Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Cálculo Diferencial e Integral I: Reglas de derivación

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente habíamos revisado algunos teoremas relacionados con la derivada de funciones. Esta entrada tiene como objetivo mostrar un resumen de las reglas de derivación que hemos estudiado hasta ahora y agregar algunas reglas nuevas; éstas seguro te harán recordar las clases de cálculo del bachillerato, tal como la derivada de una constante o la derivada de $x^n$.

Reglas de derivación para la suma, el producto, el cociente y la composición de funciones

Previamente revisamos algunas reglas que son fundamentales para el cálculo de las derivadas, tales como que la derivada de una suma de funciones es la suma de sus respectivas derivadas o que la derivada de una función que está siendo multiplicada por una constante es igual a la derivada de la función multiplicada por la constante. Procederemos a enlistarlas pues será importante tenerlas muy presentes:

Sean $A \subset \RR$, $f: A \to \RR$, $g: A \to \RR$ y $x_0 \in A$ tales que $f$ y $g$ son derivables en $x_0$, es decir, $f'(x_0)$ y $g'(x_0)$ sí existen. Entonces

  1. $f+g$ es derivable en $x_0$, además $$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$
  2. Si $c \in \RR$ es una constante, $cf$ es derivable en $x_0$, además $$(cf)'(x_0) = cf'(x_0).$$
  3. $f \cdot g$ es derivable en $x_0$, además $$(f \cdot g)'(x_0) = f(x_0)g'(x_0) + f'(x_0) g(x_0).$$
  4. Si $g(x_0) \neq 0$, entonces $\frac{f}{g}$ es derivable en $x_0$, además $$\left( \frac{f}{g} \right)’ (x_0) = \frac{-f(x_0)g'(x_0) + g(x_0)f'(x_0)}{(g(x_0))^2}.$$

Teorema. Sean $A$, $B \subset \RR$, $g: A \to \RR$, $f: B \to \RR$ y $x_0 \in A$ tales que

  1. Para todo $x \in A$, $g(x) \in B$.
  2. $g$ es derivable en $x_0$, es decir $$\lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} = g'(x_0).$$
  3. $f$ es derivable en $g(x_0)$, es decir $$\lim_{t \to x_0} \frac{f(t)-f(g(x_0))}{t-g(x_0)} = f'(g(x_0)).$$

Entonces $f \circ g$ es derivable en $x_0$, además $$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

Algunas reglas adicionales

Notemos que las reglas de la lista anterior se enfocan en encontrar la derivada de diversas operaciones que se pueden hacer con las funciones. Pero también es relevante tener presentes algunas derivadas de funciones específicas que suelen aparecer con mucha frecuencia. Algunas de ellas ya las probamos en una entrada anterior y solo las mencionaremos.

Proposición (Derivada de una constante). Sea $f: \RR \to \RR$, donde $f(x) = c$, entonces $f'(x)=0$ para todo $x \in \RR.$

Proposición (Derivada de la función identidad). Sea $f: \RR \to \RR$, donde $f(x) = x$, entonces $f'(x)=1$ para todo $x \in \RR.$

Demostración.

Sea $x_0 \in \RR$, entonces

\begin{align*}
f'(x_0) & = \lim_{ x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{x-x_0}{x-x_0} \\ \\
& = \lim_{x \to x_0} 1 \\ \\
& = 1.
\end{align*}

$$\therefore f'(x_0) = 1.$$

$\square$

Proposición. Sea $f: \RR \to \RR$, donde $f(x) = x^n$, entonces $f'(x)=nx^{n-1}$ para todo $x \in \RR.$

Demostración.

Procederemos a hacer la demostración por inducción. Sea $x_0 \in \RR.$

Caso base: n = 1. Sea $g(x) = x$, entonces $g'(x_0) = 1$. Esto se comprueba directamente de la proposición anterior.

Hipótesis de inducción: Para $h(x) = x^n$, se tiene que $h'(x_0) = n x^{n-1}$.

Sea $f(x) = x^{n+1}$. Notemos que $f(x) = (h \cdot g) (x)$, por la regla de la derivada del producto tenemos que

\begin{align*}
f'(x_0) & = h'(x_0)g(x_0)+h(x_0)g'(x_0) \\ \\
& = nx_0^{n-1} \cdot x_0 + x_0^n \cdot 1 \\ \\
& = nx_0^n + x_0^n \\ \\
& = (n+1)x_0^n.
\end{align*}

$$\therefore f'(x_0)=(n+1)x_0^n.$$

Por tanto, podemos concluir que para todo $n \in \mathbb{N}$ se tiene que si $f(x) = x^n$, entonces $f'(x)=nx^{n-1}.$

$\square$

La proposición anterior la probamos para todo $n$ en los naturales, sin embargo, esto también es cierto para cualquier valor real. Pero será en la siguiente entrada donde obtengamos las herramientas que nos permitirán probarlo.

Proposición. Sea $f: A \subset (0, \infty) \to \RR$, donde $f(x) = \sqrt{x}$, entonces $f'(x)=\frac{1}{2 \sqrt{x}}$ para todo $x \in A.$

Proposición. Sea $f: A \subset \RR – \{0\} \to \RR$, donde $f(x) = \frac{1}{x}$, entonces $f'(x)=-\frac{1}{x^2}$ para todo $x \in A.$

Demostración.

Sea $x_0 \in A$, entonces

\begin{align*}
f'(x_0) & = \lim_{ x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{\frac{1}{x}-\frac{1}{x_0}}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{\frac{x_0-x}{xx_0}}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{x_0-x}{(x-x_0)(xx_0)} \\ \\
& = \lim_{x \to x_0} \frac{-(x-x_0)}{(x-x_0)(xx_0)} \\ \\
& = \lim_{x \to x_0} \frac{-1}{xx_0} \\ \\
& = -\frac{1}{x_0^2}.
\end{align*}

$$\therefore f'(x_0) = -\frac{1}{x_0^2}.$$

$\square$

Más adelante…

En las siguientes entradas se hará un estudio particular de la derivada de algunas funciones especiales como lo son las funciones trigonométricas, la función exponencial y la función logarítmica.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Para cada una de las siguientes funciones $f$, halla $f'(f(x))$:
    • $f(x)=\frac{1}{1+x}.$
    • $f(x)=x^2.$
    • $f(x)=17.$
  • Para cada una de las siguientes funciones $f$, halla $f(f'(x))$
    • $f(x)=\frac{1}{x}.$
    • $f(x)=x^2.$
    • $f(x)=17x.$
  • Para cada una de las siguientes funciones halla $f’$ en función de $g’$
    • $f(x)=g(x+g(x_0)).$$f(x)=g(x+g(x)).$
    • $f(x)=g(x)(x-x_0).$
    • $f(x)=g(x \cdot g(x_0)).$
    • $f(x+3)=g(x^2).$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones del Hermite, Laguerre y Legendre

Por Omar González Franco

La naturaleza está escrita en lenguaje matemático.
– Galileo Galilei

Introducción

En las dos últimas entradas hemos desarrollado métodos de resolución de ecuaciones diferenciales lineales de segundo orden con coeficientes variables. El primer caso fue cuando $x_{0} = 0$ es un punto ordinario y en el segundo caso cuando $x_{0} = 0$ es un punto singular regular. En esta y la siguiente entrada aplicaremos estos métodos para resolver algunas ecuaciones diferenciales especiales, tan especiales que cada una de ellas tiene su propio nombre y son de bastante utilidad en otras áreas del conocimiento como la física e ingeniería.

A continuación presentamos las ecuaciones diferenciales que resolveremos:

  • Ecuación de Hermite.

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Laguerre.

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Legendre.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0$$

  • Ecuación de Bessel.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0$$

  • Ecuación de Chebyshev.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0$$

  • Ecuación Hipergeométrica de Gauss.

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0$$

  • Ecuación de Airy.

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Algunos ejemplos en los que aparecen este tipo de ecuaciones son en el estudio de potenciales en campos conservativos y no conservativos, esfuerzos de torsión, distribución de temperaturas, propagación de calor, vibraciones de cuerdas y membranas, propagación de ondas sonoras, luminosas, de radio entre muchas otras aplicaciones.

Es importante aclarar que todas estas ecuaciones, y las soluciones de cada una, tienen importantes propiedades matemáticas que no serán expuestas en este curso, nuestro propósito es el de sólo dar con la solución aplicando los métodos ya mencionados. Sin embargo, estos resultados seguramente serán de bastante utilidad más adelante cuando en semestres posteriores se estudien con mayor detalle. Por supuesto, si en estos momentos se desea conocer más acerca de estas ecuaciones diferenciales se puede consultar bibliografía existente para cada una de ellas.

Comencemos con la ecuación de Hermite.

Ecuación de Hermite

La ecuación de Hermite es

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0 \label{1} \tag{1}$$

Con $x \in \mathbb{R}$ y $\lambda$ una constante.

Esta ecuación diferencial es llamada así en honor al matemático francés Charles Hermite (1822 – 1901), quien realizó investigaciones sobre teoría de números, formas cuadráticas, teoría de invariantes, polinomios ortogonales y funciones elípticas entre otros. Varias entidades matemáticas se llaman hermitianas en su honor.

La ecuación de Hermite se encuentra en forma estándar lo que nos permite notar que el punto $x_{0} = 0$ es un punto ordinario, esto nos indica que su solución es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{2} \tag{2}$$

Cuyas derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \label{3} \tag{3}$$

Sustituyamos en la ecuación de Hermite.

$$\left[ \sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n -2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n}\right] = 0$$

Introducimos la $x$ en la segunda serie.

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -2 \sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos la sustitución $k = n -2$ y en las otras dos hacemos $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos el primer término de la primera y última serie para que todas comiencen en $k = 1$.

$$2c_{2} + \lambda c_{0} = 0 \label{4} \tag{4}$$

de donde,

$$c_{2} = -\dfrac{\lambda }{2}c_{0}$$

Ahora tenemos la ecuación

$$\sum_{k = 1}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 1}^{\infty}c_{k}x^{k} = 0 \label{5} \tag{5}$$

Ahora que todas las series comienzan con el mismo índice y tienen la misma potencia en la variable $x$, podemos juntar todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + 2)(k + 1)c_{k + 2} -2kc_{k} + \lambda c_{k}]x^{k} = 0$$

De donde necesariamente debe de ocurrir que

$$(k + 2)(k + 1)c_{k + 2} -(2k -\lambda)c_{k} = 0 \label{6} \tag{6}$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{2k -\lambda}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, 3 \cdots \label{7} \tag{7}$$

Determinemos los coeficientes. Ya vimos que para $k = 0$,

$c_{2} = -\dfrac{\lambda }{2!}c_{0}$

$k = 1$.

$$c_{3} = \dfrac{2(1) -\lambda}{(3)(2)}c_{1} = \dfrac{2 -\lambda}{3!}c_{1}$$

$k = 2$.

$$c_{4} = \dfrac{2(2) -\lambda}{(4)(3)}c_{2} = \dfrac{4-\lambda}{(4)(3)} \left( -\dfrac{\lambda}{2}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)}{4!}c_{0}$$

$k = 3$.

$$c_{5} = \dfrac{2(3) -\lambda}{(5)(4)}c_{3} = \dfrac{6 -\lambda}{(5)(4)} \left( \dfrac{2 -\lambda}{(3)(2)}c_{1} \right) = \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1}$$

$k = 4$.

$$c_{6} = \dfrac{2(4) -\lambda}{(6)(5)}c_{4} = \dfrac{8 -\lambda}{(6)(5)} \left( -\dfrac{\lambda(4 -\lambda)}{4!}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}c_{0}$$

$k = 5$.

$$c_{7} = \dfrac{2(5) -\lambda}{(7)(6)}c_{5} = \dfrac{10 -\lambda}{(7)(6)} \left( \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1} \right) = \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Hermite como

\begin{align*}
y(x) &= C_{1} \left[ 1 -\dfrac{\lambda}{2!}x^{2} -\dfrac{\lambda(4 -\lambda)}{4!}x^{4} -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}x^{6} – \cdots \right] \\
&+ C_{2} \left[ x + \dfrac{(2 -\lambda)}{3!}x^{3} + \dfrac{(2 -\lambda)(6 -\lambda)}{5!}x^{5} + \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!} + \cdots \right] \label{8} \tag{8}
\end{align*}

Un caso interesante ocurre cuando el parámetro $\lambda$ es positivo y es par, es decir de la forma $\lambda = 2k$, en este caso la relación de recurrencia muestra que

$$c_{k + 2} = c_{k + 4} = \cdots = 0$$

Notemos que si $\lambda = 2k$ y además $k$ es par y se toma $C_{2} = 0$, entonces la solución se reduce a un polinomio de grado $k$, lo mismo ocurre si $k$ es impar y se toma $C_{1} = 0$, la solución se reduce a otro polinomio de grado $k$.

Con una adecuada elección de $C_{1}$ y $C_{2}$, de tal manera que el coeficiente de $x^{k}$ sea $2^{k}$, resultan los denominados polinomios de Hermite.

\begin{align*}
H_{0}(x) &= 1\\
H_{1}(x) &= 2x \\
H_{2}(x) &= 4x^{2} -2 \\
H_{3}(x) &= 8x^{3} -12x\\
H_{4}(x) &= 16x^{4} -48x^{2} + 12\\
H_{5}(x) &= 32x^{5} -160x^{3} + 120x \\
\vdots
\end{align*}

Cada polinomio de Hermite es solución particular de la ecuación de Hermite con $\lambda = 0, 2, 4, 6 \cdots$, respectivamente. En general, el $n$-ésimo polinomio de Hermite es solución particular de la ecuación de Hermite con $\lambda = 2n$.

Los polinomios de Hermite aparecen en la resolución del problema del oscilador armónico unidimensional en Mecánica Cuántica.

Pasemos a resolver la ecuación de Laguerre.

Ecuación de Laguerre

La ecuación de Laguerre es

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0 \label{9} \tag{9}$$

Con $\lambda$ una constante.

Los polinomios de Laguerre son una familia de polinomios ortogonales que surgen de examinar las soluciones de la ecuación diferencial (\ref{9}). Edmond Nicolás Laguerre (1834 – 1886) fue un matemático francés conocido principalmente por la introducción de los polinomios que llevan su nombre.

Resolvamos la ecuación, para ello dividimos todo por $x$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1 -x}{x} \dfrac{dy}{dx} + \dfrac{\lambda}{x} y = 0 \label{10} \tag{10}$$

Identificamos que

$$P(x) = \dfrac{1 -x}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda}{x}$$

Es claro que ambas funciones no están definidas en $x = 0$, de manera que este punto es un punto singular. Si definimos las funciones

$$p(x) = xP(x) \hspace{1cm} y \hspace{1cm} q(x) = x^{2}Q(x)$$

obtenemos que

$$p(x) = 1 -x \hspace{1cm} y \hspace{1cm} q(x) = \lambda x$$

Si calculamos los límites se obtiene lo siguiente.

$$\lim_{x \to 0}p(x) = 1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = 0$$

Los límites existen, esto nos indica que el punto $x_{0} = 0$ es un punto singular regular. La solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r} \label{11} \tag{11}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \label{12} \tag{12}$$

Sustituyamos en la ecuación de Laguerre.

$$x \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + (1 -x) \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En las dos primeras series hacemos $k = n$ y en las dos últimas series hacemos $n = k -1$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Extraemos los términos para $k = 0$ y así hacer que todas las series comiencen en $k = 1$.

\begin{align*}
r(r -1)c_{0}x^{r -1} + rc_{0}x^{r -1} &= 0 \\
c_{0}x^{r -1}[r(r -1) + r] &= 0 \\
r(r -1) + r &= 0
\end{align*}

La ecuación indicial es

$$r^{2} = 0 \label{13} \tag{13}$$

de donde $r_{1} = r_{2} = r = 0$. Como las raíces indiciales son iguales, la forma de las soluciones es

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}, \hspace{1cm} c_{0} \neq 0 \label{14} \tag{14}$$

y

$$y_{2}(x) = \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n} \label{15} \tag{15}$$

Continuemos con la ecuación que teníamos.

$$\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Ahora que todas inician en $k = 1$ y tienen la misma potencia podemos agruparlas en una sola serie.

$$\sum_{k = 1}^{\infty} [(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1}] x^{k + r -1} = 0$$

De donde es necesario que

\begin{align*}
(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1} &= 0 \\
c_{k}[(k + r)(k + r -1) + (k + r)] + c_{k -1}[\lambda -(k -1 + r)] &= 0 \\
\end{align*}

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{(k -1 + r) -\lambda}{(k + r)(k + r -1) + (k + r)}c_{k -1} \label{16} \tag{16}$$

De tarea moral muestra que la relación de recurrencia se puede reescribir como

$$c_{k} = \dfrac{(k + r) -(\lambda + 1)}{(k + r)^{2}}c_{k -1} \label{17} \tag{17}$$

Sabemos que la raíz indicial es $r = 0$, entonces la relación de recurrencia se reduce a

$$c_{k} = \dfrac{k -(\lambda + 1)}{k^{2}}c_{k -1}, \hspace{1cm} k = 1, 2, 3, \cdots \label{18} \tag{18}$$

Determinemos los coeficientes.

$k = 1$.

$$c_{1} = \dfrac{1 -(\lambda + 1)}{1^{2}}c_{0} = -\lambda c_{0}$$

$k = 2$.

$$c_{2} = \dfrac{2 -(\lambda + 1)}{2^{2}}c_{1} = \dfrac{1 -\lambda}{4}c_{1} = \dfrac{\lambda(\lambda -1)}{4}c_{0}$$

$k = 3$.

$$c_{3} = \dfrac{3 -(\lambda + 1)}{3^{2}}c_{2} = \dfrac{2 -\lambda}{9}c_{2} = -\dfrac{\lambda(\lambda -1)(\lambda -2)}{36}c_{0}$$

Continuando es posible encontrar el patrón y establecer que

$$c_{k} = (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}c_{0} \label{19} \tag{19}$$

De tarea moral demuestra por inducción el resultado anterior.

Entonces la solución de la ecuación de Laguerre es

\begin{align*}
y(x) &= c_{0} \left( 1 -\dfrac{\lambda}{(1!)^{2}} x + \dfrac{\lambda(\lambda -1)}{(2!)^{2}}x^{2} -\dfrac{\lambda(\lambda -1)(\lambda -2)}{(3!)^{2}}x^{3} + \cdots + (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}x^{k} + \cdots \right) \label{20} \tag{20}
\end{align*}

Recordemos que el método de Frobenius nos dice que existe una segunda solución de la forma

$$y_{2}(x) = y_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}$$

Obtener la segunda solución resulta ser una tarea muy complicada debido a la enorme cantidad de cálculos que se deben realizar, en el video correspondiente se hace notar esta dificultad, sin embargo la solución obtenida suele ser suficiente para trabajar y es la que se utiliza en las aplicaciones que aparecen principalmente en Física.

Observemos que si $\lambda \in \mathbb{Z}^{+}$, entonces la serie solución se hace finita, ya que cada coeficiente de la serie contiene un término $(\lambda -m)$ con $m \in \mathbb{Z}^{+}$ que se repite cada vez que aparece por primera vez, por ejemplo el término $(\lambda -2)$ aparece por primera vez en el coeficiente de $x^{3}$ y a partir de ahí aparece en el resto de coeficientes de la serie, de manera que si $\lambda = 2$, entonces todos los coeficientes que contengan el término $(\lambda -2)$ se anularán y sólo nos quedará un polinomio de grado $n = 2$. Estos polinomios resultantes son los llamados polinomios de Laguerre.

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $c_{0}$ se obtienen los siguientes polinomios de Laguerre.

\begin{align*}
L_{0}(x) &= 1 \\
L_{1}(x) &= 1 -x \\
L_{2}(x) &= 1 -2x + \dfrac{1}{2}x^{2} \\
L_{3}(x) &= 1 -3x + \dfrac{3}{2}x^{2} -\dfrac{1}{6}x^{3} \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Laguerre será solución particular de la ecuación de Laguerre cuando $\lambda = n$.

Finalicemos esta entrada con la ecuación de Legendre.

Ecuación de Legendre

La ecuación de Legendre es

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0 \label{21} \tag{21}$$

Con $\lambda$ una constante.

Esta ecuación lleva este nombre en honor al matemático francés Adrien – Marie Legendre (1752 – 1833). Legendre hizo importantes contribuciones a la estadística, la teoría de números, el álgebra abstracta y el análisis matemático.

Resolvamos la ecuación, dividimos todo por el coeficiente de la segunda derivada de $y$.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{2x}{1 -x^{2}} \dfrac{dy}{dx} + \dfrac{\lambda(\lambda + 1)}{1 -x^{2}} y = 0 \label{22} \tag{22}$$

Identificamos que

$$P(x) = -\dfrac{2x}{1 -x^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda(\lambda + 1)}{1 -x^{2}}$$

Vemos que ambas funciones no están definidas en $x = 1$ ni $x = -1$, pero si en en el punto $x_{0} = 0$, de manera que dicho punto es un punto ordinario, entonces la forma de la solución de la ecuación de Legendre es

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

Con primera y segunda derivada dadas como

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituyamos en la ecuación de Legendre.

$$(1 -x^{2}) \left[ \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n-2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda(\lambda + 1) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

Expandiendo y simplificando, se tiene

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -\sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n} -2\sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda(\lambda + 1) \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos $k = n -2$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos los términos para $k = 0$ y $k = 1$ y con ello lograr que todas las series comiencen en $k = 2$.

Por un lado, para $k = 0$,

$$2c_{2} + \lambda(\lambda + 1) c_{0} = 0$$

De donde

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2}c_{0}$$

Por otro lado, para $k = 1$,

\begin{align*}
3(2)c_{3}x -2c_{1}x + \lambda(\lambda + 1) c_{1}x &= 0 \\
\left[6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} \right]x &= 0 \\
6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} &= 0
\end{align*}

De donde

$$c_{3} = \dfrac{2 -\lambda(\lambda + 1)}{6}c_{1}$$

Veremos más adelante que es conveniente escribir este resultado como

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{6}c_{1}$$

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 2}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 2}^{\infty}c_{k}x^{k} = 0 \label{23} \tag{23}$$

Juntemos todo en una sola serie.

$$\sum_{k = 2}^{\infty} \left[ (k + 2)(k + 1)c_{k + 2} -k(k -1)c_{k} -2kc_{k} + \lambda(\lambda + 1)c_{k} \right] x^{k} = 0$$

De donde es necesario que

$$(k + 2)(k + 1)c_{k + 2} -\left[ k(k -1) + 2k -\lambda(\lambda + 1)\right]c_{k} = 0 \label{24} \tag{24}$$

Despejando a $c_{k + 2}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{k(k -1) + 2k -\lambda(\lambda + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots \label{25} \tag{25}$$

Es conveniente reescribir a la ecuación de recurrencia de la siguiente manera.

$$c_{k + 2} = -\dfrac{(\lambda -k)(\lambda + k + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots \label{26} \tag{26}$$

Determinemos los coeficientes. Ya vimos que para $k = 0$,

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2!}c_{0}$$

y para $k = 1$,

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{3!}c_{1}$$

$k = 2$.

$$c_{4} = -\dfrac{(\lambda -2)(\lambda + 3)}{(4)(3)}c_{2} = \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}c_{0}$$

$k = 3$.

$$c_{5} = -\dfrac{(\lambda -3)(\lambda + 4)}{(5)(4)}c_{3} = \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}c_{1}$$

$k = 4$.

$$c_{6} = -\dfrac{(\lambda -4)(\lambda + 5)}{(6)(5)}c_{4} = -\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}c_{0}$$

$k = 5$.

$$c_{7} = -\dfrac{(\lambda -5)(\lambda + 6)}{(7)(6)}c_{5} = -\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Legendre como

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{27} \tag{27}$$

Donde,

\begin{align*}
y_{1}(x) &= 1 -\dfrac{\lambda(\lambda + 1)}{2!}x^{2} + \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}x^{4} \\
&-\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}x^{6} + \cdots \label{28} \tag{28}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x -\dfrac{(\lambda -1)(\lambda + 2)}{3!}x^{3} + \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}x^{5} \\
&-\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}x^{7} + \cdots \label{29} \tag{29}
\end{align*}

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $C_{1}$ y de $C_{2}$ se obtienen los conocidos polinomios de Legendre:

\begin{align*}
P_{0}(x) &= 1 \\
P_{1}(x) &= x \\
P_{2}(x) &= \dfrac{1}{2}(3x^{2} -1) \\
P_{3}(x) &= \dfrac{1}{2}(5x^{3} -3x) \\
P_{4}(x) &= \dfrac{1}{8}(35x^{4} -30x^{2} + 3) \\
P_{5}(x) &= \dfrac{1}{8}(63x^{5} -70x^{3} + 15x) \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Legendre será solución particular de la ecuación de Legendre cuando $\lambda = n$.

La ecuación de Legendre aparece con mucha frecuencia en problemas de Física, en particular en electromagnetismo en problemas de valor límite en esferas.

Los polinomios de Legendre aparecen cuando se resuelve la ecuación de Helmholtz (un tipo de ecuación en derivadas parciales) en coordenadas esféricas mediante el método de separación de variables.

Hasta aquí concluimos esta primer entrada sobre la resolución de algunas ecuaciones diferenciales especiales de segundo orden, en la siguiente entrada continuaremos resolviendo el resto de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Los primeros 6 polinomios de Hermite son solución de la ecuación de Hermite para $\lambda = 0, 2, 4, 6, 8, 10$ respectivamente. Determinar el valor de las constantes $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Hermite.
  1. Resolver la siguiente ecuación de Hermite realizando todo el procedimiento del método.
  • $\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 4 polinomios de Laguerre son solución de la ecuación de Laguerre para $\lambda = 0, 1, 2, 3$ respectivamente. Determinar el valor del coeficiente $c_{0}$, tal que se obtengan los primeros 4 polinomios de Laguerre.
  1. Resolver la siguiente ecuación de Laguerre realizando todo el procedimiento del método.
  • $x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 6 polinomios de Legendre son solución de la ecuación de Legendre para $\lambda = 0, 1, 2, 3, 4, 5$ respectivamente. Determinar el valor correspondiente de $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Legendre.
  1. Los puntos $x_{0} = 1$ y $x_{0} =- 1$ son puntos singulares de la ecuación de Legendre. Usando el método de Frobenius determinar la solución de la ecuación de Legendre con respecto al punto singular $x_{0} = 1$.
    Hint: Usar el cambio de variable $t = x -x_{0}$ y la regla de la cadena.

Más adelante…

Hemos resuelto 3 de las 7 ecuaciones diferenciales especiales que deseamos resolver, en la siguiente entrada concluiremos con el resto de ecuaciones y así mismo estaremos concluyendo con la unidad 2 del curso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior I: Principio de recursión en los números naturales

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada revisaremos el concepto de recursión en un sentido matemático y revisaremos algunos ejemplos. Probablemente ya hayas escuchado el término, pues verás que es una herramienta útil para definir funciones en términos de las evaluaciones pasadas.

La suma de los primeros n números naturales

Carl Friedrich Gauss fue un matemático alemán del siglo XVIII el cual es uno de los más importantes en distintas disciplinas matemáticas como la teoría de números, la geometría y estadística. Sus aportes son varios en estas y más áreas por lo que nos tomaría varios años de estudio para llegar a muchos de sus resultados. En esta ocasión veremos uno de sus razonamientos más famosos el cual muchos le atribuyen cuando este solo estaba en el colegio cuando aún era niño.

Se dice que el profesor de su clase de matemáticas había castigado a todo el salón haciéndoles sumar los números naturales del $1$ al $100$. La historia dice que no pasó mucho tiempo (y mucho menos del esperado por el profesor) hasta que Gauss llegó con la respuesta «5050». El razonamiento que tuvo fue el siguiente: Para llegar a la suma, pondremos los números del $1$ al $100$ en una lista, y debajo los mismos números pero al revés, es decir, del $100$ al $1$, y notemos que sumando uno a uno los números de las dos listas como los hemos acomodado, queda un mismo número:

$$\begin{array}{cccccc}
&1 & 2 & \dots &99 & 100 \\
+&100 & 99 & \dots &2 & 1 \\
=&101 & 101 & \dots &101 & 101\\
\end{array}$$

De manera que si tenemos los primeros $100$ números, entonces el número resultante de la suma es $101$, de manera que si sumamos estos números, estaríamos sumando $100$ veces el número $101$, pero como hemos sumado dos veces la lista, entonces deberemos dividir entre $2$ para obtener la suma real. Dicho de otra forma: $$ \sum_{i=0}^{100} i = \frac{100(100+1)}{2} .$$
Si recuerdas, esta es la fórmula que probamos en la entrada pasada, pues en el caso general: $$ \sum_{i=0}^{n} i = \frac{n(n+1)}{2} $$.

Viendo la suma como recursión

Sigamos pensando en el ejemplo. Para cada $n \in \mathbb{N}$, llamemos $$S_n = \sum_{i=0}^{n} i = \frac{n(n+1)}{2} .$$ Y nota que para cada número natural $n$ se cumple que:

  1. $S_0=0$
  2. Si $n>0$ entonces $S_n = S_{n-1}+n$

Nota ahora que podemos definir a $S_n$ únicamente en términos de la suma de su antecesor con el número. Esto quiere decir que si nos pidieran calcular $S_{51},S_{52},S_{53}$, primero podemos calcular $S_{51}$ sumando todos los números del $0$ al $51$, pero una vez tengamos ese resultado, no es necesario volver a sumar todos los números para $S_{52}$, sino que basta saber quién es $S_{51}$ y sumarle $52$ para obtener el término deseado, lo mismo para el siguiente número de la sucesión $S_{53}=S_{52}+53$. A $S$ se le puede ver como una función $S:\mathbb{N} \rightarrow \mathbb{N} $ donde $S_n$ hace referencia a la función $S$ valuada en $n$, esto quiere decir que $S(n)=S_n$. A esta función se le llamará una función recursiva.

Definición. Una función $\phi: \mathbb{N} \rightarrow \mathbb{N} $ se dice tener la propiedad de recursión si existe $a \in \mathbb{N} $ y una función $f : \mathbb{N} \rightarrow \mathbb{N} $ tal que:

  1. $\phi(0)=a$
  2. Si $n>0$ entonces $\phi(\sigma(n)) = f(\phi(n))$

Veamos esta definición por partes. Retomemos nuestro ejemplo de la suma de los primeros números naturales. La función que es recursiva es $\phi$, esta función debe satisfacer dos condiciones. La primera condición es que se defina a dónde «manda» el $0$, es decir, hace falta saber cómo empezar la definición recursiva, en este caso, se trata de cómo definimos el comportamiento de la función en el primer número del conjunto de los números naturales. La segunda condición se pone más interesante, pues lo que nos dice es que existe una función $f$ tal que la función $\phi$ evaluada en el sucesor de $n$ ($\sigma(n)=n+1$) es la función $f$ valuada en $\phi (n)$. Lo que quiere decir esta oración es que «Si quieres saber quién es $\phi(n+1)$ y ya sabes quién es $\phi (n)$, entonces basta hacerle algo a ese resultado (valuar ese resultado en $f$) para obtener lo querido».

En nuestro ejemplo de la función $S$ (en la definición, esta sería la función $\phi$), la función $f$ es aquella que a cada suma parcial le agrega el número correspondiente. Esto quiere decir que $f$ es la función: $$\begin{align*} f(S(n)) &= S(n)+n \\&= S(n+1)=S(\sigma(n))\end{align*}.$$

Teorema de recursión débil

El siguiente teorema nos garantiza no solo la existencia de funciones recursivas, sino que además nos garantiza que esta es una herramienta para conjuntos distintos al de los números naturales:

Teorema (Recursión Débil): Sea $X$ un conjunto y $x_{0}\in X$. Supongamos que tenemos una función $f:X\to X$. Entonces existe una única función $\phi:\mathbb{N}\to X$ tal que:

  • $\phi(0)=x_{0}$
  • $\phi(\sigma(n))=f(\phi(n)).$

La demostración de este teorema se verá en el curso de Álgebra Superior II. Y a grandes rasgos nos garantiza el hecho de que las definiciones de las funciones por recursión son matemáticamente válidas. En otras palabras, muestra que somos capaces de definir y usar funciones recursivas.

Algunos ejemplos

Veamos otro ejemplo de este tipo de funciones. Sea $n \in \mathbb{N}$ Definamos $$ n! = n*(n-1)*(n-2)*\dots*2*1.$$ Por ejemplo, $3!=3*2*1=6$. Nota que esta es una función que podemos describir como recursiva al establecer las siguientes condiciones:

  1. $0!=1$
  2. $n!=(n-1)!*n.$

Como veremos en siguientes entradas, esta función llamada factorial se utilizará mucho en conteo y combinatoria, pues nos hablará de el número de formas de combinar un conjunto con algún número de elementos.

El siguiente ejemplo requiere de una pequeña definición:

Definición. Sea $a$ una función. La función $a$ es una sucesión si $a : \mathbb{N} \rightarrow \mathbb{N} $ es una función entre números naturales.

Esta definición nos indica que a las funciones entre números naturales también se les conoce como sucesiones, muchas veces este no será el nombre común al que se refieran a las funciones de $ \mathbb{N} $ en $ \mathbb{N} $ pero si en alguna ocasión ves el término, sabrás a qué se refiere. También es común, al estar hablando de sucesiones, de escribir las evaluaciones de $a$ en cada término $n$ simplemente como $a_n$ es decir $a_n=a(n)$.

Supongamos ahora que tenemos la sucesión definida como $$a_n=5n+2$$. Los cinco primeros términos de esta sucesión son:$$a_0=2$$ $$a_1=7$$ $$a_2=12$$ $$a_3=17$$ $$a_4=22$$ Notemos que podemos escribir esto de forma recursiva, para ello, notemos que únicamente en cada paso estamos sumando un 5, de manera que $$a_{n+1}=a_n+5.$$Adicionalmente, ya sabemos cuánto vale en el $0$, así la siguiente proposición demuestra este hecho:

Proposición $a_n$ puede definirse de forma recursiva como:

  1. $a_0=2$
  2. $a_{n+1}=a_n+5.$

Demostración (por inducción)

Base inductiva. Es claro que $$a_0 = 2 = 0*5+2$$ De manera que se cumple la base de inducción.

Hipótesis inductiva. Supongamos que para $n\geq 0$ se cumple que $$a_n = a_{n-1}+5=5n+2.$$

Paso inductivo. Para demostrar que $$a_{n+1}=a_n+5$$ como dice la proposición, notemos que por definición de la sucesión, $$a_{n+1}=5(n+1)+2=5n+2+5.$$
Ahora, por hipótesis de inducción, $$a_n=5n+2.$$De esta forma, $$a_{n+1}=5(n+1)+2)+5=a_n+5. $$ tal como se quería demostrar.

$\square$

Más adelante…

En esta entrada dimos la idea de lo que significa la recursión en las matemáticas, en la siguiente entrada usaremos esta idea para empezar a definir las operaciones básicas en los números naturales: la suma y el producto.

Tarea Moral

  1. Muestra que hay una única función $\phi$ entre número naturales tal que:
    1. $\phi(0)=10$
    2. $\phi(\sigma(n))=2\phi(n)$
  2. Da una definición explícita de la función del inciso anterior.
  3. Da una definición recursiva para las siguientes sucesiones:
    • $a_n=2n$
    • $a_n=2n+1$
    • $a_n=2^n$
    • $a_n=0$

Entradas relacionadas

  • Ir a Álgebra Superior I
  • Entrada anterior del curso: Problemas de inducción
  • Siguiente entrada del curso: Suma y producto de naturales y sus propiedades

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral I: Razón de cambio

Por Karen González Cárdenas

Introducción

Recordemos que la derivada de una función $f$ se puede escribir del siguiente modo:
$$f'(x)=\dfrac{df(x)}{dx}.$$

Si nosotros tenemos una cantidad $x$ que se encuentra en función del tiempo $t$, haciendo uso de la derivada podemos expresar a la razón de cambio de $x$ respecto de $t$ como:
$$\dfrac{dx}{dt}.$$
De este modo, si se tiene que dicha cantidad $x$ está relacionada con una ecuación, para obtener su razón de cambio bastaría con derivarla.

Esta interpretación de la derivada nos será de utilidad para resolver los problemas que revisaremos a continuación.

Problema 1

Un círculo expande su área de manera no especificada. Se sabe que cuando el radio es de $6 cm$, la tasa de variación del mismo respecto al tiempo es de $4 cm$.

Encuentra la tasa de variación del área respecto al tiempo cuando el radio $6 cm$.
Solución:
Sabemos que el área de un círculo está dada por:
$$A=\pi r^{2}.$$
Veamos que la tasa de variación del radio $r$ es:
$$\dfrac{dr}{dt}.$$

Al derivar el área $A$ respecto del tiempo $t$ tenemos:
$$\dfrac{dA}{dt}=2\pi r \dfrac{dr}{dt}$$
$(1)$

De los datos que nos dan en el problema sabemos que cuando el radio es de $6 cm$, su tasa de variación:
$$\dfrac{dr}{dt}=4 cm.$$

Sustituyendo estos valores en $(1)$ tenemos:
\begin{align*}
\dfrac{dA}{dt}&= 2\pi (6 cm)(4 cm)\\
&=48 \pi cm^{2}
\end{align*}

Por lo que la tasa de variación buscada es:
$$\dfrac{dA}{dt}= 48 \pi cm^{2}.$$

Problema 2

Por la mañana, una mujer se encuentra esperando a lado de un poste el autobús que la llevará a su trabajo. Debido a la demora, ella decide caminar rumbo al metro alejándose del poste que sabemos alumbra a razón de $3\frac{m}{s}$. Si además sabemos que la estatura de la mujer es de $1.60 m$ y la altura del poste de $10 m$, ¿cuál es la razón de cambio a la cual se mueve el extremo de la sombra de la mujer?

Solución:


Vemos que el problema nos dice que:
$$\dfrac{dz}{dt}=3 \frac{m}{s}.$$
Y que queremos obtener la razón de cambio:
$$\dfrac{dx}{dt}.$$
Observamos que los siguientes triángulos son semejantes:
$$\triangle ABC \sim \triangle AED.$$
Entonces tenemos la siguiente igualdad:
$$\frac{10}{1.6}=\frac{x}{x-z}.$$
Desarrollando lo anterior:
\begin{align*}
10(x-z)=1.6x &\Leftrightarrow 10x-10z=1.6x\\
&\Leftrightarrow 10x-1.6x=10z\\
&\Leftrightarrow 8.4x=10z
\end{align*}

Derivando con respecto del tiempo $t$:
$$8.4\dfrac{dx}{dt}=10\dfrac{dz}{dt}.$$

Despejando $\dfrac{dx}{dt}$:
$$\dfrac{dx}{dt}=\frac{10}{8.4}\dfrac{dz}{dt}.$$

Sustituyendo el valor conocido de $\dfrac{dz}{dt}$:
\begin{align*}
\dfrac{dx}{dt}&=\frac{25}{21}(3)\\
&=\frac{25}{7} \frac{m}{s}
\end{align*}

Por lo tanto, la razón con que se mueve el extremo de la sombra es de:
$$ \frac{25}{7} \frac{m}{s}.$$

Problema 3

Una pelota esférica se infla a razón de $0.16 \frac{cm^{3}}{min}$. ¿Cuál es su volumen cuando su radio está aumentando a razón de $0.20 \frac{cm}{min}$?

Solución:
Recordemos que el volumen de una esfera esta dado por:
$$V=\frac{4}{3}\pi r^{3}.$$
De los datos del problema sabemos lo siguiente:
\begin{align*}
\dfrac{dV}{dt}&= 0.16\frac{cm^{3}}{min} & \dfrac{dr}{dt}&=0.20\frac{cm}{min}
\end{align*}

Derivamos el volumen $V$ respecto del tiempo y obtenemos:
$$\dfrac{dV}{dt}=4\pi r^{2} \dfrac{dr}{dt}.$$

Sustituyendo $ \dfrac{dV}{dt}= 0.16$ en la igualdad anterior:
$$0.16 \frac{cm^{3}}{min} =4\pi r^{2} \dfrac{dr}{dt}.$$

Ahora sustituyendo el valor de la razón de cambio del radio:
$$0.16 \frac{cm^{3}}{min} =4\pi r^{2} \left(0.2 \frac{cm}{min} \right).$$

Para poder obtener el valor del volumen solicitado debemos conocer el valor del radio, por lo que despejando $r$ ocurre lo siguiente:
\begin{align*}
\frac{0.16}{0.8}\frac{cm^{2}}{\pi}&=r^{2}\\
\Rightarrow \frac{cm^{2}}{5\pi}&=r^{2}
\end{align*}
$$\therefore r=\frac{1}{\sqrt{5\pi}}cm.$$

Sustituyendo el valor de $r$ en el volumen tenemos que:
\begin{align*}
V&=\frac{4}{3}\pi \left( \frac{1}{\sqrt{5\pi}}\right)^{3}cm^{3}\\
&\approx 0.06728 cm^{3}
\end{align*}
Concluimos que el volumen aproximado de la pelota es de $ 0.06728 cm^{3}$.

Más adelante

En la próxima entrada revisaremos el tema de polinomios de Taylor. Para ello, veremos su definición formal y algunos ejemplos de su aplicación para aproximar valores de una función.

Tarea moral

  • En una fábrica de hielo se tiene un cubo con volumen $V=5 m^{3}$. Por falta de espacio, los trabajadores deben sacarlo del congelador, provocando que comience a derretirse a razón de $2 \frac{m^{3}}{s}$, ellos se preguntan: ¿Cuál es la razón de cambio de la superficie del cubo en ese preciso instante?
  • Un tronco de madera cuyo largo es de $13 m$ se encuentra apoyado sobre un muro. Se te pide hallar la velocidad con la que baja el extremo superior del tronco cuando su extremo inferior dista del muro $5m$. Se sabe que el tronco se separa a razón de $5 \frac{m}{s}$
  • Un barco pesquero de $6 m$ de altura se aleja de un faro cuya altura es de $130 m$ y alumbra con una razón de $40 \frac{m}{s}$. Determina la razón de cambio a la cual se mueve el extremo de la sombra del barco.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior I: Principio de inducción en los números naturales

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada vamos a hablar de el principio de inducción que se deriva del quinto axioma de Peano. Veremos cómo es que nos ayudará a un nuevo tipo de demostraciones, lo que significa en términos simples y algunos ejemplos de su uso.

El efecto dominó

Pensemos un poco en cómo funciona la inducción matemática viendo un ejemplo con las fichas de dominó. Imaginamos tenemos tres fichas de domino y las paramos una detrás de otra:

Si nosotros tiramos la primera ficha, las otras dos caerán:

Lo que se necesita para que se caigan las fichas será que la primera ficha caiga. Esto es cierto bajo ciertas condiciones. Deberemos saber que las fichas están suficientemente juntas para que una tire a la otra. Si por ejemplo, la última pieza estuviera muy lejos, la segunda pieza no la tiraría:

Con esto en mente, podríamos decir que todas las piezas de dominó se caen si:

  1. La primera pieza se cae.
  2. Cada vez que una pieza se cae, la pieza que sigue igual se cae.

Ahora, supongamos que tenemos una sucesión infinita de piezas de dominó, y enumeremos las piezas según los números naturales:

En el caso de que nuestras piezas estén bien colocadas, si tiramos la pieza $0$, esperaremos que se caiga la ficha $1$, seguido de la $2,$ la $3$ y así sucesivamente. De hecho si por algún momento dejáramos de ver las piezas y volteamos a ver en algún momento cualquier ficha cayendo, sabremos que la siguiente igual se cae. Es decir, imagina que nos distraemos después de tirar la primera ficha, al momento de volver a voltear a ver las fichas cayendo, estaremos viendo que alguna pieza se va cayendo tirando la que sigue. Digamos que nombramos a esta pieza la ficha $n$, entonces observaremos a la pieza $n+1$ caer enseguida:

Lo que nos interesa para decir que todas las piezas se caen es que si una ficha se cae, la siguiente se cae. Es esta misma idea bajo las que se rige la inducción matemática, veamos la parte matemática de esta idea.

Sobre el quinto axioma de Peano

Veamos qué nos dice el último axioma que definimos con anterioridad:

Axioma 5 (Primer principio de inducción). Si $S$ es un subconjunto de $ \mathbb{N} $ tal que:

  1. $0 \in \mathbb{N}$
  2. Para cada número $n \in S$, sucede que $\sigma(n) \in S$

Entonces $S=\mathbb{N}$

Y veamos cómo es que esto se une con lo que hemos dicho sobre las fichas de dominó. La primera condición la podemos traducir como

1.Se cae la primera pieza.

Mientras que la segunda condición del axioma nos diría que:

2. Siempre que se cae una ficha, se cae la ficha que se encuentra delante.

Finalmente si se cumplen estas dos condiciones, nuestro axioma nos diría que el conjunto $S$ es el conjunto de los números naturales, pero recordemos que esto en términos del dominó significa que todas las piezas se caen. Entonces lo que nos dice el quinto axioma es que para verificar que un conjunto de números naturales es de hecho el conjunto de los números naturales, deberemos de ver que el primer número natural está y cada vez que veamos que un número natural está en el conjunto, su sucesor también deberá estar. La razón por la que intuitivamente esto funciona es por el principio del dominó.

Cuando nosotros tenemos una proposición matemática $P(n)$ para la cual queremos comprobar que cualquier número natural $n$ la cumple, la técnica de demostración por inducción será útil porque en lugar de probar que cada número individualmente la cumple, bastará demostrar que se satisfacen las condiciones del principio de inducción para argumentar que todos los números naturales la cumplen.

Algoritmo de demostraciones por inducción

Supongamos tenemos una proposición en el conjunto de los números naturales $P(n)$. El segundo axioma de los conjuntos garantiza la existencia de un conjunto 
$$S = \{n: P(n)\}$$.
Y el axioma 5 de Peano argumenta que si se cumplen las siguientes dos condiciones:

1. El $0$ pertenece al conjunto $S$ 
2. Si $n \in S$ entonces $n+1 \in X$

entonces $S = \mathbb{N}$. Es decir, todos los números naturales cumplen la condición $P(n)$
Veamos ahora estos dos pasos uno por uno:
1. Base inductiva: Probar que se cae la primera ficha. Este paso consistirá en demostrar que se cumple $P(0)$
2. Hipótesis de inducción: Suponer que un número $n$ cumple $P(n)$
3. Paso inductivo: Demostrar que la siguiente ficha se cae. En este paso debemos demostrar que se cumple también $P(n+1)$

Un ejemplo de inducción matemática

Proposición. La suma de los primeros $n$ números naturales es $\frac{n(n+1)}{2}$.

Esta proposición nos dice que si sumamos los primeros $n$ números n, el resultado será: $$ \sum_{i=0}^{n} i = 0+1+2+\dots+n-1+n = \frac{n(n+1)}{2}.$$ Para demostrar esto, seguiremos los pasos del algoritmo. Para ello, consideremos al conjunto $S=\{n \in \mathbb{N}: \sum_{i=0}^{n} i = \frac{n(n+1)}{2} \}$, es decir, $S$ es el conjunto de los números naturales $n$ para los cuales la suma de los primeros $n$ números naturales equivale a $ \frac{n(n+1)}{2} $. Lo que queremos demostrar es que este conjunto $S$ son todos los números naturales, es decir, que todos los números naturales cumplen esta condición. Para ello seguiremos los pasos del algoritmo.

Demostración. (por inducción sobre $n$).

Base inductiva. Demostraremos que $ \sum_{i=0}^{0} i = \frac{0(0+1)}{2} $. En efecto, notemos que $$ \sum_{i=0}^{0} i = 0= \frac{0(0+1)}{2} .$$ Así, ha quedado demostrada la base inductiva.

Hipótesis de inducción. Supongamos que $n \in \mathbb{N}$ es tal que $ \sum_{i=0}^{n} i = \frac{n(n+1)}{2} $.

Paso inductivo. Ahora demostraremos que $$ \sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}. $$ Para ello, basta notar que
$$\begin{align*}
\sum_{i=0}^{n+1} i &= \sum_{i=0}^{n} i + n+1 \\
&= \frac{n(n+1)}{2} + n+1 (\text{ esto por hipótesis de inducción}) \\
&= \frac{n(n+1)}{2} + \frac{2n+2}{2} \\
&= \frac{n(n+1)+2n+2}{2} \\
&= \frac{(n^2+n)+2n+2)}{2} \\
&= \frac{n^2+3n+2)}{2} \\
&= \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2} .
\end{align*}$$Quedando así demostrado el paso inductivo.

Así, hemos demostrado que el conjunto $S=\mathbb{N}$, es decir, que se cumple para todos los números naturales, quedando demostrada la proposición.

$\square$

Más adelante…

En la siguiente entrada daremos la definición de funciones recursivas que serán en pocas palabras, funciones en los números naturales las cuales son funciones que podemos definir solo diciendo cuánto valen en el $0$ y la evaluación en un término $\sigma(k)$ depende únicamente de la evaluación en $k$. También daremos un vistazo general al teorema de recursión.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra por inducción que la suma de los primeros $n$ números pares es $n(n+1)$.
  2. Encuentra una fórmula para la suma de los primeros $n$ números impares usando el ejercicio anterior junto al ejemplo demostrado en la entrada.
  3. Prueba que para cualquier número natural $n$, $$\sum_{i=1}^n(2i-1) = n^2 $$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»