Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna I: Construcciones geométricas

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiamos dos procedimientos generales que pueden ser útiles en la resolución de algunas construcciones geométricas.

Método analítico

Para problemas de construcciones geométricas en los cuales no es muy claro que pasos seguir, nos puede ayudar el método analítico el cual se divide en los siguientes pasos:

Análisis. Empezamos asumiendo que ya tenemos la figura que satisface las condiciones del problema y hacemos un dibujo aproximado de esta. A partir de esta figura indagamos que tipo de relación hay entre los datos que conocemos y los que no.

Construcción. Con la información obtenida llevamos a cabo nuestra construcción.

Demostración. Probamos que en efecto nuestra construcción nos lleva a la figura requerida.

Discusión. Hablamos sobre las condiciones bajo las cuales el problema puede ser resuelto, el número de soluciones posibles y otras observaciones.

A continuación, veremos un par de ejemplos.

($a$, $\angle A$, $b + c$)

Proposición 1. La mediatriz de un lado en todo triangulo siempre interseca al mayor de los lados restantes.

Demostración. Por contradicción, sea $\triangle ABC$ tal que $AC > AB$ y supongamos que la mediatriz de $BC$ interseca a $AB$ en $D$.

$\triangle DBC$ es isósceles, pues $D$ equidista a $B$ y a $C$,
$\Rightarrow \angle CBD = \angle DCB < \angle ACB$.

Figura 2

Por otro lado, sabemos que en todo triangulo al mayor de los lados siempre se opone el mayor de los ángulos, $\Rightarrow \angle CBD = \angle CBA > ACB$.

Lo cual es una contradicción, por tanto, $D \in AC$.

$\blacksquare$

Problema 1. Construir un triángulo $\triangle ABC$ dados la base, el ángulo opuesto a la base y la suma de los lados restantes ($BC = a$, $\angle A = \alpha$, $AB + AC= c + b$).

Análisis. Supongamos que $\triangle ABC$ es el triángulo requerido, sea $D$ en la recta $AB$ tal que $AD = AC$. $\angle BAC$ es un ángulo exterior del triángulo isósceles $\triangle ACD$,
$\Rightarrow BAC = \angle D + \angle DCA = 2\angle D$
$\Rightarrow \angle D = \dfrac{\angle BAC}{2} = \dfrac{\alpha}{2}$.

Figura 3

Con estos elementos podemos construir el triángulo auxiliar $\triangle DBC$ y a partir de este a $\triangle ABC$.

Construcción. Sobre un punto $D$ construimos el ángulo $\dfrac{\alpha}{2}$, sea $B$ sobre uno de los lados del ángulo tal que $DB = b + c$, dibujamos una circunferencia con centro en $B$ y radio $a$, $(B, a)$.

Figura 4

Sea $C$ la intersección de $(B, a)$ con el otro lado del ángulo $\dfrac{\alpha}{2}$.

Finalmente, el vértice $A$ de $\triangle ABC$, se encuentra en la intersección del lado $DB$, con la mediatriz de $CD$.

Demostración. Como $A$ es un punto en la mediatriz de $CD$, entonces $AD = AC$, y como $\triangle ADC$ es isósceles $\Rightarrow \angle DCA = \angle ADC = \dfrac{\alpha}{2}$.

Ya que $\angle BAC$ es ángulo exterior de $\triangle ADC$, es igual a la suma de los ángulos interiores no adyacentes a el $\Rightarrow \angle BAC = \angle DCA + \angle ADC = \alpha$.

Por otro lado, $BC = a$ y $AB + AC = AB + AD = b + c$, por construcción.

$\blacksquare$

Discusión. Por la proposición 2, notamos que es necesario que en el triángulo auxiliar $\triangle DBC$ se cumpla $DB > BC$, es decir $b + c > a$, para que la mediatriz de $CD$ interseque a $BD$.

También observamos que en la construcción de $\triangle DBC$, necesitamos que el radio de $(B, a)$ sea mayor o igual a la distancia de $B$ al segundo lado del ángulo $\alpha$, pues en caso contrario no es posible construir a $C$ y no habrá solución.

Finalmente, de cumplirse esta última condición puede haber una o dos soluciones distintas.

($a$, $\angle A$, $h_b + h_c$)

Problema 2. Construye un triángulo $\triangle ABC$ dados la base, el ángulo opuesto y la suma de las alturas perpendiculares a los otros dos lados ($BC = a$, $\angle A = \alpha$, $BD + CE = h_b + h_c$).

Análisis. Supongamos que $\triangle ABC$ es el triángulo requerido, y sean $BD = h_b$ y $CE = h_c$ las alturas por $B$ y $C$ respectivamente.

Figura 5

Sea $F$ sobre la recta $BD$ tal que $BF = BD + CE = h_b + h_c$.

Por $F$ trazamos una recta paralela a $AC$, la cual interseca a $AB$ en $G$, entonces $\angle BGF = \angle BAC = \alpha$ y $\angle GFB = \angle ADB = \dfrac{\pi}{2}$ por ser ángulos correspondientes.

Construcción. De manera similar a la construcción del triángulo auxiliar $\triangle DBC$ del problema anterior, con la información que resulta del análisis ($BF = h_b + h_c$ y $\angle BGF = \alpha$), podemos construir el triángulo rectángulo auxiliar $\triangle BFG$.

Figura 6

Luego, trazamos una circunferencia con centro $B$ y radio $a$, $(B, a)$.

La intersección de $(B, a)$ con la bisectriz interior de $\angle BGF$ será el vértice $C$ y la intersección de $GB$ con la mediatriz de $GC$ será el vértice $A$.

Demostración. Por construcción $BC = a$, como $A$ está en la mediatriz de $GC$ entonces $\triangle AGC$ es isósceles por lo que $\angle GCA = \angle AGC$, pero $\angle AGC = \angle CGF$ pues $GC$ es bisectriz de $\angle AGF$,
$\Rightarrow \angle GCA = \angle CGF$ $\Rightarrow AC \parallel FG$
$\Rightarrow  \angle BAC = \angle BGF = \alpha$

Como $AC \parallel FG$ entonces $BF \perp AC$.

Sean $BE$ y $CD$ las alturas de $\triangle ABC$ trazadas por $B$ y $C$ respectivamente.

Por $A$ trazamos una perpendicular a $AC$ que corta a $GF$ en $H$, como $\square AEFH$ es un rectángulo entonces $AH = EF$.

En los triángulos rectángulos $\triangle ADC$ y $\triangle GHA$ tenemos $AC = AG$ y $\angle DAC = \angle AGH$, por criterio de congruencia ALA $\triangle ADC \cong \triangle GHA$  $\Rightarrow CD = AH = EF$.

Por lo tanto, $BE + CD = BE + EF = BF = h_b + h_c$, por construcción.

$\blacksquare$

Discusión. Si el ángulo dado es obtuso entonces el triángulo rectángulo auxiliar $\triangle BFG$ incluirá al ángulo suplementario a $\angle A$ y el procedimiento será muy similar.

Notemos que $(B, a)$ puede intersecar a la bisectriz de $\angle BGF$ en cero, uno o dos puntos y por lo tanto existen cero, una o dos posibles soluciones.

Método de semejanza

Este método consiste en construir una figura semejante a la figura requerida omitiendo una de las condiciones dadas, la figura requerida se deriva a partir de la semejanza.

Ilustramos este método con un par de ejemplos.

($b$, $c$, $\dfrac{a}{h_a}$)

Problema 3. Construye un triangulo $\triangle ABC$ dados dos lados y la razón entre el tercer lado y la altura por el vértice opuesto ($AB = c$, $AC = b$, $\dfrac{BC}{AD} = \dfrac{a}{h_a}$).

Análisis. Supongamos que $\triangle ABC$ es el triángulo requerido, consideremos $D$, el pie de la altura desde $A$.

Sea $E \in AD$ tal que $AE = h_a$, por $E$ trazamos la paralela a $BC$ que interseca a $AB$ y a $AC$ en $F$ y $G$ respectivamente.

Figura 7

Como $\triangle ABC \sim \triangle AFG$, entonces
$\begin{equation} \dfrac{AF}{AG} = \dfrac{AB}{AC} = \dfrac{c}{b} \end{equation}$
y $\dfrac{FG}{AE} = \dfrac{BC}{AD} = \dfrac{a}{h_a}$,
como $AE = h_a \Rightarrow FG = a$

Construcción. Podemos construir el triángulo auxiliar $\triangle AFG$ con los siguientes datos, la base $FG = a$, la altura $AE = h_a$ y la razón entre los lados restantes $\dfrac{AF}{AG} = \dfrac{c}{b}$, este problema lo resolvimos en la entrada anterior.

Luego, sobre $AF$ construimos $B$ tal que $AB = c$ y sobre $AG$ construimos $C$ tal que $AC = b$.

Demostración. Por construcción se da la ecuación $(1)$, y por el reciproco del teorema de tales, esto implica $FG \parallel BC$ y $\triangle ABC \sim \triangle AFG$,

Sea $D = BC \cap AE$, el pie de la altura por $A$, entonces, $\dfrac{BC}{AD} = \dfrac{FG}{AE} = \dfrac{a}{h_a}$.

$\blacksquare$

Discusión. Debido a la construcción del triángulo auxiliar $\triangle AFG$ el problema tiene $0$, $1$ o $2$ soluciones posibles.

Construir un triángulo isósceles dado su incírculo

Proposición. 2 Dos triángulos isósceles son semejantes si la razón entre las alturas perpendiculares a las bases es igual a la razón entre sus inradios.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ triángulos isósceles con $AB = AC$ y $A’B’ = A’C’$, $D$ y $D’$ los pies de las alturas desde $A$ y $A’$ respectivamente, consideremos $(I, r)$ y $(I’, r’)$ los incuncírculos de $\triangle ABC$ y $\triangle A’B’C’$ respectivamente.

Figura 8

Si $\dfrac{r}{r’} = \dfrac{AD}{A’D’} = \dfrac{h_a}{h_a’}$
$\Rightarrow h_a – r = \dfrac{rh_a’}{r’} – \dfrac{rr’}{r’} = \dfrac{r}{r’}(h_a’ – r’)$
$\Rightarrow \dfrac{AI}{A’I’} = \dfrac{h_a – r}{h’_a – r’} = \dfrac{r}{r’} = \dfrac{IE}{I’E’}$,

donde $E$ y $E’$ son los puntos de tangencia de $(I, r)$ y $(I’, r’)$ en $AB$ y $A’B’$ respectivamente.

Por criterio de semejanza hipotenusa-cateto, $\triangle AIE \sim \triangle A’I’E’$ $\Rightarrow$ $\angle EAI = \angle E’A’I’$, como $AI$ y $A’I’$ son bisectrices de $ \angle A$ y $ \angle A’$ respectivamente $\Rightarrow \angle A = \angle A’$.

Como $\angle B = \angle C$ y $\angle B’ = \angle C’$, obtenemos $2\angle B = 2\angle B’$, por cierto de semejanza AA, $\triangle ABC \sim \triangle A’B’C’$.

$\blacksquare$

Problema 4. Dada una circunferencia $(I, r)$, construir un triángulo isósceles tal que $(I, r)$ es incírculo del triángulo y el cociente entre uno de los lados iguales del triángulo y la base es igual a una razón dada $\dfrac{p}{q}$.

Construcción. Construimos un triángulo $\triangle A’B’C’$ con $A’B’ = A’C’ = p$ y $B’C’ = q$, de este triangulo tomamos $h_a’$ la altura trazada desde $A’$ y $r’$ el inradio.

Ahora construimos $h_a = \dfrac{rh_a’}{r’}$.

Por un punto arbitrario $D \in (I, r)$ trazamos la tangente $l$ a $(I, r)$, en la recta $DI$, tomamos $A$ tal que $AD = h_a$, finalmente trazamos tangentes desde $A$ a $(I, r)$ y las intersecciones con $l$ serán los vértices $B$ y $C$.

Figura 9

Demostración. Sean $E$ y $F$ los puntos de tangencia de $AB$ y $AC$ respectivamente con $(I, r)$, por criterio de congruencia hipotenusa-cateto, $\triangle AIE \cong \triangle AIF$ por lo que $\angle BAI = \angle IAC$.

Como $AD \perp BC$, por criterio de congruencia ALA, $\triangle ADB \cong \triangle ADC$ $\Rightarrow  AB = AC$, por lo tanto $\triangle ABC$ es un triángulo isósceles.

Dado que $\dfrac{h_a}{h_a’} = \dfrac{r}{r’}$, por la proposición 3, $\triangle ABC \sim \triangle A’B’C’$ y por tanto $\dfrac{AB}{BC}  = \dfrac{A’B’}{B’C’} = \dfrac{p}{q}$.

$\blacksquare$

Más adelante…

La siguiente entrada tratara sobre homotecia, una transformación en el plano que agranda o achica una figura e incluso la invierte pero no cambia su forma, esta herramienta será muy útil en posteriores entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Dados tres segmentos de longitudes $a$, $b$ y $c$ decimos que $x$ es la cuarta proporcional de $a$, $b$ y $c$ si $\dfrac{x}{a} = \dfrac{b}{c}$. Construir la cuarta proporcional de tres segmentos.
  2. Construye un triangulo dados la base, el ángulo opuesto a la base y la diferencia de los lados restantes ($a$, $\angle A$, $b – c$).
  3. Con los siguientes datos construye un triángulo, la base, el ángulo opuesto a la base y la diferencia de las alturas perpendiculares a los lados restantes ($a$, $\angle A$, $h_b – h_c$).
  4. Construye un cuadrado dada la suma de su lado $l$ y su diagonal $d$, $l + d$.
  5. Construye un triángulo dados un ángulo, la bisectriz del ángulo dado y la razón en que la bisectriz divide al lado opuesto.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 17-37.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 45-50.
  • Cut the Knot

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Método de valores y vectores propios para calcular la exponencial de una matriz diagonalizable

Por Eduardo Vera Rosales

Introducción

En entradas anteriores definimos la exponencial de una matriz cuadrada con coeficientes constantes $\textbf{A}$, que denotamos por $\textbf{e}^{\textbf{A}}$, y demostramos sus principales propiedades. Entre ellas, vimos que la exponencial $\textbf{e}^{t\textbf{A}}$ es una matriz fundamental de soluciones para el sistema lineal homogéneo $\dot{\textbf{X}}=\textbf{A}\textbf{X}$.

Ahora, calcular $\textbf{e}^{t\textbf{A}}$ mediante la pura definición puede resultar bastante difícil si tomamos en cuenta que esta matriz esta conformada por $n\times n$ series convergentes. Es por eso que buscamos alguna alternativa para calcular esta exponencial que no resulte tan complicada.

Afortunadamente, para algunos casos particulares en la forma de la matriz $\textbf{A}$, calcular $\textbf{e}^{t\textbf{A}}$ puede resultar relativamente sencillo. El caso más simple resulta cuando $\textbf{A}$ es una matriz diagonal, en cuyo caso $\textbf{e}^{t\textbf{A}}$ es también diagonal, cuyas entradas son de la forma $e^{ta_{ii}}$ donde $a_{ii}$ es el $i$-ésimo elemento de la diagonal en la matriz $\textbf{A}$.

El siguiente caso más sencillo es cuando la matriz $\textbf{A}$ es diagonalizable, es decir, cuando existe una matriz $\textbf{M}$ invertible, tal que $\textbf{D}=\textbf{M}^{-1}\textbf{A}\textbf{M}$ es una matriz diagonal. Probaremos que $$\textbf{e}^{t\textbf{A}}= \textbf{M}\textbf{e}^{t\textbf{D}} \textbf{M}^{-1}.$$ El problema se reduce al de encontrar precisamente las matrices $\textbf{M}$, $\textbf{M}^{-1}$ y $\textbf{D}$. Es decir, debemos diagonalizar a la matriz $\textbf{A}$.

Para esto, utilizaremos el método de valores y vectores propios para diagonalizar una matriz. Definiremos los conceptos necesarios, y desarrollaremos el método de manera muy breve. Toda la teoría que estudiaremos es propia de un curso de Álgebra Lineal, pero vale la pena darle un vistazo en este curso. Además, no nos desviaremos del camino y conectaremos los conceptos con nuestro propósito principal: encontrar soluciones al sistema lineal homogéneo con coeficientes constantes $\dot{\textbf{X}}=\textbf{A}\textbf{X}$.

Si quieres profundizar más en la teoría de valores y vectores propios y diagonalización, te dejo el enlace correspondiente a dichos temas al final de la entrada.

La exponencial de una matriz diagonalizable. Valores y vectores propios y el polinomio característico de una matriz

Definimos los conceptos necesarios para desarrollar el método de vectores y valores propios, y los relacionamos con el problema de calcular $\textbf{e}^{t\textbf{A}}$.

Método de valores y vectores propios para diagonalizar una matriz con valores propios distintos

En el primer video desarrollamos el método de valores y vectores propios considerando una matriz $\textbf{A}$ diagonalizable, cuyo polinomio característico asociado tiene $n$ raíces distintas.

En el segundo video, ponemos en práctica el método, diagonalizando una matriz en particular.

Método de valores y vectores propios para diagonalizar una matriz con valores propios repetidos

Desarrollamos nuevamente el método de valores y vectores propios, pero ahora considerando una matriz $\textbf{A}$ diagonalizable en particular con raíces repetidas. Además, mencionamos brevemente el problema de calcular $\textbf{e}^{t\textbf{A}}$ cuando $\textbf{A}$ no es diagonalizable.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que si $\textbf{v}$ es un vector propio para una matriz $\textbf{A}$, entonces cualquier múltiplo de $\textbf{v}$ es también vector propio de $\textbf{A}$. ¿Cuál es el valor propio asociado a este nuevo vector propio?
  • Verifica que efectivamente $$\begin{pmatrix} \frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & -\frac{1}{2}\end{pmatrix}\begin{pmatrix} 1 & 1\\ 1 & 1\end{pmatrix}\begin{pmatrix} 1 & 1\\ 1 & -1\end{pmatrix}=\textbf{D}$$ donde $\textbf{D}$ es la matriz diagonal conformada por los valores propios de $$\textbf{A}=\begin{pmatrix} 1 & 1\\ 1 & 1\end{pmatrix}.$$ Recuerda que revisamos este ejemplo en el tercer video de la entrada.
  • Encuentra $\textbf{e}^{t\textbf{A}}$ y la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 3 & -2\\ 1 & 0\end{pmatrix}\textbf{X}$$ (La matriz $\textbf{A}$ es diagonalizable).
  • Calcula $\textbf{e}^{t\textbf{A}}$ y encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 0 & -2 & -3\\ 1 & 3 & 3 \\ 0 & 0 & 1\end{pmatrix}\textbf{X}.$$ Recuerda que diagonalizamos la matriz asociada en el último video de esta entrada.
  • Encuentra $\textbf{e}^{t\textbf{A}}$ la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 3 & 0 & 0\\ -2 & 4 & 2 \\ -2 & 1 & 5\end{pmatrix}\textbf{X}.$$ (La matriz $\textbf{A}$ es diagonalizable).

Más adelante

Ahora que conocemos un poco del proceso acerca de diagonalizar una matriz, vamos a utilizar el mismo método para encontrar la solución general a un sistema lineal homogéneo con coeficientes constantes suponiendo que la matriz asociada al sistema sea diagonalizable. En particular, en la siguiente entrada revisaremos el caso cuando las raíces del polinomio característico asociado al sistema son todas reales y distintas.

Entradas relacionadas

Las siguientes entradas pertenecen a un curso de Álgebra Lineal. Si deseas conocer más acerca de la teoría utilizada en esta entrada no dudes en revisarlas.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior I: Funciones inyectivas, suprayectivas y biyectivas

Por Guillermo Oswaldo Cota Martínez

Introducción

En la entrada anterior, hemos revisado la definición de las funciones matemáticas. Siguiendo con este tema, ahora vamos a estudiar tres tipos de funciones: las inyectivas, suprayectivas y finalmente las inyectivas. Hemos hablado anteriormente de las primeras dos, ahora estudiaremos algunas equivalencias de las definiciones vistas en un principio y algunos resultados interesantes.

Inyectividad entre funciones

Las definiciones que daremos al estar hablando de inyectividad y supreyactividad de funciones serán las mismas que dimos al hablar de los tipos de relaciones. Primero empezaremos hablando de la inyectividad.

Cuando estemos hablando de funciones, diremos que una función inyectiva es aquella que manda a elementos distintos en el dominio a elementos distintos en el contradominio.

Definición. Diremos que una función $f: X \rightarrow Y$ es inyectiva, si $f$ es una relación inyectiva. Es decir para cada elemento $y \in Im[f]$, existe un único $x$ tal que $(x,y) \in f$

Nota que esta es la definición de inyectividad que dimos anteriormente. El hecho de que $f$ sea una función, nos permitirá tener otra forma de ver la inyectividad, para darte cuenta de ello, observa la siguiente proposición:

Proposición. Sea $f: X \rightarrow Y$ una función. Entonces son equivalentes:

  1. $f$ es inyectiva.
  2. Para cualesquiera tres elementos $x,w \in X$ y $y \in Im[f]$ sucede que si $f(x) = y \land f(w) = y$ entonces $x=w$.

Demostración.

$1) \Rightarrow 2)$. Recordemos que una equivalencia de la inyectividad en relaciones es que si $(x,y) \in f$ y $(w,y) \in R$ entonces $x=w$. Usaremos esta equivalencia para nuestra demostración. Ahora nota que si $f(x)=y$ y $f(w)=y$ entonces $(x,f(x)) \in f$ y $(w,f(w)) \in f$. Como $f$ es inyectiva entonces $x=w$.

$2) \Rightarrow 1)$.Sean $(x,y) \in f$ y $(w,y) \in f$. Para demostrar el inciso, bastará demsotrar que $x=w$, para ello note que como $f$ es una función entonces $(x,y) = (x,f(x))$ y $(w,y) =(w,f(w))$. Ahora notemos que $f(x)=f(w)$, por hipótesis, esto significa que $x=w$.

$\square$

.

Esta última equivalencia deja más claro que una función inyectiva es aquella que envía a elementos distintos en el dominio a elementos distintos en el contradominio.

Ejemplos de funciones inyectivas son:

  • La función $f:\mathbb{Z} \rightarrow \mathbb{Z}$ donde $f(x)=x+1$, esto es debido a que si $f(x)=f(w)$ entonces $x+1=w+1$, lo que implicaría que $x=w$.
  • La función $f:\{1,2,3\} \rightarrow \{a,b,c,d,e\}$ dada por: $f=\{(1,e),(2,b),(3,c)\}$.
  • La función identidad entre cualquier conjunto $X$, dada por $f: X \Rightarrow X $ donde $f(x)=x$.

Suprayectividad entre funciones

Siguiendo con la lista de conceptos a revisar hoy, nos encontramos nuevamente con la suprayectividad, el concepto en donde todo el contradominio de la función coincide con su imagen:

Definición. diremos que una función $f:X \rightarrow Y$ es suprayectiva si $f$ es una relación suprayectiva. Es decir, si para cada $y \in Y$, existe un $x \in X$ tal que $f(x)=y$

Esta última definición es una derivación de una equivalencia que mostramos con anterioridad. Puesto que decir que para cada $y \in Y$, existe un $x \in X$ tal que $f(x)=y$, es equivalente a decir que para cada elemento $y \in Y$, existe un elemento $x \in X$ tal que $(x,y) \in f$, basta con notar que $f(x)=y$ produce la equivalencia deseada.

Algunos ejemplos de funciones suprayectivas son:

  • La función identidad $f: X \rightarrow X$. Para ello, nota que para cada $y \in X$, sucede que $(y,f(y)) \in f$, por lo que es suprayectiva, pues $f(y)=y$.
  • Sea $X =\{0\}$, entonces la función $f: \mathbb{Z} \rightarrow X$ dada por $f(n)=0$ es una función suprayectiva.
  • La función proyección $f: \mathbb{Z}^2 \rightarrow \mathbb{Z}$ dada por $f((x,y)) = x$ es suprayectiva.

Funciones biyectivas

El último concepto que revisaremos será el de funciones biyectivas. Estas funciones serán importantes porque en pocas palabras podrán «trasladar» un conjunto a otro. Definiremos a estas funciones como aquellas que son inyectivas y suprayectivas al mismo tiempo.

Definición. Sea $f: X \rightarrow Y$ una función. Diremos que $f$ es biyectiva si es inyectiva y suprayectiva.

Si una función es inyectiva, entonces manda distintos elementos del dominio a distintos elementos del contradominio. Mientras que si es suprayectiva, entonces todo el contradominio tiene su correspondencia. Así que si una función es biyectiva, entonces todo elemento del contradominio vendrá de uno y solamente un elemento del dominio. Esto significa que una función biyectiva «transforma» un conjunto en otro. A cada elemento del dominio lo vuelve uno del contradominio.

Por ejemplo, considera la función $f: X \rightarrow Y$ donde $X=\{1,2,3\}$ y $Y=\{a,b,c\}$ donde $f = \{(1,a),(2,b),(3,c)\}$. Nota que la función va de un conjunto $X$ y «traduce» cada uno de sus elementos a un elemento del conjunto $Y$. Esta es una forma en que las biyecciones nos dan información de cómo «traducir» un conjunto en otro.

Ahora considera la función $f: \mathbb{Z} \rightarrow \mathbb{Z}$ dada por $f(n)=n+1$. Esta es una función biyectiva. Y «traduce» cada número a su sucesor.

Otro ejemplo sería la función $f: \mathbb{R} \rightarrow \mathbb{R}$ dada por $f(x)=2x$. Nota que lo que hace esta función es «alejar» puntos del origen. Mientras que $f(0)=0$, a todos los números positivos los «aleja» más del origen del lado derecho, y a los número negativos los «aleja» del origen por la izquierda. Así que esta función biyectiva se podría pensar como una liga que pegamos a la mitad y jalamos por ambos lados hasta que cada lado mida el doble de lo que medía antes. Esta es una forma en que pasamos de una liga normal a una liga estirada, si cada punto de la recta real, fuera un pedazo de la liga, entonces «traducimos» ese punto estirando la liga.

Con estos ejemplos, vimos como una función biyectiva es una traductora de puntos, mandando cada punto del dominio a uno del contradominio, y cada punto del dominio tiene su propia traducción en el contradominio sin que otro punto del dominio comparta su traducción.

Así es como hemos revisado los tres tipos de funciones principales que usarás en muchas áreas de las matemáticas. La inyectividad nos dice que a cada elemento de la imagen de una función solo le corresponde una del dominio. La supreyactividad nos dice que la imagen de una función es igual al contradominio de la función. Mientras que la biyectividad nos habla de traducciones, o formas de ver un conjunto reflejado en otro conjunto.

Más adelante…

En la siguiente entrada daremos el paso de hablar de una función a más de una función, y esto lo haremos componiendo funciones. En un principio se pueden pensar las composiciones como mandar un elemento de un conjunto a otro conjunto mediante una función y después mandar este elemento a otro conjunto mediante otra función. Verás que será útil las composiciones cuando estemos hablando de distintas funciones entre conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Da un ejemplo de una función inyectiva pero no suprayectiva.
  2. Sea $X$ un conjunto y $Y$ un subconjunto de $X$. La función inclusión está dada por $f: Y \rightarrow X$ donde $f(y)=y$.
    1. Demuestra que la función inclusión es inyectiva.
    2. Da condiciones necesarias para que la función inclusión sea biyectiva.
  3. Considera la función $f: \mathbb{Z} \rightarrow \mathbb{Z}$ dada por $f(n) = an +b$. ¿Para qué valores $a,b$ la función es biyectiva?
  4. Demuestra que una función $f: X \rightarrow Y$ es biyectiva si y solo si para cualquier subconjunto $A \subset X$ sucede que $f[X \setminus A] = Y \setminus f[A] $.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Moderna I: Factorización Completa

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Consideremos $\alpha \in S_7$ como $\alpha = (1\,3\,2)(6\,4)$, esta permutación fija a $5$ y a $7$. Entonces también podemos escribirla como $\alpha = (1\,3\,2)(6\,4)(5)(7)$. Notamos que una de las cosas en las que difieren es que en la segunda descomposición estamos agregando uno ciclos, pero también $\alpha = (1 \, 3 \, 2) (7) (6 \, 4)(5)$ es otra forma diferente de expresar a la permutación escribiendo a los uno ciclos. En esta entrada nos planteamos la posibilidad de escribir a $\alpha$ como un producto de ciclos distintos incluyendo a todos los uno ciclos y analizamos en qué difieren todas las distintas maneras de hacerlo.

Antes de empezar, podrías intentar escribir todas las maneras posibles de describir a $\alpha$ escribiendo a los uno ciclos. ¿Notas algo en común entre todas? Al final de esta entrada, tendremos la respuesta más clara.

Definición de una factorización completa

Para empezar, necesitamos definir un nuevo concepto.

Definición. Sea $\alpha \in S_n$. Una factorización completa de $\alpha$ es una descomposición de $\alpha$ en ciclos disjuntos con un $1-$ciclo por cada elemento fijado por $\alpha$.

Ejemplos.

  1. Sea $\alpha \in S_8$ como
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\
    3 & 2 & 1 & 5 & 7 & 6 & 4 & 8
    \end{pmatrix}
    \end{align*}

    Entonces $\alpha = (1 \; 3)\,(4 \; 5 \; 7)$ es una factorización de $\alpha$ en ciclos distintos pero no es una factorización completa de $\alpha$. Por otro lado $\alpha = (1 \; 3)\,(4 \; 5 \; 7)\,(2) \,(6) \,(8)$ sí es una factorización completa de $\alpha$.
  2. Sea $\beta$ dada por \begin{align*}
    \beta = (2 \; 4 \; 6 \; 8) \, (1 \; 3 \; 5)\,(7).
    \end{align*}

    Esa es una factorización completa de $\beta \in S_8$, pero no en $S_{10}$, en $S_{10}$ una factorización completa de de $\beta$ sería
    \begin{align*}
    \beta = (2 \; 4 \; 6 \; 8) \, (1 \; 3 \; 5)\,(7)\, (9) \, (10).
    \end{align*}

No es UNA factorización completa, es LA factorización completa

Recortemos la pregunta de la introducción ¿qué tienen en común todas las formas de describir a $\alpha$ como un producto de ciclos distintos en el que se incluyen todos los uno ciclos? He aquí la respuesta.

Teorema. Una factorización completa es única salvo por el orden de los factores.

Demostración.

Supongamos por reducción al absurdo que existe $\alpha\in S_n$ con dos factorizaciones completas distintas, no sólo por el orden de sus factores. Dado que en una factorización completa los $1-$ciclos corresponden a los elementos que quedan fijos, éstos coinciden en ambas factorizaciones. Igualando ambas factorizaciones y cancelando los $1-$ciclos y el resto de los factores comunes de ambas factorizaciones obtenemos $$\beta_1 \cdots \beta_r = \delta_1 \cdots \delta_s,$$ con $r,s \in \n^+.$ Notemos que $\alpha=\beta_1 \cdots \beta_r= \delta_1 \cdots \delta_s$.

Por la hipótesis de reducción al absurdo, alguno de los factores de la primera expresión de $\alpha$ no aparece como factor en la segunda expresión de $\alpha$ o viceversa. Sin pérdida de generalidad supongamos que $\beta_1\notin \{ \gamma_1, \dots , \gamma_s\}.$

Sea $i\in\{1,\dots , n\}$ un elemento movido por $\beta_1$, entonces, de acuerdo a lo que hemos estudiado, $\beta_1$ es de la forma $$\beta_1= (i \; \beta_1(i) \; \cdots \;\beta_1 ^{t-1}( i)),$$ con $t$ el menor natural positivo tal que $\beta_1 ^{t}( i)=i$. Dado que $\beta_1 ,\dots , \beta_r $ son disjuntos, $\alpha$ mueve a $i$, y como $\delta_1, \dots , \delta_s$ también son disjuntos, exactamente un factor $\delta_1, \dots , \delta_s$ mueve a $i$. Sin pérdida de generalidad supongamos que $\delta_1$ mueve a $i$, entonces $\delta_1$ es de la forma $$\delta_1= (i \;\delta_1(i) \; \cdots \;\delta_1 ^{k-1}( i)),$$ con $k$ el menor natural positivo tal que $\delta_1 ^{k}( i)=i$.

Pero, debido a que $\beta_1 ,\dots , \beta_r $ son disjuntos, conmutan, y entonces $$\alpha ^j (i)=(\beta_1 \cdots \beta_t)^j(i)=\beta_1^j \cdots \beta_t^j(i)=\beta_1^j (i)$$ para toda $j\in\mathbb{N}^+$. Análogamente $\alpha ^j (i)=\delta_1^j (i)$ para toda $j\in\mathbb{N}^+$. Concluimos con ello que $\beta_1 ^j (i)=\delta_1^j (i)$ para toda $j\in\mathbb{N}^+$ y en consecuencia $t=k$ y $\beta_1=\delta_1$, contradiciendo la elección de $\beta_1$.

Así, toda factorización completa es única salvo por el orden de los factores.

$\blacksquare$

Tarea moral

  1. Considera el siguiente elemento de $S_9$
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
    9 & 8 & 1 & 4 & 3 & 7 & 6 & 2 & 5
    \end{pmatrix}.
    \end{align*}
    Encuentra la factorización completa de $\alpha$.
  2. Sea $\alpha \in S_n$ y $\alpha = \beta_1 \dots \beta_t$ una factorización completa de $\alpha$. Analiza qué ocurre con $\displaystyle \sum_{i= 1}^t \text{long } \beta_i$.
  3. Considera el ejercicio 3 de la entrada de permutaciones:
    Sean $\alpha, \beta \in S_{10}$,
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
    10 & 4 & 3 & 2 & 9 & 7 & 5 & 1 & 6 & 8
    \end{pmatrix} \\ \\
    \beta = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
    10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
    \end{pmatrix}.
    \end{align*}
    Encuentra las factorizaciones completas de $\alpha, \beta, \alpha\beta, \beta\alpha$ y $\beta^{-1}$.

Más adelante…

Entonces ya sabemos que existe una factorización única para cada permutación. La usaremos para definir el concepto de estructura cíclica en la siguiente entrada.

Entradas relacionadas

Geometría Moderna I: Circunferencia de Apolonio

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada veremos dos lugares geométricos importantes, uno es la caracterización de arco de circunferencia y el otro la circunferencia de Apolonio.

Arco de circunferencia

Teorema 1. Dados un segmento $BC$ y un ángulo $\alpha < \pi$ el lugar geométrico de los puntos $A$ que están sobre un mismo lado de la recta $BC$ y tal que el ángulo $\angle BAC = \alpha$, es un arco de circunferencia que pasa por $B$ y $C$.

Demostración. Sea $A$ un punto tal que $\angle BAC = \alpha$, consideremos el circuncírculo $\Gamma (O)$ de $\triangle ABC$.

Todos los puntos $A’$ en el arco $\overset{\LARGE{\frown}}{CB}$  cumplen que $\angle BA’C =\alpha$ pues $\angle BAC$ y $\angle BA’C$ abarcan el mismo arco $\overset{\LARGE{\frown}}{BC}$.

Figura 1

Por lo tanto, el arco $\overset{\LARGE{\frown}}{CB}$ es parte del lugar geométrico.

$\blacksquare$

Ahora tomemos $A’$ del mismo lado que $A$ respecto de $BC$  pero $A’ \notin \overset{\LARGE{\frown}}{CB}$ y consideremos $B’ =  A’B \cap \overset{\LARGE{\frown}}{CB}$ y $C’ = A’C \cap \overset{\LARGE{\frown}}{CB}$.

Si $A’$ está dentro del circuncírculo de $\triangle ABC$ (izquierda figura 2), entonces los teoremas de la medida del ángulo interior y el ángulo inscrito nos dicen que
$\angle BA’C = \dfrac{\angle BOC + \angle B’OC’}{2} > \dfrac{\angle BOC}{2} = \angle BAC$.

Por tanto, $A’$ no está en el lugar geométrico.

Figura 2

Si $A’$ esta fuera del circuncírculo de $\triangle ABC$ (derecha figura 2) , entonces la medida del ángulo exterior es
$\angle BA’C = \dfrac{\angle BOC – \angle C’OB’}{2} < \dfrac{\angle BOC}{2} = \angle BAC$.

En consecuencia no existe $A’$ en el lugar geométrico fuera del arco $\overset{\LARGE{\frown}}{CB}$ y así queda demostrado el teorema.

$\blacksquare$

Observación. Si quitamos la condición de que los puntos $A$ estén de un mismo lado respecto de $BC$ entonces obtendremos dos arcos de circunferencia que son simétricos respecto de $BC$.

Corolario. Dados un segmento $BC$  el lugar geométrico de los puntos $A$ tal que el ángulo $\angle BAC = \dfrac{\pi}{2}$, es una circunferencia de diámetro $BC$.

Demostración. Por el teorema 1 y la observación, el lugar geométrico son dos arcos de circunferencia simétricos respecto de $BC$, además, por el teorema de Tales, $BC$ es diámetro de cada uno de estos arcos, por tanto los dos arcos forman una misma circunferencia.

$\blacksquare$

Circunferencia de Apolonio

Teorema 2. El lugar geométrico de los puntos $A$ tales que la razón de las distancias a dos puntos fijos $B$ y $C$ es igual a una razón dada $\dfrac{p}{q}$, es una circunferencia llamada circunferencia de Apolonio.

Demostración. Sea $BC = a$, construimos un triángulo de lados $p$, $q$ y $a$, si $p + q < a$ entonces tomamos un múltiplo $mp$ y $mq$ tal que $m(p + q) > a$.

Figura 3

Sea $A$ el vértice construido tal que $AB = p$ y $AC = q$, por el teorema de la bisectriz, las bisectrices interna $AD$ y externa $AE$ de $\angle A$ dividen al segmento $CB$ en la razón dada
$\dfrac{p}{q} = \dfrac{AB}{AC} = \dfrac{BD}{DC} = \dfrac{BE}{CE}$.

De esta manera, hemos encontrado dos putos $D$ y $E$ en la recta $BC$ del lugar geométrico.

Sea $A’$ cualquier punto en el lugar geométrico, entonces $\dfrac{A’B}{A’C} = \dfrac{p}{q} = \dfrac{BD}{DC} = \dfrac{BE}{CE}$.

Por el reciproco del teorema de la bisectriz esto implica que las cevianas $AD$ y $AE$ son las bisectrices interna y externa del ángulo $\angle BA’C$.

Figura 4

Como las bisectrices interna y externa de todo ángulo son perpendiculares entre si tenemos que $\angle DA’C = \dfrac{\pi}{2}$.

Por el corolario anterior, $A’ \in \Gamma$, la circunferencia cuyo diámetro es $DE$.

$\blacksquare$

Ahora, sea $A \in \Gamma$, entonces $AD \perp AE$ ya que $DE$ es diámetro.

Figura 5

Por $C$ trazamos las paralelas a $AE$ y $AD$ las cuales intersecan a $AB$ en $P$ y en $Q$ respectivamente, como $AD \perp AE$ entonces $PC \perp CQ$.

Aplicando el teorema de Tales a $\triangle BQC$ y $\triangle BAE$ tenemos
$\begin{equation} \dfrac{AB}{AQ} = \dfrac{BD}{DC} \end{equation}$
$\begin{equation} \dfrac{AB}{AP} = \dfrac{BE}{CE}. \end{equation}$

Por construcción $\dfrac{BD}{DC} = \dfrac{BE}{CE}$
$\Rightarrow \dfrac{AB}{AQ} = \dfrac{AB}{AP} \Rightarrow AP = AQ$.

Es decir, $A$ es el punto medio de la hipotenusa en el triángulo rectángulo $\triangle CPQ$, por tanto, equidista a los tres vértices del triangulo
$\Rightarrow AP = AQ = AC$

Reemplazando en las ecuaciones $(1)$ y $(2)$ obtenemos
$\dfrac{AB}{AC} = \dfrac{BD}{DC} = \dfrac{BE}{CE} = \dfrac{p}{q}$.

Por tanto, $A$ está en el lugar geométrico.

$\blacksquare$

Observación 1. Notemos que, si la razón dada es $1$, el lugar geométrico son los puntos que equidistan a los puntos dados, esto es la mediatriz del segmento que une los puntos dados.

Observación 2. Si $B$, $C$ son los puntos fijos y $\dfrac{p}{q}$ es la razón dada, los puntos $A$ tales que $\dfrac{AB}{AC} = \dfrac{p}{q}$, describen una circunferencia de Apolonio, pero los puntos $A’$ tales que $\dfrac{A’C}{A’B} = \dfrac{p}{q}$ también describen una circunferencia de Apolonio, estos dos lugares no coinciden a menos que $\dfrac{p}{q} = 1$.

En consecuencia, para un segmento dado y una razón dada tenemos dos circunferencias de Apolonio.

Construcción de un triangulo ($a$, $h_a$, $\dfrac{c}{b}$)

Problema. Construye un triángulo $\triangle ABC$ dados la base, la altura trazada por el vértice opuesto y la razón entre los lados restantes ($BC = a$, $AD = h_a$, $\dfrac{AB}{AC} = \dfrac{c}{b}$).

Solución. Construimos un segmento $BC$ de longitud $a$ y trazamos la circunferencia de Apolonio $\Gamma$ de los puntos $P$ tales que la razón de las distancias a $B$ y a $C$ es la razón dada, $\dfrac{PB}{PC} = \dfrac{c}{b}$.

Figura 6

Luego trazamos una recta $l$ paralela a $BC$ y a una distancia $h_a$. Una de las intersecciones de $l$ con $\Gamma$ es el tercer vértice del triángulo $\triangle ABC$.

Sea $D$ el pie de la perpendicular a $BC$ trazado desde $A$, entonces por construcción $BC = a$, $AD = h_a$ y $\dfrac{AB}{AC} =\dfrac{c}{b}$.

$\blacksquare$

Círculos de Apolonio de un triángulo

Definición 1. Consideremos un triángulo $\triangle ABC$, el lugar geométrico de los puntos $P$ tales que $\dfrac{PB}{PC} = \dfrac{AB}{AC}$, es la $A$-circunferencia de Apolonio de $\triangle ABC$. De esta manera todo triangulo tiene tres circunferencias de Apolonio asociadas a él, una que pasa por cada vértice.

Definición 2. Decimos que dos circunferencias son ortogonales si se intersecan y los radios trazados desde el punto de intersección son perpendiculares.

Proposición. Cada circunferencia de Apolonio asociada a un triángulo es ortogonal con el circuncírculo del triángulo.

Demostración. Sean $\triangle ABC$, $D$ y $E$ los pies de la bisectriz interior y exterior respectivamente de $\angle A$, consideremos $M$ el punto medio de $DE$.

La circunferencia con centro $M$ y radio $AM$, $(M, AM)$ es la $A$-circunferencia de Apolonio de $\triangle ABC$.

Figura 7

Tenemos lo siguiente
$\dfrac{\pi}{2} = \angle DAE = \angle DAC + \angle CAM + \angle MAE = \dfrac{\angle BAC}{2} + \angle CAM + \dfrac{\angle AMB}{2}$.

$\Rightarrow \pi = \angle BAC + 2\angle CAM + \angle AMB = \angle BAM + \angle AMB + \angle CAM$
$\Rightarrow \angle CBA = \pi – (\angle BAM + \angle AMB)$
$\begin{equation} = \angle CAM. \end{equation}$

Ahora consideremos el circuncírculo $(O, AO)$ de $\triangle ABC$, y supongamos que $AM$ es secante a $(O, AO)$ en $A$ y $F$, tenemos dos casos:

  • $F$ esta entre $A$ y $M$,
Figura 8

$\Rightarrow \angle CBA = \dfrac{\angle COA}{2} > \dfrac{\angle COF}{2} = \angle CAF = \angle CAM$.

  • $A$ esta entre $F$ y $M$,
Figura 9

$\Rightarrow \angle CAM > \angle CFA = \angle CBA$.

Ninguno de los dos casos anteriores es posible, puesto que por la ecuación $(3)$, $\angle CBA = \angle CAM$, por lo tanto, $A$ es tangente a $(O, AO)$ y así $(O, AO)$ y $(M, AM)$ son ortogonales.

La prueba para las otras dos circunferencias de Apolonio de $\triangle ABC$ es análoga.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos un par de métodos generales que nos pueden ayudar a resolver problemas de construcciones geométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Dada una circunferencia, muestra que el lugar geométrico de los puntos medios de las cuerdas que pasan por un punto dado es una circunferencia, si el punto esta dentro o en la circunferencia. Analiza el caso cuando el punto se encuentra fuera de la circunferencia.
  2. Dados dos segmentos consecutivos $AB$ y $BC$ sobre una misma recta encuentra el lugar geométrico de los puntos $P$ tales que $\angle APB = \angle BPC$.
  3. Dados tres puntos $A$, $B$, $C$ y un ángulo $\alpha$, construye una circunferencia que pase por $A$ y $B$ y tal que el ángulo entre las tangentes trazadas desde $C$ a la circunferencia sea igual a $\alpha$.
Figura 10
  1. Construye un triangulo, dados:
    $i)$ la base, la mediana trazada desde el vértice opuesto y la razón entre los lados restantes,
    $ii)$ la base, la bisectriz del ángulo opuesto y la razón entre los lados restantes.
  2. Muestra que las tres circunferencias de Apolonio de un triangulo concurren en dos puntos.
Figura 11

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 11-16.
  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 275-276.
  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 135-137.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 38-39.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»