Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Ecuaciones Diferenciales I – Videos: Ecuaciones autónomas, soluciones de equilibrio, línea fase y esbozo de soluciones

Por Eduardo Vera Rosales

Introducción

En la entrada anterior desarrollamos un par de técnicas geométricas para conocer las soluciones de una ecuación diferencial de primer orden de la forma $\frac{dy}{dt}=f(t,y)$. En esta ocasión nos enfocaremos en una familia de ecuaciones en particular, que tienen la forma $\frac{dy}{dt}=f(y)$, las cuales llamaremos ecuaciones autónomas. Para conocer sus soluciones de manera geométrica, haremos uso de sus soluciones de equilibrio y su línea fase. Por supuesto definiremos estos conceptos y mediante herramientas de cálculo diferencial podremos hacer un esbozo de las soluciones a dicha ecuación diferencial.

Vamos a comenzar.

Esbozo de las soluciones a una ecuación autónoma mediante el trazo de la línea fase y sus soluciones de equilibrio

En este video definimos a las ecuaciones diferenciales autónomas de primer orden y sus soluciones de equilibrio. Posteriormente, dibujamos la línea fase asociada a la ecuación y con ayuda de esta hacemos un esbozo de las soluciones a la ecuación en el plano $t-y$.

Clasificación de las soluciones de equilibrio

Una vez que conocemos cómo dibujar las soluciones de una ecuación autónoma a partir de su línea fase, clasificamos sus soluciones de equilibrio en tres tipos, según el comportamiento de soluciones cercanas en el plano $t-y$.

Finalizamos con un teorema que nos permitirá conocer el tipo de solución de equilibrio de una ecuación autónoma, mediante el signo de la derivada de la función $f(y)$ evaluada en la solución de equilibrio.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra las soluciones de equilibrio y dibuja la línea fase de la ecuación $\frac{dy}{dt}=y^{3}-y^{2}$.
  • Considera la ecuación autónoma $\frac{dy}{dt}=\frac{1}{1-y}$. Encuentra sus soluciones de equilibrio (si las tiene) y dibuja la línea fase. Con la información obtenida, analiza cuál es el comportamiento de las soluciones a la ecuación. ¿Cómo crees que se ven las soluciones en el plano $t-y$?
  • ¿Cómo dibujarías las soluciones a la ecuación $\frac{dy}{dt}=f(y)$ si $f$ tiene la siguiente gráfica? Hint: Recuerda los criterios de los signos de las derivadas de primer orden en un punto que nos ayudan a ver cuándo la función es creciente o decreciente en dicho punto.
Ecuaciones autónomas
Gráfica de $f$. Elaboración propia.
  • Da ejemplos donde $\frac{dy}{dt}=f(y)$, $y_{0}$ es solución de equilibrio de la ecuación diferencial, $f'(y_{0})=0$ y $y_{0}$ sea atractor, repulsor o nodo.
  • Clasifica las soluciones de equilibrio del tercer ejercicio.

Más adelante

Ahora que hemos visto varias técnicas para encontrar las soluciones a una ecuación de primer orden, al menos de manera geométrica, nos enfocaremos en la parte analítica de las soluciones.

En el próximo video nos enfocaremos en las ecuaciones lineales homogéneas, y la técnica para resolverlas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Probabilidad I: Interpretación de las Operaciones con Eventos

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior introdujimos finalmente lo que es una medida de probabilidad. Vimos las propiedades que determinan si una función dada es una medida de probabilidad. Sin embargo, antes de continuar con sus propiedades, hagamos una pausa. Para ser exactos, veamos la interpretación de las operaciones con conjuntos en este contexto.

Con frecuencia te enfrentarás con problemas concretos que requerirán que interpretes bien las operaciones entre eventos. En particular, los problemas de conteo son muy importantes en la probabilidad, y suelen requerir de estas habilidades. Por ello, es importante que tengas clara la interpretación de las operaciones con conjuntos.

Complementación

Para empezar, hay que saber interpretar la complementación. Para hacerlo, sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y $A$ un evento. Recuerda que el complemento de un conjunto $A$ con respecto a $\Omega$ son todos los elementos de $\Omega$ que no son elementos de $A$. Esto es,

\begin{align*}
A^{\mathsf{c}} = \{ \omega \in \Omega \mid \omega \notin A \}.
\end{align*}

Esta es la definición matemática del complemento. Sin embargo, ¿cómo la interpretamos en el contexto la probabilidad? Para hacerlo, recuerda que un evento $A$ es un subconjunto de $\Omega$. En consecuencia, $A$ tiene algunos de los elementos de $\Omega$. Es decir, los elementos de $A$ son algunos de los posibles resultados del fenómeno aleatorio.

Por ello, cuando obtenemos la probabilidad de $A$, esto es, $\mathbb{P}(A)$, este número indica «la probabilidad de que ocurra $A$». Por el contrario, el evento $A^{\mathsf{c}}$ incluye todos los elementos de $\Omega$ que no son elementos de $A$. En principio, podríamos decir que $\mathbb{P}(A^{\mathsf{c}})$ es «la probabilidad de que ocurra $A^{\mathsf{c}}$». Sin embargo, una interpretación útil en nuestro contexto es que $\mathbb{P}(A^{\mathsf{c}})$ expresa «la probabilidad de que no ocurra $A$».

Esta dualidad es muy importante, porque puedes encontrarte con problemas en los que te piden la probabilidad de que no ocurra algo. Ante esta situación, lo que debes de hacer es pensar en el complemento del evento en cuestión.

Ejemplo. Sea $\Omega = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$ y $\mathscr{F} = \mathscr{P}(\Omega)$ un σ-álgebra sobre $\Omega$; y supón que se eligirá uno de estos números al azar. Supongamos que nos interesa el evento en el que «el resultado no es un múltiplo de $3$». Primero, debemos de identificar el evento «el resultado es un múltiplo de $3$». Este sería el evento cuyos elementos son todos los resultados que son múltiplo de $3$. Sea $A$ ese evento. Entonces, matemáticamente, $A$ sería el conjunto

\[ A = \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 3k \}. \]

En particular, en este ejemplo basta con revisar los elementos de $\Omega$ que satisfacen esta propiedad. Más precisamente, $A$ sería el conjunto

\[ A = \{ 3, 6, 9 \}. \]

Ahora, el evento que nos interesa es que «el resultado no es un múltiplo de $3$», así que el evento que corresponde sería $A^{\mathsf{c}}$. Es decir, la solución a este ejemplo sería

\[ A^{\mathsf{c}} = \{ 1, 2, 4, 5, 7, 8, 10 \}, \]

el evento cuyos elementos son todos los resultados que no son múltiplos de $3$.


Unión de eventos

En ocasiones puede interesarnos el evento en el que el resultado entra en al menos una de varias posibilidades. Por ejemplo, si dados $A$, $B$ eventos, ¿cuál es el evento que concentra la posibilidad de que ocurra $A$ u ocurra $B$? Este sería $A \cup B$, pues recuerda que

\[ A \cup B = \{ \omega \in \Omega \mid \omega \in A \lor \omega \in B \}. \]

Como $A \cup B$ está definida por el conectivo lógico «ó», se entiende que los elementos de $A \cup B$ satisfacen al menos una de dos posibilidades: ser elemento de $A$, o ser elemento de $B$. Esto es importante, porque entonces, en el contexto de la probabilidad, $\mathbb{P}(A \cup B)$ expresa «la probabilidad de que ocurra $A$ u ocurra $B$». En otras palabras, «la probabilidad de que ocurra al menos uno de dos casos posibles: que ocurra $A$, o que ocurra $B$».

Es muy importante que recuerdes que el «ó» en lógica es inclusivo, es decir, que si el resultado es tal que $A$ y $B$ ocurren, se considera que ocurrió $A$ ó $B$. Además, esta misma interpretación se extiende a cuando tienes $n$ eventos, $\bigcup_{i = 1}^{n} A_{n}$ sería el evento en el que ocurre al menos uno de los $A_{i}$.

Ejemplo. Nuevamente, sea $\Omega = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$ y $\mathscr{F} = \mathscr{P}(\Omega)$ un σ-álgebra sobre $\Omega$; y supón que se eligirá uno de estos números al azar. Supongamos que nos interesa el evento «el resultado es un número par o el resultado es un múltiplo de $5$». Para verlo, tenemos que identificar los eventos que lo conforman. Estos son dos: «el resultado es un número par» y «el resultado es un múltiplo de $5$». Es decir, son dos eventos $A$, $B$, que expresados matemáticamente son

\begin{align*}
A &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 2k \}, \\
B &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 5k \}.
\end{align*}

Explícitamente, en este ejemplo, estos eventos son

\begin{align*}
A &= \{2,4,6,8,10\}, \\
B &= \{5,10\},
\end{align*}

por lo que el evento que buscamos en este ejemplo es $A \cup B$, que sería

\begin{align*}
A \cup B &= \{2,4,5,6,8,10\}.
\end{align*}

Ciertamente, los elementos de $A \cup B$ son todos los elementos de $\Omega$ que son pares o son múltiplos de $5$.


En ocasiones, es bueno que sepas partir de la definición matemática, seas capaz de interpretarla, y obtengas cuál es el resultado de una operación con conjuntos. Por ejemplo, sean

\begin{align*}
C &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 2k + 1 \}, \\
D &= \{ \omega \in \Omega \mid \exists k \in \mathbb{Z}\colon \omega = 3k \}.
\end{align*}

La interpretación de $C$ es que es el evento en el que «el resultado es impar», y $D$ es el evento en el que «el resultado es múltiplo de $3$».

¿Qué interpretación tendría el evento $C \cup D$? Basta con conectar las expresiones que obtuvimos de interpretar a $C$ y a $D$. Así $C \cup D$ es el evento en el que «el resultado es impar o el resultado es múltiplo de $3$».


Intersección de eventos

También puede resultar interesante el evento en el que múltiples posibilidades se satisfacen a la vez. Por ejemplo, dados $A$, $B$ eventos, ¿cuál es el evento que representa que ocurran $A$ y $B$ a la vez? La respuesta es $A \cap B$. Recuerda que

\[ A \cap B = \{ \omega \in \Omega \mid \omega \in A \land \omega \in B \}. \]

En el caso de $A \cap B$, esta operación está definida por el conectivo lógico «y», así que los elementos de $A \cap B$ satisfacen dos condiciones: son elementos de $A$ y son elementos de $B$. Ambas deben de ser verdaderas para ser elemento de $A \cap B$. Por ello, en el contexto de la probabilidad, $\mathbb{P}(A \cap B)$ expresa «la probabilidad de que ocurra $A$ y ocurra $B$». En otras palabras, expresa «la probabilidad de que se satisfagan dos condiciones: que ocurra $A$ y que ocurra $B$».

Esta misma idea se extiende a más conjuntos. Por ejemplo, si tienes $n$ conjuntos, entonces $\bigcap_{i=1}^{n} A_{i}$ es el evento en el que ocurren todos los $A_{i}$.

Ejemplo. Veamos ahora un ejemplo menos formal. Con frecuencia te econtrarás con ejercicios de este tipo. Sea $P$ el conjunto cuyos elementos son los habitantes de la colonia donde vives. Supón que escogeremos dos personas distintas de $P$ al azar. Primero, observa que el espacio muestral de este fenómeno aleatorio sería

\[ \Omega = \{ (x,y) \in P\times P \mid x \neq y \}, \]

son todos los pares ordenados de elementos de $P$ en los que las coordenadas son distintas. Esto obedece a que el experimento aleatorio consiste en seleccionar dos personas distintas de $P$. Bien, ahora piensa en los siguientes eventos que nos podrían interesar:

  • $H$ es el evento en el que «las dos personas escogidas son hombres«.
  • $E$ es el evento en el que «las dos personas escogidas tienen la misma edad«.
  • $V$ es el evento en el que «las dos personas escogidas son vecinas«.

Aquí hicimos una elección conveniente de letras que ayudan a identificar lo que significa cada evento. Por ejemplo, utilizamos $H$ para el evento en el que ambas personas son hombres porque la primera letra de la palabra «hombres» es ‘h’.

Ahora, veamos algunas operaciones entre los eventos anteriores.

  • Primero, veamos qué evento es $H \cap E$. Este es el evento en el que se satisfacen $H$ y $E$ a la vez. Por ello, $H \cap E$ sería el evento en el que «las dos personas escogidas son hombres y tienen la misma edad«.
  • $H^{\mathsf{c}}$, el complemento de $H$, es aquel evento en donde $H$ no se cumple. Es decir, $H^{\mathsf{c}}$ es el evento en el que «las dos personas escogidas no son ambas hombres«. En otras palabras, es el evento en el que al menos una de las dos personas elegidas es mujer, porque esto asegura que no son ambas hombres.
  • $H^{\mathsf{c}} \cup V$ es el evento en el que ocurre al menos una de dos posibilidades: no ocurre $H$, u ocurre $V$. Es decir, es el evento en el que «las dos personas escogidas cumplen al menos una de dos condiciones: al menos una de ellas es mujer, o son vecinas«.
  • $H^{\mathsf{c}} \cap V^{\mathsf{c}}$ es el evento en el que cumple que no ocurre $H$ y no ocurre $V$. Esto es, sería el evento en el que «las dos personas escogidas satisfacen dos condiciones: al menos una de ellas es mujer, y no son vecinas«.
  • $E \cap H^{\mathsf{c}}$ es el evento en el que ocurre $E$, pero no ocurre $H$. Por tanto, sería el evento en el que «las dos personas escogidas tienen la misma edad y al menos una de ellas es mujer«.

Para acabar el contenido de esta entrada, presentaremos la interpretación de dos operaciones con eventos que son un poco más especializadas, pero que es bueno tenerlas en cuenta.

Diferencia de eventos

La diferencia de eventos es muy similar a la intersección de eventos, pero también entra en juego el complemento. Dados $A$ y $B$ eventos, puede interesarnos aquel evento en el que ocurre $A$ y no ocurre $B$. Es decir, sí tomamos en cuenta los elementos de $A$, pero queremos que no se tomen en cuenta los de $B$. Esto podemos hacerlo a través de una intersección:

\[ A \cap B^{\mathsf{c}} = \{ \omega \in \Omega \mid \omega \in A \land \omega \notin B \}. \]

Como suponemos que $A$ y $B$ son eventos de un cierto espacio muestral $\Omega$, se cumple que $A \subseteq \Omega$ y $B \subseteq \Omega$. Por ello, el complemento es relativo a $\Omega$, y se tiene que

\[ A \cap B^{\mathsf{c}} = A \smallsetminus B, \]

así que $A \smallsetminus B$ es precisamente aquel evento en el que ocurre $A$ y no ocurre $B$. En consecuencia, $\mathbb{P}(A \smallsetminus B)$ expresa «la probabilidad de que ocurra $A$ y no ocurra $B$».

Diferencia simétrica de eventos

Hay una última operación entre eventos que consideramos importante que sepas interpretar. Esta es la diferencia simétrica de dos eventos. Dados $A$ y $B$ eventos, nos podría interesar aquel evento en el que ocurre $A$ u ocurre $B$, pero no ocurren ambos a la vez. En otras palabras, podría interesarnos el evento en el que ocurre exclusivamente $A$, u ocurre exclusivamente $B$. Este evento sería la diferencia simétrica de $A$ y $B$:

\[ A \triangle B = \{ \omega \in \Omega \mid (\omega \in A \land \omega \notin B) \lor (\omega \in B \land \omega \notin A) \}. \]

Hay varias maneras de escribir a $A \triangle B$, las siguientes son las más tradicionales:

\begin{align*}
A \triangle B &= (A \cup B) \smallsetminus (A \cap B), \\
A \triangle B &= (A \smallsetminus B) \cup (A \smallsetminus B).
\end{align*}

Por si te interesa saber más al respecto, el conectivo lógico que determina a $A \triangle B$ es el «o exclusivo«, frecuentemente denotado por $\mathsf{XOR}$, que se deriva del término en inglés «exclusive or«. Así, $A \triangle B$ es el evento en el que «ocurre $A$ u ocurre $B$, pero no ocurren $A$ y $B$ a la vez». En consecuencia, $\mathbb{P}(A \triangle B)$ expresa «la probabilidad de que ocurra $A$ u ocurra $B$ pero no ocurran $A$ y $B$ a la vez».

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

Retomando el ejemplo en el que $P$ es el conjunto de habitantes de la colonia donde vives, y nuevamente suponiendo que se seleccionarán dos personas distintas al azar, con

\[ \Omega = \{ (x,y) \in P \times P \mid x \neq y \}, \]

considera los siguientes eventos:

  • $M$ el evento en el que las dos personas elegidas son mujeres.
  • $T$ el evento en el que las dos personas elegidas tienen trabajo.
  • $A$ el evento en el que las dos personas elegidas tienen al menos un automóvil.

Determina el significado de los siguientes eventos:

  • $M^{\mathsf{c}}$.
  • $M \cap T$.
  • $A \smallsetminus T$.
  • $M^{\mathsf{c}} \cap A^{\mathsf{c}}$.
  • $T \triangle M$.
  • $M \cap T \cap A$.
  • $A \cup (M^{\mathsf{c}} \triangle T)$.

Más adelante…

En la siguiente entrada retomaremos el rumbo que tomamos en la entrada anterior, ya que varias propiedades interesantes de una medida de probabilidad involucran operaciones con eventos. La interpretación de las operaciones con eventos es una herramienta muy útil que te ayudará en la resolución de problemas, pero no es estrictamente necesaria. La probabilidad de eventos que son el resultado de realizar operaciones con eventos puede obtenerse sin necesidad de estas interpretaciones. Sin embargo, sí resulta de utilidad para que puedas plantear correctamente ciertos problemas en los que los eventos no están definidos explícitamente.

Entradas relacionadas

Geometría Moderna I: Desigualdad del triángulo y lugar geométrico

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión estudiaremos una propiedad muy importante de los triángulos, la desigualdad del triángulo que básicamente nos dice que la distancia mas corta entre dos puntos es el segmento de recta que los une, también veremos lo que es un lugar geométrico y mostraremos un par de ejemplos importantes.

Desigualdad del triángulo

Proposición 1. En todo triángulo al mayor de los lados se opone el mayor de los ángulos.

Demostración. Sea $\triangle ABC$ tal que $AB > AC$, debemos mostrar que $\angle C > \angle B$.

Figura 1

Como $AB > AC$, podemos construir un punto $D \in AB$ tal que $AD = AC$, ya que $\triangle ADC$ es isósceles, por la proposición de la entrada anterior, se cumple $\angle CDA = \angle ACD$, de aquí se sigue que:

$\begin{equation} \angle C = \angle ACB > \angle ACD = \angle DCA. \end{equation}$

Como $\angle ADC$ es un ángulo exterior de $\triangle DBC$, entonces $\angle ADC$ es mayor que los ángulos internos de $\triangle DBC$, no adyacentes a él, en particular

$\begin{equation} \angle ADC > CBD = \angle B. \end{equation}$

De $(1)$ y $(2)$ se sigue que $\angle C > \angle B$.

$\blacksquare$

Corolario. En todo triángulo el ángulo mayor es opuesto al lado mayor.

Demostración. Sea $\triangle ABC$ tal que $\angle A > \angle B$, por demostrar que $BC > AC$. Supongamos lo contrario.

Figura 2

Caso 1. Si $BC = AC$, entonces $\triangle ABC$ es isósceles por lo que $\angle A = \angle B$, lo que es una contradicción a nuestra hipótesis.

Caso2. Si $BC < AC$, entonces por la proposición anterior $\angle B > \angle A$, esto nuevamente contradice la hipótesis.

Por lo tanto, no queda otra opción más que $\angle A > \angle B$.

$\blacksquare$

Proposición 2. Si dos lados de un triángulo son iguales a dos lados de un segundo triángulo, pero el ángulo comprendido entre el primer par de lados es mayor que el ángulo formado por los lados del segundo triangulo, entonces el lado restante del primer triángulo será mayor al tercer lado del segundo triangulo.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $\angle A > \angle A’$, por demostrar que $BC > B’C’$.

Figura 3

Sobre $A’B’$ y tomando como vértice $A’$ construimos un ángulo igual a $\angle A$, y construimos $D$ tal que $A’D = AC$, entonces por criterio LAL, $\triangle ABC \cong \triangle A’B’D$ por lo que $B’D = BC$.

Notemos que $\triangle C’A’D$ es isósceles, entonces $\angle DC’A = \angle A’DC’$.

Ahora en $\triangle DC’B’$ tenemos $\angle DC’B’ = \angle A’C’B’ + \angle DC’A$,
$\Rightarrow \angle DC’B’ > \angle DC’A = \angle A’DC’$.

Pero $\angle A’DC’ = \angle A’DB’ + \angle B’DC’$,
$\Rightarrow \angle A’DC’ > \angle B’DC’$.

Por transitividad, $\angle DC’B’ > \angle B’DC’$.

Aplicando el corolario obtenemos $B’D > B’C’$, pero $B’D = BC$,
$\Rightarrow BC > B’C’$.

$\blacksquare$

Teorema 1, desigualdad del triángulo. Para todo triangulo se cumple que la suma de cualesquiera dos de sus lados es mayor al lado restante.

Demostración. Sea $\triangle ABC$, sobre la recta que pasa por $B$ y $C$, construimos un punto $D$ tal que $CD = AC$.

Figura 4

Como $\triangle ACD$ es isósceles, $\angle CAD = \angle ADC$, entonces en $\triangle ABD$ tenemos $\angle BAD > \angle CAD = \angle ADC = \angle ADB$, por el corolario anterior $BD > AB$.

Pero $BD = BC + CD = BC + AC$, por lo tanto, $AC + BC > AB$.

Las otras desigualdades, $AB + BC > AC$ y $AB + AC > BC$, se muestran de manera similar.

$\blacksquare$

El reciproco de este teorema también es cierto y lo mostramos a continuación.

Construcción de un triángulo y un ángulo

Teorema 2. Si $a$, $b$ y $c$ son tres números positivos tales que $a + b > c$, $a + c > b$ y $b + c > a$, entonces es posible construir un triángulo de lados $a$, $b$ y $c$.

Demostración. Construyamos un segmento $BC$ de longitud $a$, trazamos una circunferencia con centro en $B$ y radio $c$ $(B, c)$, trazamos otra circunferencia con centro en $C$ y radio $b$ $(C, b)$.

$(B, c)$ y $(C, b)$ se intersecan en dos puntos, sea $A$ uno de estos puntos. $AB = c$ por ser radio de $(B, c)$, $AC = b$ por ser radio de $(C, b)$ y $BC = a$ por construcción.

Figura 5

Notemos que si $(B, c)$ y $(C, b)$ se intersecaran en un solo punto entonces la intersección estaría sobre $BC$ o su extensión, y en tal caso se tendría alguna de las siguientes igualdades
$a = b + c$, $b = a + c$ o $c = a + b$, figura 6.

Figura 6

Y si $(B, c) \cap (C, b) = \varnothing$, entonces alguna de las cantidades seria mayor que la suma de las otras dos, $a > b + c$, $b > a + c$ o $c > a + b$, figura 7, lo que sería una contradicción a nuestras hipótesis.

Figura 7

Por lo tanto, $\triangle ABC$ es el triángulo buscado.

$\blacksquare$

Problema. Sobre una recta dada construir un ángulo igual a un ángulo dado.

Solución. Sea $\angle AOB$ el ángulo dado y $l$ la recta dada.

Con centro en $O$ y radio arbitrario $r > 0$ trazamos una circunferencia $(O, r)$ que corte a $OA$ en $C$ y a $OB$ en $D$.

Figura 8

Tomamos $O’ \in l$ y construimos una circunferencia con centro en $O’$ y radio $r$, $(O’, r)$, tomamos una de las intersecciones de $l$ con $(O’, r)$, digamos $D’$, trazamos otra circunferencia con centro en $D’$ y radio $CD$, $(D’, CD)$, sea $C’$ una de las intersecciones de $(O’, r)$ con $(D´, CD)$, entonces por criterio LLL $\triangle COD \cong \triangle C’O’D’$

Por lo tanto, $\angle AOB = \angle C’O’D’$.

$\blacksquare$

Lugar geométrico

Un lugar geométrico es un conjunto de puntos que cumplen un conjunto de condiciones dadas. Para probar que una figura geométrica es un lugar geométrico por lo general la prueba se divide en dos partes.

  • Probar que todos los puntos que satisfacen las condiciones pertenecen a la figura.
  • Probar que todos los puntos que pertenecen a la figura satisfacen las condiciones.

Teorema 3. El lugar geométrico de los puntos que equidistan a dos puntos dados, es la mediatriz del segmento que une los puntos dados.

Demostración. Sean $AB$ un segmento dado, $M$ el punto medio y $m$ la mediatriz de $AB$ respectivamente.

Figura 9

Primero vemos que los puntos en la mediatriz de $AB$  equidistan de $A$ y $B$.

Sea $P \in m$, por definición de mediatriz, $m \cap AB = M$ y $l \perp AB$.

Entonces por criterio LAL (lado, ángulo, lado), $\triangle PMA \cong \triangle PMB$, en consecuencia, $PA = PB$.

$\blacksquare$

Ahora veamos que todos los puntos que equidistan de $A$ y $B$, son los puntos en la mediatriz $m$ de $AB$.

Sea $P$ un punto que satisface las condiciones dadas, entonces $PA = PB$ y así $\triangle APB$ es isósceles, en la entrada anterior vimos que la mediatriz de un triángulo isósceles, pasa por el vértice que comparten los lados iguales, por lo tanto, $P \in m$.

$\blacksquare$

Definición. Definimos la distancia de un punto $P$ a una recta $l$ como la distancia entre $P$ y el pie de la perpendicular trazada desde $P$ a $l$.

Teorema 4. El lugar geométrico de los puntos que equidistan a dos rectas que se intersecan son las bisectrices de los ángulos formados por las rectas.

Demostración. Sean $l_{1}$ y $l_{2}$, dos rectas que se intersecan en $O$, consideremos $b_{1}$ la bisectriz de uno de los ángulos formados por $l_{1}$ y $l_{2}$, digamos $\alpha$, y sea $b_{2}$ la bisectriz del ángulo suplementario a $\alpha$.

Primero veamos que todos los puntos en la bisectriz de $\alpha$ equidistan a $l_{1}$ y $l_{2}$.

Figura 10

Sea $P \in b_{1}$, y sean $A$ y $B$ las intersecciones de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente.

Como $b_{1}$ es bisectriz, $\angle AOP = \angle POB$, además $\angle PAO = \angle OBP = \dfrac{\pi}{2}$, como la suma de los ángulos internos de todo triángulo es constante entonces $\angle OPA = \angle BPO$.

Entonces en los triángulos $\triangle PAO$ y $\triangle PBO$, $\angle AOP = \angle POB$, $\angle OPA = \angle BPO$ y $OP$ es un lado común.

Por criterio LAL, $\triangle PAO \cong \triangle PBO$, por lo tanto $PA = PB$, así la distancia de $P$ a $l_{1}$ y a $l_{2}$ es la misma.

De manera análoga podemos ver que los puntos en $b_{2}$ son equidistantes a $l_{1}$ y $l_{2}$.

$\blacksquare$

Ahora mostremos que todos los puntos que son equidistantes a $l_{1}$ y $l_{2}$ pertenecen a $b_{1}$ o $b_{2}$.

Sea $P$ un punto que satisface que $PA = PB$, donde $A$ y $B$ son los pies de las perpendiculares trazadas desde $P$ a $l_{1}$ y $l_{2}$ respectivamente.

Figura 11

Entonces $\triangle PAO$ y $\triangle PBO$ son triángulos rectángulos donde la hipotenusa es la misma, y por hipótesis tienen un cateto igual, $PA = PB$, por criterio hipotenusa – cateto $\triangle PAO \cong \triangle PBO$, en particular $\angle AOP =\angle POB$.

Notemos que las dos rectas dividen al plano en cuatro regiones distintas y en cada región podemos hacer el mismo procedimiento, pero dos rectas que se intersecan solo tienen dos bisectrices distintas.

Por lo tanto si $PA = PB$, entonces $P \in b_{1}$ o $P \in b_{2}$.

$\blacksquare$

Más adelante…

En al siguiente entrada estudiaremos a los paralelogramos y sus propiedades.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB = A’B’$, $AC = A’C’$ y $BC > B’C’$, muestra que $\angle A > \angle A’$.
  2. Sea $\square ABCD$ un cuadrado y $O$ un punto en el plano muestra que $OA < OB + OC + OD$.
  3. Sean $\triangle ABC$ y $A’$ un punto en el interior del triángulo, muestra que $AB + AC > A’B + A’C$ y que $\angle BA’C > \angle BAC$.
  4. En un poblado situado junto a un rio, cuyo borde es totalmente recto, hay un incendio en un punto $A$, la estación de bomberos se encuentra en un punto $B$ del mismo lado del río donde se dio el incendio, los bomberos necesitan pasar primero por el río para abastecerse de agua. ¿Qué punto $P$ en el borde del río hace que el trayecto $BP + PA$ sea mínimo?
  5. Muestra que si dos circunferencias se intersecan en un solo punto entonces el punto pertenece al segmento que une los centros o a su extensión.
  6. $i)$ Dados una recta y un punto en ella construye la perpendicular a la recta por el punto dado.
    $ii)$ Dados una recta y un punto fuera de ella construye la paralela a la recta por el punto dado.
    $iii)$ Dados una recta y un punto fuera de ella construye la perpendicular a la recta por el punto dado.
  7. $i)$ Dados una recta y un numero $a > 0$ encuentra el el lugar geométrico de los puntos cuya distancia a la recta es $a$.
    $ii)$ ¿Cuál es el lugar geométrico de los puntos cuya distancia a una circunferencia dada $(O, r)$ es una constante dada $b > 0$?

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 9-12, 44-54.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 16-18.
  • Geometría interactiva
  • Geometry Help

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Demostración del teorema de Cayley-Hamilton

Por Julio Sampietro

Introducción

En esta entrada demostraremos el teorema de Cayley-Hamilton. Daremos dos demostraciones de sabores muy diferentes. La primera demostración explota las propiedades de la matriz adjunta, mientras que la segunda echa mano de las familias especiales de las cuales calculamos el polinomio característico.

Primera demostración

La primera demostración del teorema de Cayley-Hamilton usa algunas propiedades de la matriz adjunta. Recordamos el teorema y lo demostramos a continuación:

Teorema. (Cayley-Hamilton)

Para cualquier matriz $A\in M_n(F)$ se cumple que

\begin{align*}
\chi_A(A)=O_n.
\end{align*}

Demostración. Sea $A\in M_n(F)$ y sea $B=XI_n-A\in M_n(K)$ dónde $K=F(X)$ es el campo de fracciones racionales en la variable $X$. Es decir, un elemento de $K$ es un cociente de la forma

\begin{align*}
\frac{A(X)}{B(X)}, \hspace{2mm} A(X),B(X)\in F[X]
\end{align*}

con $B$ no idénticamente cero.

Sea $C$ la matriz adjunta de $B$, es decir $C=\operatorname{adj}(B)$. Sus entradas son (por definición) los determinantes de las matrices de tamaño $(n-1)$ cuyas entradas son a su vez polinomios de grado a lo más $1$. Es decir cada entrada de $C$ es un polinomio de grado a lo más $n-1$. Luego, sea

\begin{align*}
c_{ij}= c_{ij}^{(0)}+c_{ij}^{(1)}X+\dots+c_{ij}^{(n-1)} X^{n-1}
\end{align*}

la $(i,j)$-ésima entrada de $C$, con $c_{ij}^{(0)},\dots, c_{ij}^{(n-1)}\in F$. Sea $C^{(k)}$ la matriz cuyas entradas son $c_{ij}^{(k)}$. Entonces

\begin{align*}
C=C^{(0)}+C^{(1)}X+\dots+ C^{(n-1)}X^{n-1}.
\end{align*}

Ahora, recuerda que

\begin{align*}
B\cdot C=B \cdot \operatorname{adj}(B)=\det(B)\cdot I_n=\chi_A(X)\cdot I_n.
\end{align*}

Es decir

\begin{align*}
(X I_n-A)\cdot \left(C^{(0)}+C^{(1)}X+\dots+C^{(n-1)}X^{n-1}\right)=\chi_A(X)\cdot I_n.
\end{align*}

Por otro lado, si escribimos a $\chi_A(X)$ como $\chi_A(X)=X^{n}+u_{n-1}X^{n-1}+\dots + u_0\in F[X]$, la igualdad anterior se convierte en

\begin{align*}
&-AC^{(0)}+(C^{(0)}-AC^{(1)})X+ (C^{(1)}-AC^{(2)})X^2+\dots + (C^{(n-2)}-AC^{(n-1)})X^{n-1}\\ &+C^{(n-1)}X^{n}= u_0 I_n+\dots + u_{n-1}I_nX^{n-1}+I_nX^{n}.
\end{align*}

Identificando los términos de cada coeficiente llegamos a

$$\left\{\begin{matrix}
-AC^{(0)}&= u_0 I_n,\\ C^{(0)}-AC^{(1)}&= u_1 I_n,\\ \vdots & \\ C^{(n-2)}-AC^{(n-1)}&=u_{n-1}I_n,\\ C^{(n-1)}&=I_n.
\end{matrix}\right.$$

Comenzando con la última igualdad, tenemos que $C^{(n-1)}=I_n$. Sustituyendo en la anterior llegamos a que $C^{(n-2)}=A+u_{n-1}I_n$, e inductivamente se cumple que

\begin{align*}
C^{(n-j-1)}=A^{j}+u_{n-1}A^{j-1}+\dots+u_1 I_n.
\end{align*}

En particular

\begin{align*}
C^{(0)}=A^{n-1}+u_{n-1}A^{n-2}+\dots+u_1 I_n.
\end{align*}

Multiplicando ambos lados por $A$ y usando que $-AC^{(0)}=u_0 I_n$ finalmente llegamos a

\begin{align*}
A^{n}+u_{n-1}A^{n-1}+\dots+ u_0 I_n=O_n.
\end{align*}

Pero esta igualdad no es nada más que $\chi_A(A)=O_n$, lo que concluye la prueba.

$\square$

Segunda demostración

Para la segunda demostración enunciaremos el teorema de una manera distinta pero equivalente (¿por qué?). Usaremos una estrategia fundada en el cálculo de polinomios característicos de familias conocidas de una entrada previa.

Teorema. (Cayley-Hamilton)

Sea $V$ un espacio vectorial de dimensión finita sobre $F$ y sea $T:V\to V$ una transformación lineal. Entonces $\chi_T(T)=0$.

Demostración. La idea es reducir el problema a transformaciones lineales para las que podemos calcular $\chi_T$ fácilmente. Sin embargo, los detalles son un poco complicados.

Fijemos $x\in V$. Para $m\geq 0$ fijamos

\begin{align*}
W_m=\operatorname{Span}(T^0(x), T^1(x), \dots, T^{m}(x)).
\end{align*}

Nota como $W_0\subset W_1\subset \dots \subset V$ y que $\dim W_m\leq \dim W_{m+1}\leq \dim V$ para todo $m\geq 0$. Entonces debe existir algún $m$ mínimo tal que $\dim W_{m-1}=\dim W_m$. Entonces como $W_{m-1}\subset W_{m}$ se tiene que $W_{m-1}=W_{m}$. Luego $T^{m}(x)\in W_{m-1}$, es decir existe una combinación lineal

\begin{align*}
T^{m}(x)=\sum_{k=0}^{m-1} a_k T^{k}(x).
\end{align*}

Nota que esto implica que $W_{m-1}$ es estable bajo $T$. Como $m$ es mínimo, los vectores $T^{0}(x),\dots, T^{m-1}(x)$ deben ser linealmente independientes: en efecto, si no lo fueran existiría una relación de dependencia entre $T^{m-1}(x)$ y términos de grado menor y así $\dim W_{m-1}=\dim W_{m-2}$ y entonces $m$ no sería mínimo. Por lo tanto forman una base para $W_{m-1}$ y respecto a esta base la matriz asociada a $T\vert_{W_{m-1}}$ es

\begin{align*}
A=\begin{pmatrix} 0 & 0 & 0 &\dots & 0 & a_0\\ 1 & 0 & 0 & \dots & 0 & a_1\\ 0 & 1 & 0 & \dots & 0 & a_2\\ \vdots & \vdots &\vdots &\ddots &\vdots &\vdots\\ 0 & 0 & 0 & \dots & 1 & a_{m-1}\end{pmatrix}.
\end{align*}

El polinomio característico de matrices como esta lo calculamos en esta entrada y es igual a $X^{m}-a_{m-1}X^{m-1}-\dots -a_0$. Entonces

\begin{align*}
\chi_{T\vert_{W_{m-1}}}(T)(x)= T^{m}(x)-\sum_{k=0}^{m-1}a_k T^{k}(x)=0.
\end{align*}

Pero como $W_{m-1}$ es $T-$estable, el polinomio característico de $T\vert_{W_{m-1}}$ divide al polinomio característico de $T$ (este es un ejercicio en la tarea moral de esta entrada) y por tanto $\chi_T(T)(x)=0$. Como $x$ fue arbitrario concluimos que $\chi_T(T)$ es la transformación cero.

$\square$

Más adelante…

En la próxima entrada veremos aplicaciones del teorema de Cayley-Hamilton.

Tarea moral

  1. Supón que $T:V\to V$ es una transformación lineal y $V$ es de dimensión finita. Demuestra que si $W$ es un subespacio $T$-estable de $V$ entonces $\chi_{T\vert_{W}}(X)$ divide a $\chi_{T}(X)$. Sugerencia. Considera una base de $W$, extiéndela a una base de $V$. ¿Cómo se ve la matriz asociada a $T$ en esta base?
  2. Explica por qué las dos versiones que dimos del teorema de Cayley-Hamilton son equivalentes.
  3. Demuestra la propiedad de la matriz adjunta que se menciona en la primera demostración.
  4. Sean $A,B,C\in M_2(\mathbb{C})$ matrices tales que $AC=CB$ y $C\neq O_n$. Demuestra que para cualquier polinomio $P$ se cumple que $P(A)C=CP(B)$. Usando esto y escogiendo un polinomio adecuado, deduce que $A$ y $B$ tienen un eigenvalor en común. Sugerencia: Usa el teorema de Cayley-Hamilton.
  5. Sea la matriz
    \begin{align*}
    A=\begin{pmatrix}
    0 & 2 & 0\\
    1 & 1 & -1\\
    -1 & 1& 1
    \end{pmatrix}.
    \end{align*}
    Usa el teorema de Cayley-Hamilton para calcular $A^{1000}$. Sugerencia: El teorema de Cayley-Hamilton te debería dar una relación entre algunas potencias de $A$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral I: Repaso. Inducción matemática

Por Karen González Cárdenas

Introducción

En el curso de Álgebra Superior I se presenta al conjunto de los números naturales ($\mathbb{N}$). Posteriormente, en el curso de Álgebra Superior II se habla mucho más de ellos: se construyen a partir de teoría de conjuntos y se muestran desde los fundamentos muchas de sus propiedades.

Nosotros no nos enfocaremos en los aspectos anteriores, pero sí aprovecharemos que dicho conjunto posee una propiedad muy importante: el principio de inducción matemática. Como mencionamos en la entrada pasada, este método de demostración es aplicado frecuentemente en las pruebas en las que se desea probar que alguna propiedad se satisface para todos los números naturales.

En Cálculo Diferencial e Integral I haremos uso de la Inducción matemática constantemente, por lo que en esta entrada haremos una revisión a lo necesario para nuestro curso.

Efecto dominó

Imagina que te han regalado una cantidad infinita de fichas de dominó y que has decidido acomodarlas en una fila, una tras otra. Tu propósito al terminar de acomodarlas es dejar caer todas las fichas, por ello consideras empujar la primera ficha para que, al caer ésta, choque con la segunda provocando su caída, y así sucesivamente.

El riesgo del Efecto Dominó: Micro triangulaciones y sus ventajas en  Trabajos de Investigación

Una vez que has decidido poner en marcha tu plan y empujas la ficha 1, te comienzas a preguntar: ¿Cómo puedo asegurar que la ficha 1,000 caerá si sólo he visto caer las primeras 50 fichas? ¿Y que hay de la ficha 1,000,000?

El Principio de Inducción es el que daría respuesta a tu pregunta. El razonamiento de este principio sustenta que si sabes que el procedimiento se ha cumplido para las primeras 50 fichas, en consecuencia cada ficha irá cayendo al final para cualquier ficha que consideres.

Ahora que tenemos una noción de su comportamiento, veremos la definición formal.

Principio de Inducción matemática

Cada autor decide si el conjunto de los números naturales considerará o no al cero como uno de sus elementos. En nuestro caso, tomaremos al cero como un número natural de aquí en adelante.

Definición: Sea $P$ una propiedad y $n\in \mathbb{N}$. Decimos que la propiedad $P$ es válida para todos los naturales si tenemos que:

  1. La propiedad $P$ se cumple para $0$.
  2. Si la propiedad $P$ se cumple para $n \Rightarrow$ la propiedad también se cumple para $n + 1$.

El punto número 1 es conocido como Base de Inducción. El antecedente del punto número 2 es llamado Hipótesis de Inducción y su consecuente Paso Inductivo. En algunos problemas basta con demostrar la afirmación únicamente cuando $n\geq 1$. En estos casos, la base de inducción debe de cumplirse para el natural $1$.

A continuación veremos un par de ejemplos para ver cómo funciona dicho principio.

Ejemplo: Demuestra utilizando Inducción matemática la siguiente fórmula.

$$1+2+ \ldots + n = \frac{n(n+1)}{2}, \quad \forall n\in \mathbb{N}$$

Observación: $\therefore$ se lee «por lo tanto» y $\forall$ significa «para todo».


Demostración: Haremos inducción sobre $n$.
Base de Inducción.- Verificamos que la fórmula se cumple cuando $n=1$

\begin{align*}
\frac{1(1+1)}{2}&= \frac{1(2)}{2}\\
&=\frac{2}{2}\\
&= 1
\end{align*}
Lo cual es cierto.

Hipótesis de Inducción.- Suponemos que la fórmula se cumple para cualquier $k\in \mathbb{N}$ así:
$$1+2+ \ldots + k = \frac{k(k+1)}{2}$$

Paso Inductivo.- Queremos probar que la fórmula se cumple para $k+1$, por lo que bastará probar la siguiente igualdad:
$$1+2+ \ldots + k+ (k+1) = \frac{(k+1)((k+1)+1)}{2}$$ es decir, $$1+2+ \ldots + k+ (k+1) = \frac{(k+1)(k+2)}{2}$$

Desarrollaremos el lado izquierdo de la igualdad sustituyendo lo que tenemos en la Hipótesis de Inducción, así queda lo siguiente:
\begin{align*}
1+2+ \ldots + k+ (k+1) &= \frac{k(k+1)}{2} + (k+1)\\
&= \frac{k(k+1)}{2}+ \frac{2(k+1)}{2}\\
&=\frac{k(k+1)+ 2(k+1)}{2}\\
&=\frac{(k+1)(k+2)}{2}
\end{align*}


$$\therefore 1+2+ \ldots + n = \frac{n(n+1)}{2}, \quad \forall n\in \mathbb{N}$$

$\square$

Ejemplo: Demuestra que

$2^{n} < n! \quad$ si $\quad n \geq 4$

Recordemos que $n!$ es llamado $n$ factorial y que está definido como: $n! = 1\cdot 2 \cdot \ldots \cdot (n-1)(n)$.


Demostración: Aplicando inducción sobre $n$, vemos que dada la condición de $n \geq 4$, bastaría probar que:
$$2^{n+3} < (n+3)!, \quad \forall n \in \mathbb{N}$$

La razón de considerar $n+3$ es porque queremos todos aquellos naturales mayores o iguales que 4, al sustituir valores para $n$:

\begin{align*}
n=1 &\Rightarrow 1+3\\
&\Rightarrow 4\\
\\
n=2 &\Rightarrow 2+3\\
&\Rightarrow 5\\
\\
n=3 &\Rightarrow 3+3\\
&\Rightarrow 6\\
&\vdots
\end{align*}
Notamos que los números que obtenemos lo cumplen, aún si continuáramos con dicha sustitución, por esa razón podemos proceder sin problemas.

Y ya que $n$ factorial está definido como: $n! = 1\cdot 2 \cdot \ldots \cdot (n-1)(n)$ tenemos que $4!= 4\cdot 3\cdot 2\cdot 1 =24$.

Base de Inducción.- Verificamos que la desigualdad se cumple para $n=1$. Así sustituyendo vemos:
$$2^{1+3} = 2^{4}=16$$ y que $$(1+3)! = 4! =24$$
Por lo que se cumple la desigualdad: $$2^{1+3} < (1+3)!$$

Hipótesis de Inducción.- Suponemos que la desigualdad se cumple para cualquier $k \in \mathbb{N}$.
$$2^{k+3} < (k+3)!$$

Paso Inductivo.- Queremos probar que la desigualdad se cumple para $k+1$, esto sería:
$$2^{(k+1)+3} < ((k+1)+3)!$$ que es lo mismo que, $$2^{k+4} < (k+4)!$$

Vemos que al reescribir la desigualdad anterior tenemos:
$$2\cdot 2^{k+3} < (k+3)! (k+4)$$
Por hipótesis de inducción sabemos se cumple $2^{k+3} < (k+3)!$, por lo que si se cumple la desigualdad $2< k+4$ terminamos.

$P.d:$ $$2< k+4,\quad \forall k\in \mathbb{N}$$
Demostración: Utilizaremos inducción sobre $k$.
Base Inducción.- Vemos para $k=1$ que $$2< 1+4 = 5$$ se cumple.

Hipótesis de Inducción.- Suponemos que es cierta la desigualdad $2< k+4$ para cualquier $k$.

Paso Inductivo.- Queremos probar que para $k+1$ se cumple la desigualdad $2< (k+1)+4$.
Observemos que $(k+1)+4= (k+4)+1$ que es el sucesor de $k+4$ por lo que cumple $k+4 < (k + 4)+1$.
Así haciendo uso de lo anterior y de la Hipótesis de Inducción se tiene lo siguiente:
$$2< k+4 < (k+4)+1 \quad \Rightarrow \quad2 < (k+4)+1$$
$$\therefore \quad 2 < (k+1)+4$$
$$\therefore \quad 2 < k+4 , \quad \forall k\in \mathbb{N}$$

$\square$

Por lo que ya podemos afirmar que $$2\cdot 2^{k+3} < (k+3)! (k+4).$$
Así concluimos: $$2^{n+3} < (n+3)!, \quad \forall n \in \mathbb{N}.$$

$\square$


Observación: $P.d.$ es una abreviación de «Por demostrar».

Principio de Inducción Fuerte

Existe otra forma de inducción, que debemos recordar por su utilidad, conocida como: Inducción Fuerte, que es consecuencia del Principio de Inducción que vimos antes.

Definición (Principio de Inducción fuerte): Consideremos $P$ una propiedad y $n , l \in \mathbb{N}$. Decimos que la propiedad $P$ es válida para todos los naturales si tenemos que:

  1. $P$ se cumple para $0$.
  2. Si $P$ se cumple para cualquier $l \leq n \Rightarrow P$ se cumple para $n+1$.

Ejemplo: Todos los números positivos $n >1$ son producto de primos.

Demostración: Utilizaremos Inducción fuerte sobre $n$.
Base de Inducción.- Como tenemos la condición $n>1$ consideraremos $n=2$.
Observamos que $2 = 2$ es un producto de primos ( 2 cumple la definición de ser primo).

Hipótesis de Inducción.- Supongamos que todos los números desde 2 hasta $k$ cumplen ser producto de números primos.

Paso Inductivo.- Queremos probar que $k+1$ es producto de números primos.
Recordemos que todo número es primo o compuesto, por lo que tenemos que considerar los siguientes casos.

Caso 1: $k+1$ es primo.
Como $k+1 = k+1$ se sigue que es producto de números primos y se cumple lo que queremos.

Caso 2: $k+1$ es compuesto.
Esto quiere decir que podemos expresar a $k+1$ como un producto de la siguiente manera:
$$k+1= a\cdot b$$ donde $k+1 > a \quad$ y $\quad b > 1$.
Observemos que las últimas desigualdades implican que $k \geq a,b \geq 2$, así por Hipótesis de Inducción $a$ y $b$ cumplen ser producto de números primos.
$\therefore \quad k+1$ es producto de primos.
$\therefore \quad$ Todos los números positivos $n >1$ son producto de primos.

$\square$

Más adelante

Ahora que hemos terminado con el repaso de Inducción matemática. En la siguiente entrada comenzaremos a ver un conjunto de números de suma importancia para el Cálculo: los reales.

Tarea moral

A continuación, encontrarás ejercicios en los que pondrás en práctica el Principio de Inducción matemática:

  1. Probar que: $n^{3} – n$ es un múltiplo de 6, $\forall n\in \mathbb{N}$.
  2. Utiliza inducción para probar la siguiente igualdad:
    $$1^{2}+2^{2}+\ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, \quad \forall n\in \mathbb{N}$$
  3. Demuestra que:
    $$1+3+5+7+\ldots +2n-1 = n^{2}, \quad \forall n\in \mathbb{N}$$
  4. Demuestra por inducción sobre $n$, con $r \neq 1$:
    $$1+r+r^{2}+ \ldots +r^{n} = \frac{1-r^{n+1}}{1-r}$$
  5. Utiliza inducción para probar la siguiente igualdad:
    $$2+5+8+ \ldots+ (3n-1)= \frac{n(3n+1)}{2}$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»