Álgebra Superior I: Problemas de proposiciones y conectores

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada, presentaremos únicamente problemas resueltos de proposiciones y conectores. Con ayuda de ellos podrás poner en práctica lo visto con anterioridad y entender mejor las propiedades de los conceptos vistos.

Problemas resueltos

Problema 1. ¿Cuáles de los siguientes enunciados son proposiciones?

  • ¿Qué día es hoy?
  • Toda función derivable es continua.
  • ¿El día de hoy lloverá?
  • ¿Cuántos números primos existen?
  • ¡Que gusto verte!
  • Todo espacio vectorial tiene dimensión finita.
  • El libro habla sobre historia universal.

Solución. Veamos cada oración con cuidado.

¿Qué día es hoy?

No es proposición. Esta oración es una pregunta, por lo cuál no puede tener asignado algún valor de verdad, pues no denota información que puede ser cierta o falsa (ojo: al responder la pregunta con por ejemplo «Hoy es lunes» esta respuesta tiene valor de verdad, pues podríamos decir que es lunes o no, pero en sí, la pregunta no tiene un valor de verdad por lo que no es proposición).

Toda función derivable es continua.

es proposición. Independientemente de que sepas qué es una función derivable o qué es una función continua, sabes que esta solo tiene dos opciones: o es cierta o no lo es. Esto es lo que le da el atributo de ser proposición (además es proposición matemática), pues se le puede asignar un valor de verdad.

¿El día de hoy lloverá?

No es proposición. Nuevamente como el primer ejemplo, la pregunta no carga consigo algún valor de verdad, puesto que la pregunta no está afirmando o negando algo, sino está preguntando algo sin decir que será de una u otra manera. Otro caso sería si la oración fuera «El día de hoy lloverá» (¿Notas que ya no tiene signos de interrogación?) que sí es una proposición.

¿Cuántos números primos existen?

No es una proposición. Esto debido a que es una pregunta que no afirma o niega algún hecho.

¡Que gusto verte!

No es una proposición. Esta es una expresión, y no se le puede asignar un valor de verdad. Este tipo de oraciones que denotan expresiones no son proposiciones.

Todo espacio vectorial tiene dimensión finita.

es una proposición. Esta es una proposición matemática la cual puede ser verdadera o falsa, pues afirma que todo espacio vectorial (no es necesario que sepas que es un espacio vectorial) cumple la propiedad de tener dimensión finita (tampoco es necesario que sepas que significa esto). Entonces podemos decir «Es cierto que todo espacio vectorial tiene dimensión finita» o «Es falso que todo espacio vectorial tiene dimensión finita».

El libro habla sobre historia universal.

es una proposición. Observa que para decidir si es verdad o no deberíamos saber de qué libro estamos hablando, pero independientemente de eso, se puede decir que la oración es verdadera o falsa, es decir, se le puede asignar un valor de verdad.

$\triangle$

Problema 2. ¿Son equivalentes $\neg Q$ y $(\neg P \land Q) \lor \neg Q)$?

Solución. No lo son, para ello, nota que no coinciden en su tabla de verdad. Estamos indicando en verde las columnas de las expresiones que nos interesan.

$P$$Q$$\neg P$ $\neg Q$$\neg P \land Q$$(\neg P \land Q) \lor \neg Q)$
$0$$0$ $1$$1$ $0$  $1$ 
$0$$1$$1$  $0$  $1$ $1$ 
$1$$0$  $0$ $1$  $0$ $1$
$1$$1$  $0$ $0$  $0$   $0$

Esto quiere decir que si $P$ es falso y $Q$ es verdadero,  $\neg Q$ es falso mientras que $(\neg P \land Q) \lor \neg Q)$ es verdadero, por lo que las expresiones no son equivalentes.

$\triangle$

Problema 3. ¿Cuál de las siguientes expresiones es equivalente a $\neg (P \lor (Q \land R))$?

  • $ P \lor (\neg Q \lor \neg R)$
  • $\neg P \land (\neg Q \lor \neg R)$
  • $\neg P \land (\neg Q \land \neg R)$

Para la que es equivalente, justifica por qué lo es. Para las que no son equivalentes, encuentra valores de verdad de $P$, $Q$ y $R$ que haga que las expresiones sean diferentes.

Solución. Una técnica que podríamos usar son las tablas de verdad, sin embargo sería una tabla grande, pues en principio hay 8 combinaciones para los valores de verdad de $P,Q$ y $R$. Por esta razón, mejor haremos uso de las propiedades de los conectores que ya hemos demostrado.

Primero veamos de qué forma podríamos cambiar la forma en que pensamos a $\neg (P \lor (Q \land R))$. ¿Notas que hay una negación al principio de la proposición? Algo natural sería tratar de «distribuirla», pero recuerda que cuando «distribuimos» la negación, aplicamos las leyes de De Morgan. Entonces,

$$\neg (P \lor (Q \land R)) = \neg P \land \neg(Q \land R) $$

Ahora vamos a fijarnos en $\neg P \land \neg(Q \land R)$. Y vamos a notar que podemos aplicar nuevamente las leyes de De Morgan, ahora para distribuir la negación del segundo paréntesis. Dicho de otra manera,

$$\neg P \land \neg (Q \land R) = \neg P \land (\neg Q \lor \neg R)$$

Nota que para esto, la negación se distribuyó entre $Q$ y $R$. Así, hemos mostrado que

\begin{align*}
\neg (P \lor (Q \land R)) &= \neg P \land \neg(Q \land R), \text{ y que}\\
\neg P \land \neg (Q \land R) &= \neg P \land (\neg Q \lor \neg R).
\end{align*}

Ahora, recordando la propiedad transitiva de la equivalencia, tenemos que

$$\neg (P \lor (Q \land R)) = \neg P \land (\neg Q \lor \neg R)$$

Así, encontramos que la la expresión del inicio es equivalente a la segunda opción. Si quisieras, podrías hacer la tabla de verdad para verificar esto.

Veamos ahora que las otras dos proposiciones no son equivalentes. Para ello, basta encontrar valores de verdad de $P$ y $Q$ para los cuales las expresiones no tengan el mismo valor de verdad.

Primero verificaremos que $ P \lor (\neg Q \lor \neg R)$ no es equivalente a $\neg (P \lor (Q \land R))$. Para ello, nota que $ P \lor (\neg Q \lor \neg R) = P \lor \neg (Q \land R)$ Y esta última es equivalente a $\neg (\neg P \land (Q \land R))$. Ahora nota que si $P$ es verdadero, entonces $\neg (\neg P \land (Q \land R))$ es verdadero, mientras que $\neg (P \lor (Q \land R))$ es falso. Si aún no te queda claro, observa el siguiente renglón de la tabla de verdad:

$P$$Q$$R$$Q \land R$$P \lor (Q \land R)$$\neg (P \lor (Q \land R))$$\neg P$$\neg P \land (Q \land R)$$\neg(\neg P \land (Q \land R))$
$1$$0$$0$$0$$1$$0$$0$$0$$1$

En el párrafo anterior estamos mostrando un caso en donde $P$ es verdadero (observa que en nuestra justificación del párrafo anterior no importa qué valores tienen $Q$ y $R$, pero en este caso observamos la combinación en donde ambos son falsos, eso no afecta el resultado) y las celdas coloreadas (que son aquellas que deseamos comparar) no coinciden. Es decir no pueden ser equivalentes porque existe al menos un caso en donde no coinciden en su tabla de verdad.

De manera similar, para probar que $\neg P \land (\neg Q \land \neg R)$ no es equivalente a $\neg (P \lor (Q \land R))$ daremos un caso en donde no se da la igualdad en las tablas de verdad. Nota que $\neg P \land (\neg Q \land \neg R) = \neg P \land \neg ( Q \lor R)$ y a su vez, $\neg P \land \neg ( Q \lor R) = \neg (P \lor (Q \lor R))$. Ahora veamos el caso particular en la siguienta tabla de verdad:

$P$$Q$$R$$Q \land R$$P \lor (Q \land R)$$\neg (P \lor (Q \land R))$$Q \lor R$$ P \lor (Q \lor R)$$ \neg (P \lor (Q \lor R))$
$0$$1$$0$$0$$0$$1$$1$$1$$0$

Esto termina el problema.

$\triangle$

¿Cómo le hicimos en la segunda parte para «sacar de la manga» los valores de verdad de $P$, $Q$ y $R$ que nos ayudarían a verificar que las proposiciones no eran equivalentes? La intuición fue la siguiente:

Quisiéramos un caso en que no coincidieran los valores, uno que fuera verdadero y otro falso. Veamos cómo se comporta $\neg (P \lor (Q \land R))$. Para que esta no sea equivalente a la segunda proposición, deberíamos pensar que una es verdadera y la otra falsa. Le asignaremos un valor de verdad a la primera proposición, digamos que es verdadera (entonces la segunda proposición sería falsa), y como hay una negación delante entonces $P \lor (Q \land R)$ debería ser falsa. Pon atención que tenemos un $\lor$ adentro de la expresión, el cuál es falso si las dos proposiciones que conectan son falsas, así que piensa en qué necesitan para ser falsas, y date cuenta que requieren las siguientes dos condiciones:

  • $P$ falsa
  • $Q$ o $R$ falsa

A fuerza, $P$ debe ser falsa, así que no le movemos más.

Por otro lado, vamos a ver cómo se comporta $ \neg (P \lor (Q \lor R))$. Recuerda que pensamos en un caso en que no coincidan las proposiciones, y si quedamos en que la primera proposición era verdadera, entonces esta es falsa, lo cual haría a $P \lor (Q \lor R)$ verdadera. Además también dijimos que $P$ es falsa, entonces para que toda la proposición sea verdadera, tendremos que hacer que $Q \lor R$ sea verdadera. Alguna de estas dos es falsa (también era una condición que establecimos para la veracidad de la primera proposición), digamos que $R$ es la falsa, entonces $Q$ es verdadera. De esta manera obtuvimos el ejemplo que hacía las proposiciones diferir en alguna combinación de valores de verdad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Completa la tabla de verdad para verificar que $\neg (\neg P \land (Q \land R))$ no es equivalente a $\neg (P \lor (Q \land R))$. Observa cómo en todas los renglones en donde $P$ es verdadero, $\neg (\neg P \land (Q \land R))$ es distinto a $\neg (P \lor (Q \land R))$.
  2. Completa la tabla de verdad de$ \neg (P \lor (Q \lor R))$ junto a $\neg (P \lor (Q \land R))$. ¿Existen otros casos en donde sus valores de verdad sean distintos?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Inversas de matrices de 2×2 con reducción gaussiana

Por Leonardo Ignacio Martínez Sandoval

Introducción

Es posible que sepas que una matriz $$A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$$de $2\times 2$ es invertible si y sólo si $ad-bc=0$, y que en ese caso la inversa está dada por $$B=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$ De hecho, una vez que se propone a $B$ como esta matriz, es sencillo hacer la multiplicación de matrices y verificar que en efecto tanto $AB$ como $BA$ son la matriz identidad de $2\times 2$.

Sin embargo, la idea de esta entrada es deducir que $ad-bc$ tiene que ser distinto de $0$ para que $A$ sea invertible y que, en ese caso, la inversa tiene que ser de la forma que dijimos. En esta deducción no usaremos nunca la definición ni propiedades de determinantes.

El procedimiento

Lo que haremos es aplicar el procedimiento de reducción gaussiana para encontrar inversas, es decir, le haremos reducción gaussiana a la matriz $A’=\begin{pmatrix}
a & b & 1 & 0\\
c & d & 0 & 1
\end{pmatrix}$ obtenida de «pegar» a la matriz $A$ una matriz identidad a su derecha. Es un resultado conocido que si $A$ es invertible, entonces al terminar la reducción gaussiana de $A’$ la matriz de $2\times 2$ que queda a la izquierda será la identidad y la que quede a la derecha será la inversa de $A$.

Empecemos con una matriz $A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ de $2\times 2$ cualquiera. Si ambos $a$ y $c$ son iguales a $0$, entonces la primer columna de $BA$ es $0$ para toda $B$, y por lo tanto $A$ no puede tener inversa. Así, una primera condición para que $A$ tenga inversa es que $a$ o $c$ sean distintos de cero. Si $a$ fuera $0$, el primer paso de reducción gaussiana sería intercambiar las filas, así que podemos suponer sin pérdida de generalidad que $a$ no es $0$. De este modo, el primer paso de reducción gaussiana es multiplicar la primer fila por $1/a$ para que el pivote sea $1$: $$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
c & d & 0 & 1
\end{pmatrix}$$

El siguiente paso es hacer al resto de las entradas en la columna de ese primer pivote iguales a $0$. Para eso basta restar a la segunda fila $c$ veces la primera:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & d – \frac{bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}=\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & \frac{ad-bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}.$$

Si $ad-bc=0$, entonces el pivote de la segunda fila ya no quedaría en la segunda columna, y la forma escalonada reducida no tendría a la identidad a la izquierda. Así que una segunda condición para que $A$ sea invertible es que $ad-bc$ no sea cero. Notemos que si $ad-bc$ no es cero, entonces tampoco $a$ y $c$ son simultaneamente $0$, así que nuestra condición anterior ya está capturada con pedir que $ad-bc$ no sea cero.

Sabiendo que $ad-bc$ no es cero, el siguiente paso en la reducción gaussiana es multiplicar la segunda fila por $a/(ad-bc)$ para hacer el pivote igual a $1$:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Finalmente, para que el pivote de la segunda columna sea la única entrada no cero, tenemos que restar a la primera fila la segunda multiplicada por $-b/a$:

$$\begin{pmatrix}
1 & 0 & \frac{1}{a}+\frac{bc}{a(ad-bc)} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\begin{pmatrix}
1 & 0 & \frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Así, basta pedir $ad-bc$ para que la reducción gaussiana deje a la identidad en la matriz de $2\times 2$ de la izquierda y, al terminar el procedimiento, tenemos a la derecha a la inversa de $A$ que es la matriz:

$$\begin{pmatrix}
\frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
-\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$

Esto es a lo que queríamos llegar. Por supuesto, el camino fue largo y hay formas de llegar al mismo resultado de manera más corta, pero usando más teoría.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Ecuaciones Diferenciales I – Videos: Introducción al curso y definiciones básicas

Por Eduardo Vera Rosales

Imágen Ecuaciones Diferenciales I

Introducción

Hola a todos. Esta es la primer entrada de una serie de videos correspondientes a un curso completo de Ecuaciones Diferenciales I, tomando como base el temario oficial de la Facultad de Ciencias de la UNAM, el cual podrás encontrar en el siguiente enlace (temario oficial).

En esta primer entrada daremos una pequeña introducción donde hablaremos a grandes rasgos sobre lo que tratará el curso. Posteriormente daremos un primer vistazo a lo que son las ecuaciones diferenciales y motivaremos su estudio mediante ejemplos donde juegan un papel fundamental. Finalmente veremos las definiciones básicas que necesitamos conocer para poder comenzar un estudio formal de las ecuaciones diferenciales.

¡Vamos a comenzar!

¿De qué trata el curso?

El curso pretende introducirte al mundo de las ecuaciones diferenciales ordinarias. A grandes rasgos una ecuación diferencial ordinaria es una relación entre una variable independiente $t$, una función que depende de $t$, y las derivadas de distintos órdenes de la función. Cuando la relación involucra más de una variable independiente hablaremos de una ecuación en derivadas parciales, sin embargo en este curso no abordaremos ese caso.

Principalmente veremos las distintas técnicas de resolución de ecuaciones, especialmente de primer y segundo orden, así como sistemas de ecuaciones de primer orden. Sin embargo, como el conjunto de ecuaciones diferenciales que se pueden resolver por métodos analíticos es muy pequeño, también analizaremos las ecuaciones desde un punto de vista cualitativo, es decir, realizaremos una descripción lo más completa posible de las soluciones a una ecuación diferencial sin conocerlas explícitamente. También abordaremos el Teorema de Existencia y Unicidad, el cual nos brinda las herramientas para poder resolver problemas con condiciones iniciales, bajo ciertas condiciones.

Motivación y ejemplos de modelos matemáticos mediante ecuaciones diferenciales

Comenzamos el curso con un par de aplicaciones a problemas de dinámica de poblaciones. Revisamos cómo modelar matemáticamente dichos fenómenos mostrando la importancia de las ecuaciones diferenciales.

Definiciones básicas

En el primer video, damos las definiciones de ecuación diferencial ordinaria, soluciones y orden de una ecuación, con sus respectivos ejemplos para que tengas claros estos conceptos.

En el segundo video, revisamos el concepto de problema de condición inicial, también llamado problema de valor inicial, y mediante un ejemplo analizaremos la importancia que tiene en la búsqueda de soluciones particulares de una ecuación. Por último clasificamos a las ecuaciones en lineales y no lineales, ya que en próximos videos comenzaremos a ver las técnicas para resolver este tipo de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Investiga acerca de algún problema de la vida real que se modele mediante una ecuación diferencial.
  • Comprobar que cuando $P<N$, entonces la tasa de cambio del tamaño de la población en el ejemplo del modelo logístico ( visto en el segundo video) es positiva, es decir, $\frac{dP}{dt}=k(1-\frac{P}{N})P>0$, por lo cual el tamaño de la población crece.

Verificar si las siguientes funciones son solución a su respectiva ecuación diferencial:

  • $\frac{d^{2}y}{dt}+y=0, \,\,\,\,\, y(t)=\sin t$.
  • $y'{}’+5y’+6y=0, \,\,\,\,\, y(t)=e^{-2t}$.
  • $\frac{dy}{dt}+y=te^{t}, \,\,\,\,\, y(t)=ce^{-t}+\frac{te^{t}}{2}-\frac{e^{t}}{4}$.
  • Sabemos que $y(t)=\frac{1}{k-t}$ es solución a la ecuación $\frac{dy}{dt}=y^{2}$ (verifícalo). Encuentra la solución al problema si agregamos la condición inicial $y(0)=1$.

¿Cuál es el orden de las siguientes ecuaciones diferenciales? ¿Son lineales o no?

  • $3ty+y^{2}+(t^{2}+ty)\frac{dy}{dt}=0$.
  • $\alpha t\frac{d^{5}y}{dt}+\sin(t)\frac{d^{2}y}{dt}-\frac{dy}{dt}+t^{5}y=t$.
  • $\cos(t^{2})-y'{}'{}’+37e^{t}y'{}’+y’-\cosh(y)=100e^{\cos(t^{3})}$.

Más adelante

En la próxima entrada analizaremos un poco de la geometría de soluciones de una ecuación de primer orden mediante algunas técnicas bastante sencillas.

Primero veremos cómo asociar un campo de pendientes a una ecuación, y conoceremos cuál es la relación que tiene este campo con las soluciones a la ecuación. Posteriormente veremos el método de las isóclinas para encontrar el campo de pendientes asociado a una ecuación y sus soluciones en el plano $t-y$.

¡No se los pierdan!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Repaso. Teoría de Conjuntos. (Parte 2)

Por Karen González Cárdenas

Introducción

En la entrada anterior vimos qué significa ser un conjunto y cuál es la notación que se utiliza para denotarlos. Además de un par de conceptos: pertenencia a un conjunto y subconjunto.

Retomaremos todo lo antes mencionado para ahora presentar las llamadas Operaciones con conjuntos. Éstas estarán presentes no sólo en este curso, sino también en varios de los textos de matemáticas que consultarás a lo largo de tu vida académica.

Operaciones con conjuntos

A lo largo de esta entrada haremos uso de una representación gráfica de los conjuntos llamada Diagramas de Venn para poder visualizar cada una de las operaciones que definiremos a continuación.

Ejemplo de diagrama de Venn

Definición (Unión): Sean $A$ y $B$ dos conjuntos. Decimos que la unión de $A$ con $B$ está definida como:

\[ A \cup B:=\left\{ x\mid x\in A \vee x\in B\right\} \text{.}\]

Esto quiere decir que está conformada por los elementos que se encuentran en $A$ o los que se encuentran en $B$. En el siguiente diagrama queda representada por la zona sombreada de azul.

Notación: Utilizamos el símbolo matemático $\vee$ para sustituir a la disyunción «o».

Observación. En este caso al hacer uso de la «o» estamos considerando que esta es inclusiva, lo que quiere decir que es válido que $x$ se encuentre tanto en $A$ como en $B$.

A continuación mostraremos un ejemplo para hacer más clara la definición.

Ejemplo: Supongamos que tenemos los siguientes conjuntos:

\[ A=\left\{0,1, 2, 3, 4\right\} \text{,}\]
\[ B=\left\{0, a,b,c,d,e\right\} \text{.}\]

Si nosotros queremos obtener $A \cup B$, al aplicar la definición anterior tenemos:

\[ A \cup B=\left\{0,1, 2, 3, 4,0,a,b,c,d,e \right\} \text{.} \]

Observamos que al realizar la unión de este par de conjuntos «unimos sus elementos en un sólo conjunto llamado $A \cup B$». Veamos que el 0 es un elemento tanto de $A$ como de $B$, por lo que sólo será necesario escribirlo una vez y así nos queda:

\[ A \cup B=\left\{0,1, 2, 3, 4,a,b,c,d,e \right\} \text{.}\]

Definición (Intersección): Sean $A$ y $B$ dos conjuntos. Decimos que la intersección de $A$ con $B$ está definida como:

\[ A \cap B:=\left\{ x\mid x\in A \wedge x\in B\right\} \text{.}\]

Esto quiere decir que está conformada por los elementos que se encuentran en $A$ y los que se encuentran en $B$. En otras palabras, la intersección está conformada por los elementos en común de $A$ y $B$.

Notación: Utilizamos el símbolo matemático $\wedge$ para sustituir a la conjunción «y».

En el diagrama anterior queda representada por la zona sombreada de verde.

Ejemplo: Retomamos los siguientes conjuntos:

\[ A=\left\{0,1, 2, 3, 4\right\} \text{,}\]
\[ B=\left\{0, a,b,c,d,e\right\} \text{.}\]

Si nosotros queremos obtener $A \cap B$, al aplicar la definición anterior tenemos:

\[ A \cap B=\left\{0 \right\}\text{.} \]

Definición (Diferencia): Sean $A$ y $B$ dos conjuntos. Decimos que la diferencia de $A$ con $B$ está definida como:

\[ A \setminus B:=\left\{ x\mid x\in A \wedge x\notin B\right\}\text{.} \]

Esto quiere decir que está conformada por los elementos que se encuentran en $A$ y que no se encuentran en $B$.

Ejemplo: Retomamos los conjuntos:

\[ A=\left\{0,1, 2, 3, 4\right\} \text{,}\]
\[ B=\left\{0, a,b,c,d,e\right\} \text{.}\]

Si nosotros queremos obtener $A \setminus B$, al aplicar la definición anterior tenemos:

\[ A \setminus B=\left\{1,2,3,4 \right\} \text{.}\]

Vemos que le hemos quitado los elementos a $A$ que tenía en común con $B$. Por lo que el diagrama nos quedaría como:

Teorema: Sean $A$, $B$ y $C$ conjuntos. Tenemos que:

  1. Propiedades conmutativas:
    • \[A \cup B = B \cup A\quad \text{.}\]
    • \[A \cap B = B \cap A\quad\text{.}\]
  2. Propiedades asociativas:
    • \[A \cup (B\cup C) = (A \cup B)\cup C \quad \text{.}\]
    • \[A \cap (B\cap C) = (A \cap B)\cap C \quad\text{.}\]
  3. Propiedades distributivas:
    • \[A \cap (B\cup C) = (A \cap B)\cup (A\cap C)\quad\text{.}\]
    • \[A \cup (B\cap C) = (A \cup B)\cap (A\cup C) \quad\text{.}\]
  4. \[ A\cup A= A \quad\text{.}\] \[A\cap A= A \quad\text{.}\]
  5. \[ A\subseteq A\cup B \quad\text{.} \] \[ A\cap B \subseteq A \quad\text{.}\]
  6. \[ A\cup \emptyset = A \quad\text{.}\] \[A\cap \emptyset= \emptyset\quad\text{.}\]
    • Nota.-$\emptyset$ denota al conjunto vacío: es aquel que no posee elementos.
  7. \[A \setminus (B\cap C) = (A \setminus B)\cup (A\setminus C) \quad\text{.} \]

Demostración:

1.Probaremos la igualdad $A \cup B = B \cup A$, haciendo uso de la definición de igualdad de conjuntos, así tenemos:

$A \cup B = B \cup A$ si y sólo si $A\cup B\subseteq B \cup A$ y $B\cup A\subseteq A\cup B$

Comencemos con $A\cup B\subseteq B \cup A$. Sea $x\in A\cup B$, por la definición de subconjunto queremos probar que $x\in B\cup A$.

Por definición de unión se sigue que $x \in B$ o $x\in A$.

Caso 1: $x \in B$.

Como $x \in B$ entonces $x \in B$ o $x \in A$. Así, por la definición de unión concluimos que: $x\in B\cup A$.

Caso 2: $x \in A$.

Ahora como $x \in A$ entonces $x \in A$ o $x \in B$. Y como el conectivo «o» es conmutativo tenemos: $x \in A$ entonces $x \in B$ o $x \in A$. Así, por la definición de unión concluimos que: $x\in B\cup A$.

Del Caso 1 y Caso 2 concluimos que: $x\in B\cup A$. Por lo tanto, $A\cup B\subseteq B \cup A$.

Ahora probemos la segunda contención: $B\cup A\subseteq A\cup B$. Sea $x\in B\cup A$, así lo que queremos probar es $x\in A\cup B$.

Por definición de unión se sigue que $x \in B$ o $x\in A$.

Caso 3: $x \in B$.

Como $x \in B$ entonces $x \in B$ o $x \in A$, y como el conectivo «o» es conmutativo tenemos $x \in B$ entonces $x \in A$ o $x \in B$. Así, por la definición de unión concluimos que $x\in A\cup B$.

Caso 4: $x \in A$.

Ahora como $x \in A$ entonces $x \in A$ o $x \in B$. Así, por la definición de unión concluimos que $x\in A\cup B$.

Del Caso 3 y Caso 4 concluimos que: $x\in B\cup A$. Por lo tanto, $B\cup A\subseteq A\cup B$.

Por lo que finalmente probamos: $A\cup B = B \cup A$. La igualdad $A \cap B = B \cap A$ se dejará como ejercicio al lector.

2. Los incisos de las Propiedades asociativas quedan como ejercicio de Tarea moral.

3. Probaremos sólo la igualdad $A \cup (B\cap C) = (A \cup B)\cap (A\cup C)$.

Comenzaremos con probar la siguiente contención: $A \cup (B\cap C)\subseteq (A \cup B)\cap (A\cup C)$. Así tomemos $x\in A \cup (B\cap C)$, queremos demostrar que $x\in (A \cup B)\cap (A\cup C)$.

Caso 1: $x\in A$
Así tenemos que se cumple:
\begin{align}
x \in A\vee x\in B &\Rightarrow x\in A\cup B
\end{align}
Y también sucede que:
\begin{align}
x \in A\vee x\in C &\Rightarrow x\in A\cup C
\end{align}
En (1) y (2) aplicamos la propiedad de adición para la disyunción y la definición de la unión. Por lo que concluimos, al aplicar la definición de la intersección en (3):
\begin{align}
x\in A\cup B \wedge x\in A\cup C \Rightarrow x\in (A\cup B) \cap (A\cup C)
\end{align}

Caso 2: $x \in B\cap C$
Así por definición de intersección, tenemos que:
\begin{align}
x\in B \wedge x\in C &\Rightarrow (x\in B \wedge x\in C) \vee x\in A\\
&\Rightarrow (x\in B \vee x\in A) \wedge (x\in C \vee x \in A)\\
&\Rightarrow x\in B\cup A \wedge x\in C\cup A\\
&\Rightarrow x\in A\cup B \wedge x\in A\cup C\\
&\Rightarrow x\in (A\cup B) \cap (A\cup C)\\
\end{align}
Aplicamos en (4) la propiedad aditiva de la disyunción; para (5) usamos las Leyes distributivas de los conectivos disyunción y conjunción; para (6) y (7) aplicamos la unión y su propiedad conmutativa. Finalizamos aplicando en (8) la definición de intersección.


Por (3) y (8) de los Casos 1 y 2, podemos concluir que: $A \cup (B\cap C)\subseteq (A \cup B)\cap (A\cup C)$.

Ahora probaremos la contención: $(A \cup B)\cap (A\cup C)\subseteq A \cup (B\cap C)$.
Tomamos $ x\in (A \cup B)\cap (A\cup C)$. Así por definición de intersección, tenemos que:
\begin{align}
x\in (A \cup B) \wedge x \in (A\cup C) &\Rightarrow (x\in A \vee x\in B) \wedge (x \in A\vee x\in C)\\
&\Rightarrow x\in A \vee (x \in B \wedge x\in C)\\
&\Rightarrow x\in A \vee x \in B\cap C\\
&\Rightarrow x\in A \cup (B \cap C)
\end{align}
Vemos que (9) se sigue de la definición de unión. En (10) utilizamos las leyes distributivas de la disyunción con la conjunción; para (11) aplicamos la definición de intersección para $B$ y $C$.
Y por último en (12) aplicamos la definición de unión para $A$ y $B\cup C$.

Así concluimos que: $A \cup (B\cap C) = (A \cup B)\cap (A\cup C) \text{.}$

4. Tarea moral
5. Tarea moral
6. Tarea moral
7. Tarea moral


$\square$

Notación: El símbolo «$\Rightarrow$» se lee como «entonces».

Más adelante

Ahora que hemos terminado con el repaso de los conceptos básicos de Teoría de Conjuntos, en la siguiente entrada veremos el método de demostración llamado: Inducción matemática, el cuál será utilizado frecuentemente en los diferentes cursos a lo largo de tu preparación profesional.

Tarea moral

  • Realiza la demostración de la siguiente Ley distributiva: $A \cap (B\cup C) = (A \cap B)\cup (A\cap C)$.
  • Prueba que $A \setminus (B\cap C) = (A \setminus B)\cup (A\setminus C)$.
  • Determina si las siguientes afirmaciones son verdaderas o falsas, argumenta tu respuesta:
    • Si $x\in A$ y $A\subseteq B$, sucede que $x\in B$.
    • Si $x\in A$ y $A\in B$, sucede que $x\in B$.
    • Si tenemos $A$ y $B$ conjuntos, sucede siempre que $A\setminus B = B \setminus A$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Introducción. Repaso: Teoría de Conjuntos (Parte 1)

Por Karen González Cárdenas

Introducción

Probablemente en el bachillerato ya habrás tomado algún curso de matemáticas en el que te presentaron varios de los conceptos íntimamente relacionados con el cálculo. Por lo que has oído hablar de números reales, funciones, derivadas – por citar algunos-, pero en algún momento te has preguntado: ¿De dónde salió todo eso?, ¿Por qué podemos asegurar lo que nos enseñan nuestros profesores o leemos en los libros de texto?

En esta entrada veremos un poco sobre la motivación histórica del cálculo y a lo largo de todo el curso haciendo uso de la herramienta de la demostración buscaremos dar respuesta a la segunda pregunta planteada.

Así, ¡comenzamos!

Veloz cómo una tortuga

Imagina que un grupo de amigos te retan a una carrera contra una tortuga. Te dicen que, si lograras pasar por delante de ella y llegar primero a la meta, ganas un auto del año.

Sabiendo que la tortuga es extremadamente lenta en su caminar, decides darle ventaja para hacer la apuesta más interesante. Cuando ella se inicia su recorrido en el punto marcado en la imagen, finalmente comienzas a avanzar, en ese momento todos se percatan que no logras alcanzarla. ¿Cómo es esto posible?

Si nos detenemos un momento para observar lo que está pasando notamos lo siguiente:

  1. Para cuando llegas al punto donde la tortuga inició el recorrido, ella ya ha avanzado una pequeña distancia.
  2. Para cuando tú llegas al nuevo punto en el que se encuentra la tortuga, ella ya se ha movido un poco más hacia adelante.
  3. Este proceso continúa infinitamente, con la tortuga siempre moviéndose un poco más adelante.

Debido a que hay un número infinito de estos pasos, nunca rebasarás realmente a la tortuga. Por lo que haberle dado ventaja al final no parece haber sido una buena elección.

Esta idea fue expuesta por el filósofo griego Zenón de Elea en una de sus paradojas, conocida como Aquiles y la tortuga. Su planteamiento desconcertó a los intelectuales de la época. Observamos que este problema tiene como punto de preocupación, no sólo para los filósofos, sino también para los matemáticos: el problema del movimiento. Por lo tanto, podemos considerar como uno de los propósitos del Cálculo el establecer un modelo del movimiento. Veremos más adelante que el conocimiento de los números y las funciones reales se vuelve elemental para dicha tarea.

Observación: No se está considerando la variable de la velocidad en el planteamiento del movimiento recién mencionado. De este modo, cuestionarnos si es posible que Aquiles logre alcanzar a la tortuga al aumentar su velocidad queda descartado.

Una historia de amor

Un par de enamorados desean verse. Uno de ellos se encuentra en el punto $A$ de la ciudad y el otro en el punto $B$. Cuando el enamorado del punto A se dispone a ponerse en marcha para llegar al punto $B$, un hombre en la calle le pregunta: ¿estás seguro de que puedes desplazarte al punto $B$?

Perplejo el enamorado que se encuentra en el punto $A$ responde: “No entiendo su pregunta, ¿por qué no podría?”

El hombre sonriendo le plantea lo siguiente: “Mira, para que puedas llegar a $B$ primero deberás pasar por el punto $C$ que se encuentra a la mitad de la distancia entre $A$ y $B$. Pero… también para llegar a $C$ debes pasar por el punto $D$ que se encuentra a la mitad de la distancia entre $A$ y $C$, ¿no?

Y si te lo piensas bien así será sucesivamente, pasarás una vez por cada punto que se encuentre a la mitad de la distancia de cualesquiera dos. Ahora dime ¿en algún momento podrás moverte de tu posición $A$? ”

Desconcertado, el enamorado $A$ se detiene a pensar sobre lo sucedido.

  • ¿Qué respuesta le darías? ¿Llegarán a reunirse los enamorados bajo estas condiciones? Plantea una posible explicación, dicho ejercicio será parte de la tarea moral de esta primera parte.

Ya que hemos visto un par de paradojas interesantes, comenzaremos con un repaso de los conceptos básicos de Teoría de Conjuntos que se usarán a lo largo de todo el curso.

Repaso: Conceptos básicos de Teoría de Conjuntos.

En Matemáticas usaremos el concepto de «conjunto» para referirnos a una colección de objetos que serán considerados como una sola entidad. En la vida cotidiana algunos ejemplos serían:

  • Rebaño de ovejas
  • Equipo de fútbol
  • Estudiantes de la Facultad de Ciencias

Y utilizaremos el concepto de «elemento de un conjunto» para referirnos a cualquier objeto o entidad que pertenece a dicho conjunto. Aplicando dicha definición a un equipo de fútbol, el jugador que es portero del equipo sería un elemento del equipo de fútbol.

Cuestiones de notación

Usaremos las letras mayúsculas $A,B,C,…,X,Y,Z$ para referirnos a conjuntos, y las letras minúsculas $a,b,c,…,x,y,z$ para referirnos a los elementos.

Pertenencia

Utilizaremos el símbolo $\in$ para referirnos a la pertenencia de un elemento a un conjunto. Así, si tenemos lo siguiente:

$x\in A \text{,}$

esto se leería como $x$ pertenece al conjunto $A$, o $x$ es un elemento del conjunto $A$.

Si quisiéramos decir que $x$ no pertenece al conjunto $A$, o $x$ no es un elemento del conjunto $A$ usaríamos el símbolo $\notin$ y tendríamos:

$x\notin A \text{.}$

Denotando conjuntos

En algunas ocasiones encontraremos a los conjuntos escritos de la siguiente manera:

\[ A=\left\{0,1, 2, 3, 4\right\}\text{.} \]

Sin embargo, en muchas ocasiones no resultará práctico escribir todos los elementos del conjunto que queremos denotar. Por lo que se usará una notación diferente llamada «por comprensión». Utilizando el ejemplo anterior tendríamos lo siguiente:

\[ A=\left\{x\mid 0\leqslant x \leqslant 4 , x\in \mathbb{N} \right\} \text{;}\]

esto se leería como «el conjunto de los primeros cinco números naturales» o «el conjunto de los números naturales mayores o iguales que cero y menores o iguales a cuatro». Comúnmente esta última notación será la más utilizada tanto en libros de texto como en los cursos.

Como un breve recordatorio, los números naturales son un conjunto de números utilizados para contar objetos o representar una cantidad de cosas y se denotan usualmente con el símbolo $\mathbb{N}$.

Subconjuntos

Ahora veremos una relación muy especial que nos permitirá crear nuevos conjuntos a partir de uno dado. Si tenemos el siguiente conjunto:

\[ B=\left\{0,1, 2, 3, a, b, c, d\right\} \text{,}\]

y decidimos tomar los elementos $0,3,b,c$ del conjunto $B$, vemos que podemos formar un conjunto C cuyos elementos sean los previamente seleccionados de modo que:

\[ C=\left\{0, 3, b, c \right\} \text{.}\]

Así diremos que $C$ es un subconjunto de $B$.

Usaremos el símbolo $\subseteq$ para representar la contención de conjuntos. Así presentamos la siguiente definición:

Definición (Subconjunto): Consideremos $A$ y $B$ conjuntos. Diremos que $A$ es un subconjunto de $B$:

$A \subseteq B$

si se cumple que todo elemento de $A$ pertenece también a $B$, en otras palabras, si todo elemento de $A$ también es un elemento de $B$.

NOTA.- $A \subseteq B$ también se puede leer como: «$A$ está contenido en $B$» o «$B$ contiene a $A$»

Definición (Igualdad de conjuntos): Consideremos $A$ y $B$ conjuntos. Diremos que $A$ es igual a $B$:

$A = B$

si y sólo si se cumple que: $A \subseteq B$ y $B \subseteq A$.

Esta definición nos resultará de utilidad al realizar demostraciones sobre la igualdad entre conjuntos.

Más adelante

En esta primera entrada hemos visto la notación utilizada en Teoría de Conjuntos, el significado de pertenencia a un conjunto, que es un subconjunto y la definición de igualdad entre conjuntos. En la siguiente entrada veremos las operaciones fundamentales entre conjuntos, donde lo antes visto será de suma importancia.

Tarea moral

  1. Da una posible explicación al planteamiento de la paradoja «Una historia de amor».
  2. Dados los siguientes conjuntos $A$ y $B$. Responde si los enunciados escritos a continuación son verdaderos o falsos, argumenta tu respuesta.

\[ A=\left\{5,7,9, b, h, k, j\right\} \]

\[ B=\left\{5,7,9, h, k, j\right\} \]

  • $A \subseteq B$
  • $B \subseteq A$
  • Si tenemos $C=\left\{5,7,9, h, k, j\right\}$ entonces $C \subseteq B$.
  • $\left\{5,7\right\}\in A$
  • $\left\{5,7,9,h,k,j\right\}\in B$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»