Álgebra Moderna I: Orden de un grupo

Por Cecilia del Carmen Villatoro Ramos

Introducción

Ya vimos qué es el orden de un elemento y el grupo cíclico generado por ese elemento. En esta entrada veremos a qué se le denomina el orden de un grupo, que en realidad es un concepto que ya conoces.

Primero repasemos cómo es el conjunto generado por $a$, éste se puede describir así:

$\{\dots, a^{-2}, a^{-1}, e, a^{1}, a^2, \dots\}$.

En esa sucesión de potencias de $a$, si el elemento $a$ tiene orden finito, eventualmente encontraremos $a^{o(a)}$. Por la entrada anterior sabemos que $o(a)$ es el mínimo entero positivo tal que $a^{o(a)} = e$. Entonces, $a^{o(a) + 1} = e a = a$. Esto nos puede indicar que en algún momento la sucesión se volverá a repetir. Entonces el rango que no tiene repeticiones sería el siguiente:

$e, a, a^2, \dots, a^{o(a) -1}$.

A continuación formalizaremos esta idea, definiremos el orden de un grupo y relacionaremos el orden de un elemento con el orden del grupo generado por éste.

Definición de orden de un grupo

Definición: Sea $G$ un grupo. El orden de $G$ es la cardinalidad del conjunto $G$ y se denota por $|G|$.

Teorema: Sean $G$ un grupo y $a\in G$ un elemento de orden finito. Entonces

$|\left< a\right>| = o(a)$.

Demostración.
Sea $G$ un grupo y $a \in G$ de orden finito.

Considera que $e$ es el neutro en $G$. Primero veamos que

$\begin{align*} \left< a\right> = \{e, a, a^2, \dots, a^{o(a)-1}\} \end{align*}$.

$\subseteq]$
Sea $x \in \left< a\right>$, entonces existe algún $k \in \z $ tal que $x =a^k$.
Por el algoritmo de la división existen $q, r \in \z$ tales que

$k = o(a)q + r\;$ con $\;0 \leq r < o(a)$.

Entonces, sustituyendo el valor de $k$,

$x = a^k = a^{o(a)q + r}$.

Si seguimos realizando operaciones con los exponentes, obtenemos:

$\begin{align*}
a^{o(a)q + r} &= (a^{o(a)})^q a^r \\
&= e^q a^r &\text{ por la definición de orden}\\
&= e a^r &\text{ya que $e$ es el neutro}\\
&= a^r &\text{ya que $e$ es el neutro}
\end{align*}$

es decir, $x = a^r$ para algún $ r \in \z$, con $0\leq r < o(a)$. Entonces

$x \in \{e, a, a^2, \dots, a^{o(a)-1}\}$.

Hemos demostrado así la primera contención.

$\supseteq]$

Esta contención es más sencilla porque claramente

$\{e, a, a^2, \dots, a^{o(a)-1}\} \subseteq \{\dots, a^{-2}, a^{-1}, e, a, a^2, \dots\}$.

Y como $\left< a\right> = \{ a^{k}\mid k\in\mathbb{Z}\}=\{\dots, a^{-2}, a^{-1}, e, a, a^2, \dots\}$, se cumple la segunda contención y con ella la igualdad de conjuntos.

Todavía nos falta un detalle. Hasta ahora sabemos que

$\begin{align*} \left< a\right> = \{e, a, a^2, \dots, a^{o(a)-1}\} \end{align*}$

pero nada nos asegura que $|\{e, a, a^2, \dots, a^{o(a)-1}\}| = o(a)$, es decir que tenga tantos elementos como el orden de $a$. Esto lo probaremos viendo que no existen elementos repetidos.

Supongamos que $a^{i} = a^j$ para $i, j \in \{0,1,\dots, o(a)-1\}$, supongamos sin pérdida de generalidad que $i \leq j$.

Multiplicando ambos lados por $(a^i)^{-1}$ obtenemos,

$\begin{align*} a^{i}(a^{i})^{-1} &= a^j(a^{i})^{-1}\\
e &= a^{j-i}.\end{align*}$

Entonces, $e = a^{j-i}$, pero, por la elección de $i$ y de $j$ sabemos que $0 \leq j – i < o(a)$. Entonces, debido a la definición de $o(a)$ esto sólo es posible si $j-i=0$, es decir $j = i$.

Así $\left< a\right> = \{e, a, a^2, \dots, a^{o(a)-1}\}$ tiene $o(a)$ elementos. Por lo tanto

$|\left< a\right>| = o(a)$.

$\blacksquare$

Un pequeño ejemplo

Ejemplo.
Recordemos que de acuerdo a lo que se definió en un ejemplo de la entrada anterior tenemos que $U(\z_{7})$ consiste de todas las clases módulo 7 que tienen inverso multiplicativo, es decir $U(\z_{7}) = \{ \bar{n}\in\z_7\mid (n,7)=1\}$. Tenemos que $U(\z_{7}) = \{\bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}\}$. Sabemos que este conjunto es un grupo con la multiplicación. Observemos que en los enteros módulo 7 no todas las clases tienen inverso multiplicativo, sólo aquellas representadas por primos relativos con 7, por eso $\bar{0}$ no está en nuestro conjunto $U(\z_{7})$.

Podemos hacer algunas operaciones:

  • $(\bar{4})^2 = \overline{4^2} = \overline{16} = \bar{2}$, en este caso $(\bar{4})^2$ no es el neutro, entonces intentemos lo siguiente:
  • $(\bar{4})^3 = (\bar{4})^2\,\bar{4} = \bar{2}\, \bar{4} = \bar{8} = \bar{1}$, así $o(\bar{4}) = 3$.

Por lo tanto, $\left< \bar{4} \right> = \{\bar{1}, \bar{4}, (\bar{4})^2\} = \{\bar{1}, \bar{4}, \bar{2}\}$ , así $\left|\left< \bar{4}\right>\right| = 3$.

Consecuencias

Hasta ahora hemos visto que la cantidad de elementos que hay en el generado por $a$, es decir $\left< a\right>$, está definido por el orden de $a$, denotado por $(o(a))$. En consecuencia tenemos el siguiente corolario.

Corolario. Sea $G$ un grupo y $a\in G$. Tenemos que $a$ es de orden finito si y sólo si $\left< a\right>$ es un conjunto finito.

Demostración.
Sea $G$ un grupo y $a\in G$.

$|\Rightarrow)$ Si $a$ es de orden finito, por el primer teorema que probamos en esta entrada,

$|\left< a \right>| = o(a) \in \z^+$

$\therefore$ $|\left< a \right>|$ es finito.

$|\Leftarrow)$ Si $\left< a \right>$ es un conjunto finito, entonces
$\{\dots, a^{-1}, e, a^1, a^2, \dots\}$ tiene repeticiones.

Sean $i,j \in \z$ con $i \neq j$ tales que $a^{i} = a^j$.
Sin pérdida de generalidad supongamos que $i < j$. Multiplicando por $(a^{i})^{-1}$ en ambos lados,

$\begin{align*}a^{i} (a^{i})^{-1} &= a^{j} (a^{i})^{-1}\\
e &= a^{j-i}\end{align*}$

con $j-i \in \z^+$. Por lo tanto $a$ es de orden finito.

$\blacksquare$

Corolario. Todo elemento de un grupo finito es de orden finito.

Demostración.
Sea $G$ un grupo finito y $a\in G$.

Como $\left< a \right> \subseteq G$ y $G$ es finito, entonces $\left< a \right>$ también es finito por el corolario anterior $a$ es de orden finito.

$\blacksquare$

Tarea moral

  1. Considera $G = \left< a \right>$ un grupo cíclico infinito:
    1. Encuentra el subgrupo de $G$ con la menor cantidad de elementos posible, que tenga como elemento a $a^4$.
    2. Encuentra el subgrupo de $G$ con la menor cantidad de elementos posible, que tenga como elementos a $a^4$ y a $a^6$.
    3. Encuentra el subgrupo de $G$ con la menor cantidad de elementos posible, que tenga como elementos a $a^4$ y a $a^9$.
    4. ¿Son cíclicos? Si lo son, encuentra un generador.
  2. Sea $G$ un grupo finito. Sea $S$ el subgrupo de elementos $g$ tales que $g^5 = e$, donde $e$ es el elemento neutro de $G$. Prueba que el orden de $S$ es impar.
    Hint: si $G$ es un grupo, $a \in G$ y existe $p \in \z$ primo tal que $a^p = e$, entonces $o(a) = p$.
  3. ¿Es posible que exista un grupo infinito tal que cada elemento sea de orden finito? De ser cierto, da un ejemplo. En caso contrario prueba que. no existe tal grupo.

Más adelante…

En las siguientes entradas estudiaremos más resultados y consecuencias que se derivan de todas las definiciones que hemos dado.

Entradas relacionadas

Cálculo Diferencial e Integral I: Funciones inyectivas, sobreyectivas y biyectivas. Función inversa

Por Karen González Cárdenas

Introducción

Anteriormente, vimos las operaciones que podemos llevar a cabo entre las funciones. Ahora revisaremos las características que debe cumplir una función para poder determinar si es inyectiva, sobreyectiva o biyectiva. De igual manera, definiremos el concepto de función inversa.

Definición de función inyectiva

Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos distintos en $A$, la función le asocia elementos distintos en $B$, es decir,
$$x_{1} \neq x_{2} \Rightarrow f(x_{1}) \neq f(x_{2})$$
para cualesquiera $x_{1}, x_{2} \in A$.

Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos iguales en $B$, provienen de dos elementos iguales en $A$ bajo la función, es decir,
$$f(x_{1}) = f (x_{2}) \Rightarrow x_{1} = x_{2}$$
para cualesquiera $x_{1}, x_{2} \in A$.

Ejemplo

Sea $f: (-\infty,-1] \rightarrow \r$ definida como:
$$f(x)=11- \sqrt{x^{2}-4x-5}\quad\text{.}$$

Tomemos $x_{1}, x_{2} \in (-\infty,-1]$ tales que $f(x_{1}) = f(x_{2})$. Así queremos probar que $x_{1}=x_{2}$.
Como $f(x_{1}) = f(x_{2})$ tenemos que:
\begin{align*}
11- \sqrt{x_{1}^{2}-4x_{1}-5} &=11- \sqrt{x_{2}^{2}-4x_{2}-5}\\
– \sqrt{x_{1}^{2}-4x_{1}-5} &=- \sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{sumando $11$}\\
\sqrt{x_{1}^{2}-4x_{1}-5} &=\sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{multiplcando por $-1$}\\
\sqrt{(x_{1}-2)^{2}-9} &=\sqrt{(x_{2}-2)^{2}-9} \quad \text{factorizando}\\
\sqrt{(x_{1}-2)^{2}} &=\sqrt{(x_{2}-2)^{2}}\\
|x_{1}-2| &=|x_{2}-2|\quad \text{quitando la raíz cuadrada}\\
\end{align*}
De la igualdad anterior tenemos que $x_{1}-2$ y $x_{2}-2$ son iguales en valor absoluto. Recordemos que para cualesquiera $a, b\in \mathbb{R}$ si:
$$|a| = b \Rightarrow a = b \quad \text{ o } \quad a = -b $$

Aplicando esto a nuestra igualdad $|x_{1} – 2| = |x_{2} – 2|$ tenemos los siguientes dos casos:
CASO 1: $x_{1} – 2 = x_{2} – 2$

\begin{align*}
&\Rightarrow x_{1} – 2 = x_{2} – 2\\
&\Rightarrow x_{1} = x_{2}\\
&\therefore x_{1} = x_{2}\\
\end{align*}

CASO 2: $x_{1} – 2 = -(x_{2} – 2)$

    \begin{align*}
    &\Rightarrow x_{1} – 2 = -x_{2} + 2\\
    &\Rightarrow x_{1} + x_{2} = 4
    \end{align*}

    Ya que $x_1$ y $x_2 $ son números negativos, $x_1 + x_2$ debe ser una suma de dos números negativos, la que siempre resulta en un número negativo. Sin embargo, en el caso $2$ tenemos que $x_{1} + x_{2} = 4$.

    Esto implica que la suma de $x_1$ y $x_2$ es positiva, lo cual es una contradicción.

    Por lo tanto, el segundo caso no es posible si $x_1 $ y $x_2 $ son ambos negativos.

    Concluyendo así que la única posibilidad es el primer caso:

    $$\therefore x_{1} = x_{2}$$
    De lo anterior vemos que $f$ es inyectiva.

    Definición de función sobreyectiva

    Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si todo elemento en $B$ proviene de algún elemento en $A$ bajo la función, es decir, para todo $y \in B$ existe $x \in A$ tal que:
    $$f(x)=y\quad\text{.}$$

    Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si
    $$Im_{f}=Codom_{f}\quad\text{.}$$

    Ejemplo

    Un ejemplo sería la función tangente, ya que su $Im_{f}= \mathbb{R} $ y su $Codom_{f}= \mathbb{R}$, más adelante veremos su definición con mayor detenimiento:
    $$f(x)=tan(x)\quad\text{.}$$

    Definición de función biyectiva

    Definición: Sea $f: A \rightarrow B$ una función. Decimos que $f$ es biyectiva si cumple con ser inyectiva y sobreyectiva.

    Ejemplo

    Sea $f: \r \rightarrow \r$ definida como:
    $$Id(x)=x\quad\text{.}$$

    Veremos que esta función es inyectiva:
    Tomemos $x_{1}, x_{2} \in \r$ distintos, queremos ver que $f(x_{1}) \neq f(x_{2})$. Como tenemos que:
    $$f(x_{1})= x_{1},$$
    $$f(x_{2})= x_{2}\quad\text{.}$$
    Y como sabemos $x_{1} \neq x_{2}$ se sigue así:
    $$f(x_{1})\neq f(x_{2})\quad\text{.}$$
    Por lo que $Id(x)$ es inyectiva.

    Ahora vemos que también cumple ser sobreyectiva:
    Consideremos $y \in \r$. Por definición de la función identidad tenemos que:
    $$y=Id(y)\quad\text{.}$$
    Así vemos que cumple ser sobreyectiva.

    De lo anterior podemos concluimos que $Id(x)$ es una función biyectiva.

    Proposición

    Proposición: Si tomamos las funciones $g: A \rightarrow B$ y $f: B \rightarrow C$ se cumple que:

    1. $f$ inyectiva y $g$ inyectiva $\quad \Rightarrow \quad f \circ g$ es inyectiva.
    2. $f$ sobreyectiva y $g$ sobreyectiva $\quad \Rightarrow \quad f \circ g$ es sobreyectiva.
    3. $f$ biyectiva y $g$ biyectiva $\quad \Rightarrow \quad f \circ g$ es biyectiva.

    Demostración:

    1. Tomemos $x_{1}, x_{2} \in A$ tales que $f \circ g (x_{1})= f \circ g (x_{2})$. Queremos probar que:
      $x_{1}=x_{2}$.
      Observemos que por hipótesis tenemos que:
      $$f(g(x_{1}))= f(g(x_{2}))$$
      donde $g(x_{1}), g(x_{2}) \in B$.
      Como $f$ es una función inyectiva entonces se cumple:
      $$g(x_{1})=g(x_{2})\quad\text{.}$$
      Y al ser $g$ inyectiva obtenemos:
      $$x_{1}=x_{2}\quad\text{.}$$
    2. Como $f \circ g : A \rightarrow C$ por lo que tomemos $c \in C$. Queremos ver que existe $a \in A$ tal que $f(a)=c$.
      Ya sabemos que $f: B \rightarrow C$ es sobreyectiva entonces existe $b \in B$ tal que:
      $$f(b)=c\quad\text{.}$$
      Recordemos que $g: A \rightarrow B$ al ser sobreyectiva ocurre que existe $a \in A$ tal que:
      $$g(a)=b\quad\text{.}$$
      De lo anterior al sustituir en la composición de funciones se sigue:
      \begin{align*}
      f \circ g(a)&=f(g(a))\\
      &=f(b)\\
      &=c
      \end{align*}
    3. Se queda como ejercicio de tarea moral.

    $\square$

    Función inversa

    Definición (función invertible): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es invertible si y sólo si existe una función $g: B \rightarrow A$ tal que cumple las siguientes condiciones:

    • $g \circ f = Id_{A}$
    • $f \circ g = Id_{B}$

    A continuación veremos una equivalencia que nos será de utilidad para poder decir si una función es invertible:

    Teorema: Consideremos a $f: A \rightarrow B$ una función. Decimos que:
    $f$ es Invertible $\Leftrightarrow f$ es biyectiva.
    Demostración:
    $\Rightarrow ):$ Tomemos $f$ invertible, así por definición existe una función $g: B \rightarrow A$ tal que cumple:

    • $g \circ f = Id_{A}$
    • $f \circ g = Id_{B}$

    Debemos probar que $f$ es biyectiva, por lo que debemos verificar que sea inyectiva y sobreyectiva:

    Inyectiva: Sean $x_{1} , x_{2} \in A$ tales que $f(x_{1})= f (x_{2})$ por lo que $g(f(x_{1}))=g( f (x_{2}))$ al ser $g$ función. Reescribiendo lo anterior tenemos lo siguiente:
    \begin{align*}
    g(f(x_{1}))=g( f (x_{2})) &\Rightarrow (g \circ f)(x_{1})=(g \circ f)(x_{2})\\
    &\Rightarrow Id_{A}(x_{1})=Id_{A}(x_{2}) \tag{por definición de $g$}\\
    &\Rightarrow x_{1}= x_{2}
    \end{align*}

    $\therefore f$ es inyectiva
    Sobreyectiva: Sea $y \in B$. Debido a que $Id_{B}$ es sobreyectiva tenemos que $Id_{B}(y)=y$. De lo anterior tenemos:
    \begin{align*}
    Id_{B}(y)=y &\Rightarrow f \circ g (y)= y\\
    &\Rightarrow f(g(y))=y\\
    &\Rightarrow g(y) \in A
    \end{align*}
    $\therefore f$ es sobreyectiva
    De todo lo anterior concluimos que $f$ es biyectiva.

    $\Leftarrow ):$ Sea $f: A \rightarrow B$ una función biyectiva. De este modo para todo $y \in B$ existe $x \in A$ tal que:
    $$f(x)=y$$
    ya que $f$ es sobreyectiva. De igual manera cumple ser inyectiva por lo que esa $x$ es única.

    Consideremos la función $g: B \rightarrow A$ tal que:
    $$g(y)=x \Leftrightarrow f(x)=y\quad\text{.}$$
    Por lo que al realizar la siguiente composición de funciones tenemos:
    $$ (g \circ f)(x)=g(f(x)) =g(y)=x = Id_{A}(x),$$
    $$(f \circ g)(y)= f(g(y))= f(x)=y = Id_{B}(y)$$\quad\text{.}
    Vemos que esto cumple la definición de ser invertible.
    $\therefore f$ es una función invertible.

    $\square$

    Definición: Sea $f: A \rightarrow B$ entonces:

    • $f$ tiene inversa izquierda si existe $g: B \rightarrow A$ tal que $g \circ f=Id_{A}$.
    • $f$ tiene inversa derecha si existe $h: B \rightarrow A$ tal que $f\circ h=Id_{B}$.

    Definición (función inversa): Si $f: A \rightarrow B$ es invertible donde $g: B \rightarrow A$ que cumple lo anterior. Decimos que $f^{-1}=g$ es la inversa de $f$.

    Corolario: Si $f: A \rightarrow B$ es una función invertible entonces $f^{-1}$ también es biyectiva.

    Demostración:
    Como $f$ es invertible por definición cumple:

    • $f^{-1} \circ f =Id_{A}$
    • $f \circ f^{-1}=Id_{B}$

    Por lo que cumple ser inyectiva y sobreyectiva.

    $\square$

    Del resultado anterior observamos que $f^{-1}$ es función inversa al componer por la derecha y por la izquierda.

    Teorema: Si $f: A \rightarrow B$ entonces es equivalente lo siguiente:

    • $f$ es una función inyectiva
    • $f$ tiene inversa izquierda

    Teorema: Si $f: A \subseteq \r \rightarrow \r$ entonces es equivalente lo siguiente:

    • $f$ es una función suprayectiva
    • $f$ tiene inversa derecha

    Más adelante

    En la siguiente entrada veremos otras características que las funciones pueden cumplir para clasificarse como pares o impares. Veremos su definición formal, algunos ejemplos y resultados.

    Tarea moral

    • Demuestra que $f: [0, \infty) \rightarrow [0, \infty)$ definida como:
      $$f(x)= x^{2}$$
      es inyectiva.
    • Argumenta porque la función $f: \r \rightarrow \r$ definida como:
      $$f(x)= x^{2}$$
      no es inyectiva.
    • Demuestra que $f: \r \rightarrow \r$ definida como:
      $$f(x)= -2x+1$$
      es inyectiva.
    • Prueba que si $f$ y $g$ son funciones biyectivas entonces $f \circ g$ es biyectiva.
    • Demuestra la siguiente igualdad:
      $$(f \circ g)^{-1}= f^{-1} \circ g^{-1}$$

    Entradas relacionadas

    Agradecimientos

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

    Ecuaciones Diferenciales I – Videos: Ecuaciones de Bessel y Legendre

    Por Eduardo Vera Rosales

    Introducción

    En la entrada anterior comenzamos el estudio a algunas ecuaciones especiales de segundo orden que aparecen con frecuencia en otras áreas de estudio, principalmente en la física. En particular, encontramos soluciones por series a las ecuaciones de Hermite y Laguerre, y mencionamos cómo los polinomios de orden $n$ que llevan los mismos nombres son soluciones particulares a las ecuaciones diferenciales para $\lambda=n$, respectivamente.

    Ahora es turno de revisar las ecuaciones de Bessel y Legendre, debidas a los matemáticos Friedrich Wilhelm Bessel y Adrien-Marie Legendre. Resolveremos la ecuación de Bessel alrededor del punto singular regular $t_{0}=0$ para algunos casos del valor $\lambda$. Por otra parte resolveremos la ecuación de Legendre alrededor del punto ordinario $t_{0}=0$, y mencionamos la relación de la ecuación de Legendre con los polinomios que llevan el mismo nombre.

    Ecuación de Bessel

    En el primer video hallamos la ecuación indicial para la ecuación de Bessel de orden $\lambda$ alrededor del punto singular regular $t_{0}=0$ $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+(t^{2}-\lambda^{2})y=0, \,\,\, t>0.$$ Posteriormente encontramos una solución a la misma ecuación cuando $\lambda=0$.

    En el segundo video resolvemos la ecuación de Bessel de orden $\lambda=1$ bajo las mismas hipótesis del caso anterior.

    Ecuación de Legendre

    En el último video de la entrada resolvemos la ecuación de Legendre de forma general alrededor del punto ordinario $t_{0}=0$ y hacemos una importante observación acerca de las soluciones a dicha ecuación.

    Tarea moral

    Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

    • Encuentra una segunda solución a la ecuación de Bessel de orden cero $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+t^{2}y=0$$ cerca del punto singular regular $t_{0}=0$, $t>0$.
    • Encuentra una segunda solución a la ecuación de Bessel de orden uno $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+(t^{2}-1)y=0$$ cerca del punto singular regular $t_{0}=0$, $t>0$.
    • Halla una solución a la ecuación de Bessel de orden $\frac{1}{2}$ $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+(t^{2}-\frac{1}{2})y=0$$ cerca del punto singular regular $t_{0}=0$, $t>0$.
    • Investiga los primeros cuatro polinomios de Legendre. Prueba que son solución particular a la ecuación de Legendre $$(1-t^{2})\frac{d^{2}y}{dt^{2}}-2t\frac{dy}{dt}+\lambda(\lambda+1)y=0$$ alrededor del punto ordinario $t_{0}=0$ para los valores $\lambda=0,1,2,3$, respectivamente.
    • Mediante el método de soluciones por series de potencias, halla una solución a la ecuación de Legendre con $\lambda=4$ $$(1-t^{2})\frac{d^{2}y}{dt^{2}}-2t\frac{dy}{dt}+20y=0.$$ En general, el $n$-ésimo polinomio de Legendre es solución a la ecuación de Legendre con $\lambda=n$.
    • Verifica que $t_{0}=1$ es un punto singular regular para la ecuación de Legendre y encuentra una solución cerca de $t_{0}=1$, $t>0$.

    Más adelante

    Hasta el momento hemos revisado cuatro de las seis ecuaciones especiales de segundo orden que vamos a estudiar. Finalizaremos esta serie de entradas revisando la ecuación de Chebyshev y la ecuación hipergeométrica.

    Entradas relacionadas

    Agradecimientos

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

    Geometría Moderna I: Cuadrilátero ortodiagonal

    Por Rubén Alexander Ocampo Arellano

    Introducción

    Decimos que un cuadrilátero convexo es ortodiagonal si sus diagonales son perpendiculares. En esta entrada veremos algunas propiedades del cuadrilátero ortodiagonal.

    Dos caracterizaciones para el cuadrilátero ortodiagonal

    Teorema 1. Un cuadrilátero convexo es ortodiagonal si y solo si la suma de los cuadrados de dos lados opuestos es igual a la suma de los cuadrados de los restantes lados opuestos.

    Demostración. Sea $\square ABCD$ convexo, consideremos $P$ la intersección de las diagonales, $\phi = \angle APB$, $\psi = \angle BPC$.

    Como $\phi + \psi = \pi$ entonces $\cos \phi = – \cos \psi$.

    Figura 1

    Aplicando la ley de los cosenos a los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ obtenemos,
    $AB^2 = AP^2 + BP^2 – 2AP \times BP \cos \phi$,
    $BC^2 = BP^2 + CP^2 – 2BP \times CP \cos \psi$,
    $CD^2 = CP^2 + DP^2 – 2CP \times DP \cos \phi$,
    $AD^2 = AP^2 + DP^2 – 2AP \times DP \cos \psi$.

    Por lo tanto,
    $AB^2 + CD^2 – BC^2 – AD^2 $
    $= (AP^2 + BP^2 + 2AP \times BP \cos \psi) + (CP^2 + DP^2 + 2CP \times DP \cos \psi)$
    $- (BP^2 + CP^2 – 2BP \times CP \cos \psi) – (AP^2 + DP^2 – 2AP \times DP \cos \psi)$
    $= 2 \cos \psi (AP \times BP + CP \times DP + BP \times CP + AP \times DP)$.

    Notemos que $0 < \psi < \pi$, por lo tanto,
    $\overline{AC} \perp \overline{BD} \Leftrightarrow  \psi = \dfrac{\pi}{2} \Leftrightarrow  \cos \psi = 0$
    $\Leftrightarrow  AB^2 + CD^2 = BC^2 + AD^2$.

    $\blacksquare$

    Proposición 1. Sean $\square ABCD$ convexo, $P$ la intersección de las diagonales, $m_{i}$ con $i = 1, 2, 3, 4$ las medianas de los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$, que pasan por $P$, entonces $\square ABCD$ es ortodiagonal si y solo si $m_{1}^2 + m_{3}^2 = m_{2}^2 + m_{4}^2$.

    Figura 2

    Demostración. Aplicando el teorema de Apolonio para calcular la longitud de las medianas en términos de los lados de sus respectivos triángulos obtenemos,

    $m_{1}^2 + m_{3}^2 = m_{2}^2 + m_{4}^2$
    $\Leftrightarrow  4m_{1}^2 + 4m_{3}^2 = 4m_{2}^2 + 4m_{4}^2$
    $\Leftrightarrow  2(AP^2 + BP^2) – AB^2 + 2(CP^2 + DP^2) – CD^2$
    $ = 2(BP^2 + CP^2) – BC^2 + 2(AP^2 + DP^2) – AD^2$
    $\Leftrightarrow  AB^2 + CD^2 = BC^2 + AD^2$.

    La última doble implicación es cierta por el teorema 1.

    $\blacksquare$

    Circunferencia de los 8 puntos del cuadrilátero ortodiagonal

    Definición. Al cuadrilátero formado por los pies de las $m$-alturas de un cuadrilátero convexo se le conoce como cuadrilátero principal órtico.

    Lema 1. Los vértices del paralelogramo de Varignon y los vértices del cuadrilátero principal órtico de un cuadrilátero convexo que se encuentran sobre lados opuestos, están en dos circunferencias con centro en $G$, el centroide del cuadrilátero.

    Demostración. Sean $\square ABCD$ un cuadrilátero convexo $M_{1}$, $M_{2}$, $M_{3}$ y $M_{4}$ los puntos medios de $AB$, $BC$, $CD$ y $AD$ respectivamente.

    Recordemos que las diagonales del cuadrilátero de Varignon, es decir, las bimedianas $M_{1}M_{3}$ y $M_{2}M_{4}$, se intersecan en su punto medio, $G$, al que llamamos centroide.

    Figura 3

    Sean $M_{1}H_{1}$, $M_{2}H_{2}$, $M_{3}H_{3}$ y $M_{4}H_{4}$ las $m$-alturas de $\square ABCD$.

    Por construcción $\angle M_{3}H_{1}M_{1} = \angle M_{1}H_{3}M_{3} = \dfrac{\pi}{2}$, por lo tanto, $M_{1}M_{3}$ es el diámetro de una circunferencia con centro en $G$ y que pasa por $H_{1}$ y $H_{3}$.

    De manera análoga podemos ver que los puntos $H_{2}$ y $H_{4}$ están en una circunferencia de diámetro $M_{2}M_{4}$ con centro en $G$.

    $\blacksquare$

    Teorema 2. Los vértices del paralelogramo de Varignon y los vértices del cuadrilátero principal órtico de un cuadrilátero convexo están en una misma circunferencia con centro en el centroide del cuadrilátero si y solo si el cuadrilátero es ortodiagonal.

    A dicha circunferencia se le conoce como primera circunferencia de los ocho puntos del cuadrilátero ortodiagonal.

    Demostración. El lema anterior nos dice que los puntos ${M_{1}, H_{1}, M_{3}, H_{3}}$ y ${M_{2}, H_{2}, M_{4}, H_{4}}$ están en dos circunferencias con centro en $G$, el centroide de $\square ABCD$.

    Figura 4

    Además, las bimedianas de un cuadrilátero se bisecan en el centroide del cuadrilátero.

    Por lo tanto, el paralelogramo de Varignon y el cuadrilátero principal órtico son ambos cíclicos y comparten la misma circunferencia si y solo si $M_{1}M_{3} = M_{2}M_{4}$, es decir, las bimedianas tienen la misma longitud, si y solo si el paralelogramo de Varignon es un rectángulo si y solo si $\square ABCD$  es ortodiagonal.

    $\blacksquare$

    Teorema de Brahmagupta

    Teorema 3. de Brahmagupta. En un cuadrilátero ortodiagonal y cíclico, el anticentro coincide con la intersección de las diagonales del cuadrilátero.

    Demostración. Recordemos que en un cuadrilátero cíclico las $m$-alturas son concurrentes y definimos al punto de concurrencia como el anticentro, el cual tiene la propiedad de ser simétrico al circuncentro respecto a $G$, el centroide del cuadrilátero.

    Sea $\square ABCD$ ortogonal y cíclico, tracemos el segmento $MP$ que pasa por el punto medio de $AB$ y la intersección de las diagonales $P$, consideremos $H = MP \cap BC$.

    Figura 5

    En un triángulo rectángulo la distancia del punto medio de la hipotenusa a los tres vértices del triángulo es la misma, por lo tanto, $\triangle AMP$ es isósceles pues $\angle DPA = \dfrac{\pi}{2}$.

    Esto implica que $\angle PAM = \angle MPA = \angle HPC$.

    Donde la última igualdad se debe a que los ángulos considerados son opuestos por el vértice, además $\angle ADP = \angle PCH$.

    Como consecuencia de las últimas dos igualdades tenemos $\triangle APD \sim \triangle PHC$, por criterio de semejanza AA.

    Entonces $\angle CHP = \angle DPA = \dfrac{\pi}{2}$, por lo tanto, $MH$ es una $m$-altura de $\square ABCD$.

    De manera análoga podemos ver que las otras $m$-alturas pasan por $P$ y como todas las $m$-alturas de un cuadrilátero cíclico concurren en el anticentro entonces este coincide con $P$.

    $\blacksquare$

    Proposición 2. En un cuadrilátero cíclico y ortodiagonal la distancia desde el circuncentro a uno de los lados del cuadrilátero es igual a la mitad del lado opuesto.

    Demostración. Sea $G$ el centroide del cuadrilátero $\square ABCD$ (figura 5) y $N$ el punto medio de $BC$.

    Sabemos que $G$ biseca a $MN$ y a $OP$, por lo tanto, $\square MONP$ es un paralelogramo, en consecuencia, la distancia de $O$ a $BC$ es $ON = MP = \dfrac{AD}{2}$.

    Donde la primera igualdad se da porque $\square MONP$ es paralelogramo y la segunda porque $M$ es el punto medio de la hipotenusa en $\triangle APD$.

    $\blacksquare$

    Corolario 1. El circunradio de un cuadrilátero cíclico y ortodiagonal $\square ABCD$ con lados $a = AB$, $b = BC$, $c = CD$ y $d = AD$ cumple la siguiente igualdad, $4R^2 = a^2 + c^2 = b^2 + d^2$.

    Demostración. Por la prueba de la proposición anterior sabemos que $\angle ONB = \dfrac{\pi}{2}$ (figura 5), por lo tanto podemos aplicar el teorema de Pitágoras a $\triangle ONB$.

    $R^2 = OB^2 = ON^2 + BN^2 = (\dfrac{AD}{2})^2 + (\dfrac{BC}{2})^2$
    $\Leftrightarrow  4R^2 = d^2 + b^2$.

    De manera análoga se ve que $4R^2 = a^2 + c^2$.

    $\blacksquare$

    Circunferencia de Droz-Farny

    Lema 2. Sean $\square ABCD$ cíclico $O$ y $H$ el circuncentro y el anticentro respectivamente, consideremos el cuadrilátero principal órtico con vértices $H_{1} \in CD$, $H_{2} \in AD$, $H_{3} \in AB$, $H_{4} \in BC$, sean $X_{i}$, $X’_{i}$ las intersecciones de $(H_{i}, H_{i}O)$ (la circunferencia con centro en $H_{i}$ y radio $H_{i}O$) con el lado de $\square ABCD$ al que pertenece $H_{i}$. Entonces los puntos ${X_{1}, X’_{1}, X_{3}, X’_{3}}$ y los putos ${X_{2}, X’_{2}, X_{4}, X’_{4}}$ pertenecen a dos circunferencias con centro en $H$.

    Figura 6

    Demostración. Veamos que $\square X_{1}X’_{1}X_{3}X’_{3}$ es cíclico.

    Dado que $HH_{1}$ es la mediatriz de $X_{1}X’_{1}$ entonces $HX_{1} = HX’_{1}$, de manera similar vemos que $HX_{3} = HX’_{3}$.

    Por otra parte, como $X_{1} \in (H_{1}, H_{1}O)$, entonces $H_{1}X_{1} = H_{1}O$.

    Sea $G$ el centroide del cuadrilátero $\square ABCD$ y recordemos que $G$ biseca a $OH$.

    Aplicando el teorema de Pitágoras a $\triangle HH_{1}X_{1}$ y el teorema de Apolonio a la mediana $H_{1}G$ en $\triangle HH_{1}O$ obtenemos,
    $HX_{1}^2 = HH_{1}^2 + H_{1}X_{1}^2 = HH_{1}^2 + H_{1}O^2$
    $\begin{equation} = 2H_{1}G^2 + 2OG^2. \end{equation}$

    De manera análoga calculamos
    $\begin{equation} HX_{3}^2 = 2H_{3}G^2 + 2OG^2. \end{equation}$

    Por el lema 1, $H_{1}$ y $H_{3}$ están en una misma circunferencia con centro en $G$ por lo tanto $H_{1}G = H_{3}G$,  de $(1)$ y $(2)$ se sigue que $HX’_{1} = HX_{1} = HX_{3} = HX’_{3}$.

    Así, $X_{1}$, $X’_{1}$, $X_{3}$ y $X’_{3}$ están en una misma circunferencia con centro en $H$.

    De manera análoga se ve que $X_{2}$, $X’_{2}$, $X_{4}$, $X’_{4}$ están en una misma circunferencia concéntrica con la anterior.

    $\blacksquare$

    Teorema 4. Sea $\square ABCD$ cíclico entonces los 8 puntos $X_{i}$, $X’_{i}$ con $i = 1, 2, 3, 4$ se encuentran en una misma circunferencia con centro en $H$, el anticentro del cuadrilátero cíclico, si y solo si $\square ABCD$ es ortodiagonal, esta es la primera circunferencia de Droz-Farny del cuadrilátero.

    Demostración. Los puntos consideraos son concíclicos si y solo si las dos circunferencias a las que pertenecen tienen el mismo radio es decir $HX_{1} = HX_{2} = HX_{3} = HX_{4}$.

    Figura 7

    En la demostración del lema anterior vimos que $HX_{i}^2 = 2H_{i}G^2 + 2OG^2$.

    Esto implica que $HX_{1} = HX_{2} = HX_{3} = HX_{4} \Leftrightarrow  H_{1}G = H_{2}G = H_{3}G = H_{4}G$, esto quiere decir que los vértices del cuadrilátero principal órtico de $\square ABCD$  están en una misma circunferencia con centro en $G$.

    Por el teorema 3, esto ocurre si y solo si $\square ABCD$  es ortodiagonal.

    $\blacksquare$

    Proposición 3. Sea $\square ABCD$ cíclico y ortodiagonal entonces el radio de la primera circunferencia de Droz-Farny es igual al circunradio de $\square ABCD$.

    Demostración. Por la prueba de lema 2 sabemos que
    $\begin{equation} HX_{1}^2 = 2H_{1}G^2 + 2OG^2. \end{equation}$

    El teorema 3 nos dice que el anticentro $H$ coincide con $P$, la intersección de las diagonales, por lo tanto $\triangle CHD$ es rectángulo (figura 7). Si $M_{3}$ es el punto medio de $CD$, la hipotenusa, entonces $M_{3}H = M_{3}C$.

    Como $O$ esta en la mediatriz de $CD$, entonces $OM_3 \perp CD$.

    Aplicando el teorema de Pitágoras a $\triangle OM_{3}C$ y el teorema de Apolonio a la mediana $M_{3}G$ en $\triangle OHM_{3}$ tenemos,

    $\begin{equation} OC^2 = M_{3}O^2 + M_{3}C^2 = M_{3}O^2 + M_{3}H^2 = 2M_{3}G^2 + 2OG^2. \end{equation}$

    Por el teorema 3, $M_{3}$ y $H_{1}$ están en una misma circunferencia con centro en $G$, por lo tanto $H_{1}G = M_{3}G$.

    De $(3)$ y $(4)$ se sigue que $R = OC = HX_{1}$.

    $\blacksquare$

    Más adelante…

    En la siguiente entrada hablaremos sobre cuadriláteros que tienen un incírculo.

    Tarea moral

    A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

    1. Muestra que de todos los cuadriláteros convexos con diagonales dadas los ortodiagonales son los de mayor área y calcula el área en función de las diagonales.
    2.  Sea $\square ABCD$ un cuadrilátero convexo y $P$ la intersección de las diagonales, consideremos los circunradios $R_{1}$, $R_{2}$, $R_{3}$ y $R_{4}$ de los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ respectivamente, demuestra que
      $i)$ $\square ABCD$ es ortodiagonal si y solo si $R_{1}^2 + R_{3}^2 = R_{2}^2 + R_{4}^2$
      $ii)$ $\square ABCD$ es ortodiagonal si y solo si los circuncentros de los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ son los puntos medios de los lados del cuadrilátero.
    3. Sea $\square ABCD$ un cuadrilátero convexo y $P$ la intersección de las diagonales, considera las alturas $h_{1}$, $h_{2}$, $h_{3}$ y $h_{4}$, de los triángulos $\triangle APB$, $\triangle BPC$, $\triangle CPD$ y $\triangle APD$ trazadas desde $P$, muestra que $\square ABCD$ es ortodiagonal si y solo si $\dfrac{1}{h_{1}^2} + \dfrac{1}{h_{3}^2} = \dfrac{1}{h_{2}^2} + \dfrac{1}{h_{4}^2}$.
    4. Sean $\square ABCD$ un cuadrilátero convexo, $P$ la intersección de las diagonales, $P_{1}$, $P_{2}$, $P_{3}$ y $P_{4}$ las proyecciones trazadas desde $P$ a los lados $AB$, $BC$, $CD$ y $AD$ respectivamente, y considera los puntos $P’_{i}$ con $i = 1, 2, 3, 4$ como las intersecciones de $PP_{i}$ con el lado opuesto al que pertenece $P_{i}$ prueba que
      $i)$ $\square ABCD$ es ortodiagonal si y solo si $\angle CBP + \angle PCB + \angle PAD + \angle ADP = \pi$
      $ii)$ $\square ABCD$ es ortodiagonal si y solo si $\square P_{1}P_{2}P_{3}P_{4}$ es cíclico.
      $iii)$ $\square ABCD$ es ortodiagonal si y solo si los 8 puntos $P_{i}$, $P’_{i}$ con $i = 1, 2, 3, 4$ son cíclicos, a esta circunferencia se le conoce como segunda circunferencia de los ocho puntos del cuadrilátero ortodiagonal.
      $iv)$ La primera y la segunda circunferencias de los ocho puntos de un cuadrilátero ortodiagonal son la misma si y solo si el cuadrilátero es cíclico.
    Figura 8
    1. Muestra que un cuadrilátero convexo $\square ABCD$ es ortodiagonal si y solo si el cuadrilátero $\square P’_{1}P’_{2}P’_{3}P’_{4}$, definido en el ejercicio anterior (figura 8), es un rectángulo cuyos lados son paralelos a las diagonales de $\square ABCD$.
    2. Sean $\square ABCD$ cíclico, $O$ el circuncentro, $H$ el anticentro y considera los puntos medios $M_{i}$ con $i = 1, 2, 3, 4$ del cuadrilátero (figura 9), define $Y_{i}$, $Y’_{i}$ como las intersecciones de $(M_{i}, M_{i}H)$ (la circunferencia con centro en $M_{i}$ y radio $M_{i}H$) con el lado de $\square ABCD$ al que biseca $M_{i}$.
      $i)$ Muestra que los puntos ${Y_{1}, Y’_{1}, Y_{3}, Y’_{3}}$ y los putos ${Y_{2}, Y’_{2}, Y_{4}, Y’_{4}}$ están en dos circunferencias con centro en $O$
      $ii)$ Dichas circunferencias son la misma si y solo si $\square ABCD$ es ortodiagonal, esta es la segunda circunferencia de Droz-Farny del cuadrilátero.
    Figura 9

    Entradas relacionadas

    Fuentes

    Agradecimientos

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

    Probabilidad I-Videos: Distribución Poisson

    Por Aurora Martínez Rivas

    Introducción

    Estudiaremos en este video una distribución de probabilidad discreta qué se puede usar para aproximar probabilidades binomiales en las que el tamaño de la muestra es grande y la probabilidad de éxito es pequeña, mientras el producto del tamaño de la muestra por la probabilidad de éxito permanece constante. Está distribución se conoce con el nombre de distribución Poisson.

    Distribución Poisson

    Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

    Tarea moral

    A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

    • Demuestra que la función de probabilidad de la distribución Poisson cumple las condiciones de una función de probabilidad.
    • Sea $X$ una variable aleatoria tal que $X∼ Poisson(λ)$. Demuestra que $f\left(x+1\right)=\frac{\lambda\ }{x+1}f\left(x\right)$ para $x=0, 1, 2, …$
    • Sea $X$ una variable aleatoria tal que $X∼ Poisson(λ)$. Si $λ-1$ es un entero. Demuestra que $f(x)$ alcanza su valor máximo en $x_1=\lambda-1$ y $x_2+1=\lambda$.
    • Sea $X$ una variable aleatoria tal que $X∼ Poisson(λ)$. Si $λ-1$ no es un entero. Demuestra que $f(x)$ alcanza su valor máximo en $x_1$ definido como el entero más pequeño mayor o igual a $λ-1$.
    • Llegan autos a un establecimiento de comida rápida de acuerdo con un proceso Poisson con media de 80 autos por hora. Si el empleado hace una llamada telefónica de 1 minuto, ¿Cuál es la probabilidad de que al menos 1 auto llegue durante la llamada?

    Más adelante…

    La distribución Poisson tiene muchas aplicaciones, es particularmente útil para los fenómenos de contar en unidades de tiempo o espacio. Por ejemplo, contar el número de llamadas telefónicas registradas por un centro en una semana o contar el número de accidentes ocurridos en dos horas en alguna avenida principal especifica.

    La variable aleatoria X que corresponde a el número de elementos observados por unidad de tiempo, espacio, volumen o cualquier otra dimensión sigue una distribución Poisson con parámetro λ, donde λ es la media de la distribución.

    Entradas relacionadas