demuestra que
    $$\underline{S}_P \leq \underline{S}_Q.$$
  2. Demuestra la desigualdad pendiente
    $$\left|\int_{a}^{b}f \, d\alpha \right|\leq \left(\underset{x \in [a,b]}{sup}|f(x)|\right) V[\alpha;a,b] $$
    donde $f$ es continua y $\alpha$ es de variación acotada.
  3. Sean $f, \alpha:[a,b] \to \mathbb{R}.$ Prueba que se cumplen:
    a) Si $\int_{a}^{b}f \, d\alpha$ existe y $\alpha$ no es constante en ningún subintervalo de $[a,b]$ muestra que $f$ es acotada en $[a,b].$
    b) Si $\int_{a}^{b}f \, d\alpha$ existe y $\alpha$ es creciente, muestra que para cada $P \in \mathcal{P}_{[a,b]}$ tenemos $\underline{S}_P \leq \int_{a}^{b}f \, d\alpha \leq \overline{S}_P.$

Enlaces

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.