Archivo del Autor: Rubén Alexander Ocampo Arellano

Geometría Moderna I: Triángulos en perspectiva

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada mostraremos el teorema de Desargues que nos habla sobre triángulos en perspectiva, también mostraremos los teoremas de Pascal y de Pappus, estos nos dicen cuando los lados opuestos de un hexágono se intersecan en puntos colineales.

Definición. Dos triángulos $\triangle ABC$ y $\triangle A’B’C’$ están en perspectiva desde una recta si los lados correspondientes $AB$, $A’B’$; $BC$, $B’C’$ y $CA$, $C’A’$ se intersecan en puntos colineales, a dicha recta se le conoce como eje de perspectiva.

Dos triángulos $\triangle ABC$ y $\triangle A’B’C’$ están en perspectiva desde un punto si las rectas que unen vértices correspondientes $AA’$, $BB’$ y $CC’$ son concurrentes, a dicho punto se le conoce como centro de perspectiva.

Observación. Notemos que ya hemos trabajado con un tipo especial de perspectiva, la homotecia, donde los vértices correspondientes son concurrentes pero los lados correspondientes son paralelos.

En este caso el centro de perspectiva es el centro de homotecia y como las rectas paralelas se intersecan en el punto al infinito entonces la recta al infinito es el eje de perspectiva.

El siguiente teorema generaliza esta dualidad eje-centro de perspectiva.

Teorema de Desargues

Teorema 1, de Desargues. Dos triángulos tienen un centro de perspectiva si y solo si tienen un eje de perspectiva.

Demostración. Consideremos dos triángulos, $\triangle ABC$ y $\triangle A’B’C’$,
sean $R = AB \cap A’B’$, $P = BC \cap B’C’$ y $Q = CA \cap C’A’$.

Figura 1

Supongamos que $AA’$, $BB’$ y $CC’$ concurren en $S$, aplicamos el teorema de Menelao a $\triangle SAB$, $\triangle SAC$ y $\triangle SBC$ con sus respectivas transversales $B’A’R$, $C’A’Q$ y $B’C’P$.

$\begin{equation} \dfrac{SA’}{A’A} \dfrac{AR}{RB} \dfrac{BB’}{B’S} = -1, \end{equation}$
$\begin{equation} \dfrac{SA’}{A’A} \dfrac{AQ}{QC} \dfrac{CC’}{C’S} = -1, \end{equation}$
$ \begin{equation} \dfrac{SB’}{B’B} \dfrac{BP}{PC} \dfrac{CC’}{C’S} = -1. \end{equation}$

Hacemos el cociente de $(1)$ entre $(2)$ y obtenemos
$\begin{equation} \dfrac{AR}{RB} \dfrac{BB’}{B’S} \dfrac{QC}{AQ} \dfrac{C’S}{CC’} = 1. \end{equation}$

Multiplicamos $(3)$ por $(4)$ y obtenemos
$\dfrac{AR}{RB} \dfrac{BP}{PC} \dfrac{QC}{AQ} = – 1$.

Por lo tanto, por el teorema de Menelao, $P$, $Q$ y $R$ son colineales.

$\blacksquare$

Conversamente, supongamos que $RPQ$ es una recta y sea $S = BB’ \cap CC’$.

Notemos que $QR$, $CB$ y $C’B$ concurren en $P$ (figura 1), por lo tanto, $\triangle QCC’$ y $\triangle RBB’$ están en perspectiva desde $P$, por la implicación que ya probamos los puntos $A = QC \cap RB$, $A’ = QC’ \cap RB’$ y $S = BB’ \cap CC’$, son colineales.

Por lo tanto, $AA’$, $BB’$ y $CC’$ concurren en $S$.

$\blacksquare$

Punto de Gergonne

Proposición. Considera un triángulo $\triangle ABC$ y su incírculo $\Gamma$, sean $D$, $E$ y $F$ los puntos de tangencia de $\Gamma$ con los lados $BC$, $CA$ y $AB$ respectivamente, entonces $AD$, $BE$ y $CF$ son concurrentes, en un punto conocido como punto de Gergonne.

Demostración. En la entrada anterior demostramos que los triángulos $\triangle ABC$ y $\triangle DEF$ están en perspectiva desde la recta de Gergonne de $\triangle ABC$, es decir, $AB$, $DE$; $BC$, $EF$ y $CA$, $FD$ se intersecan en tres puntos colineales.

Figura 2

Por lo tanto, por el teorema de Desargues $AD$, $BE$ y $CF$ son concurrentes

$\blacksquare$

Triángulos con dos ejes de perspectiva

Teorema 2. Si dos triángulos tienen dos ejes de perspectiva entonces tienen tres ejes de perspectiva.

Demostración. Supongamos que los triángulos $\triangle ABC$ y $\triangle A’B’C’$ están en perspectiva desde dos rectas, es decir, los puntos, $Z = AB \cap B’C’$, $X = BC \cap C’A’$ y $Y = CA \cap A’B’$ son colineales y los puntos $R = AB \cap C’A’$, $P = BC \cap A’B’$ y $Q = CA \cap B’C’$ son colineales.

Sean $F = AB \cap A’B’$, $D = BC \cap B’C’$ y $E = CA \cap C’A’$, aplicamos el teorema Menelao a $\triangle ABC$ y las transversales $DZQ$, $FPY$ y $EXR$.

Figura 3

$\dfrac{AZ}{ZB} \dfrac{BD}{DC} \dfrac{CQ}{QA} = -1$,
$\dfrac{AF}{FB} \dfrac{BP}{PC} \dfrac{CY}{YA} = -1$,
$\dfrac{AR}{RB} \dfrac{BX}{XC} \dfrac{CE}{EA} = -1$.

Multiplicamos estas tres igualdades y reordenamos
$\dfrac{AF}{FB} \dfrac{BD}{DC} \dfrac{CE}{EA} (\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA}) (\dfrac{AR}{RB} \dfrac{BP}{PC} \dfrac{CQ}{QA}) = – 1$.

Recordemos que como $X$, $Y$, $Z$ y $P$, $Q$, $R$ son colineales entonces
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$,
$\dfrac{AR}{RB} \dfrac{BP}{PC} \dfrac{CQ}{QA} = – 1$.

Por lo tanto
$\dfrac{AF}{FB} \dfrac{BD}{DC} \dfrac{CE}{EA} = -1$.

Y por el teorema de Menelao $D$, $E$ y $F$ son colineales.

$\blacksquare$

Corolario. Si dos triángulos tienen dos centros de perspectiva entonces tienen tres centros de perspectiva.

Demostración. Por el teorema de Desargues, si dos triángulos tienen dos centros de perspectiva entonces tienen dos ejes de perspectiva.

Por el teorema anterior, existe un tercer eje de perspectiva.

Nuevamente por el teorema de Desargues, existe un tercer centro de perspectiva.

$\blacksquare$

Teorema de Pappus

Teorema 3, de Pappus. Si los vértices de un hexágono se encuentran alternadamente sobre dos rectas entonces los lados opuestos se intersecan en tres puntos colineales.

Demostración. Sean $ABCDEF$ un hexágono tal que $AEC$ y $DBF$ son dos rectas distintas,
$P = EF \cap AB$, $Q = AB \cap CD$, $R = CD \cap EF$,
$P’ = BC \cap ED$, $Q’ = DE \cap FA$ y $R’ = FA \cap BC$.

Figura 4

Notemos que las rectas $AEC$ y $DBF$ son dos ejes de perspectiva de $\triangle PQR$ y $\triangle P’Q’R’$, pues
$A = PQ \cap Q’R’$, $C = QR \cap R’P’$, $E = RP \cap P’Q’$,
$B = PQ \cap R’P’$, $D = QR \cap P’Q’$ y $F = RP \cap Q’R’$.

Por el teorema anterior $X = PQ \cap P’Q’$, $Y = QR \cap Q’R’$ y $Z = RP \cap R’P’$, son colineales.

$\blacksquare$

Teorema de Pascal

Teorema 4, de Pascal. En todo hexágono cíclico los pares de lados opuestos se intersecan en tres puntos colineales.

Demostración. Sean $ABCDEF$ un hexágono cíclico,
$X = AB \cap DE$, $Y = BC \cap EF$, $Z = CD \cap FA$ las intersecciones de los lados opuestos,
consideremos $P = DE \cap FA$, $Q = FA \cap BC$ y $R = BC \cap DE$.

Figura 5

Aplicaremos el teorema de Menelao a $\triangle PQR$ y las transversales $AXB$, $CDZ$ y $FEY$.
$\dfrac{PA}{AQ} \dfrac{QB}{BR} \dfrac{RX}{XP} = – 1$,
$\dfrac{PZ}{ZQ} \dfrac{QC}{CR} \dfrac{RD}{DP} = – 1$,
$\dfrac{PF}{FQ} \dfrac{QY}{YR} \dfrac{RE}{EP} = – 1$.

Si multiplicamos las tres ecuaciones y reacomodamos obtenemos
$\dfrac{PZ}{ZQ} \dfrac{QY}{YR} \dfrac{RX}{XP} (\dfrac{PF \times PA}{PE \times PD}) (\dfrac{QB \times QC}{QF \times QA}) (\dfrac{RD \times RE}{RC \times RB}) = -1$.

Por otro lado, las potencias de $P$, $Q$ y $R$ respeto al circuncírculo de $ABCDEF$ son la siguientes
$PF \times PA = PE \times PD$,
$QF \times QA = QB \times QC$,
$RD \times RE = RC \times RB$.

Por lo tanto $\dfrac{PZ}{ZQ} \dfrac{QY}{YR} \dfrac{RX}{XP} = -1$.

Por el teorema de Menelao $X$, $Y$ y $Z$ son colineales.

$\blacksquare$

Casos limite en el teorema de Pascal

Existen casos limite donde podemos hacer uso del teorema de Pascal, es decir, podemos considerar un triángulo, un cuadrilátero o un pentágono como un hexágono donde dos vértices se aproximaron hasta volverse uno solo y como consecuencia el lado comprendido entre ellos se vuelve una tangente al circuncírculo en dicho punto.

A continuación, ilustramos esto con un ejemplo.

Problema 1. Considera $\Gamma$ una circunferencia y $l$ una recta, $K \in l$ fuera de $\Gamma$, $P$, $Q \in \Gamma$, sean $KA$ y $KB$ las tangentes desde $K$ a $\Gamma$, $X = PA \cap l$, $Y = PB \cap l$, $C = QX \cap \Gamma$ y $D = QY \cap \Gamma$. Muestra que las tangentes a $\Gamma$ en $C$ y $D$ se intersecan en $l$.

Demostración. Sea $M$ la intersección de las tangentes a $\Gamma$ en $C$ y $D$, $U = AC \cap BD$ y $V = AD \cap BC$.

Figura 6

Por el teorema de Pascal en el hexágono $APBCQD$, $V$ es colineal con $X$ e $Y$, es decir $V \in l$.

Ahora aplicamos el teorema de Pascal al hexágono $AACBBD$, $U$ es colineal con $V$ y $K$, es decir $U \in l$.

Aplicando nuevamente Pascal a $ACCBDD$ tenemos que $M$ es colineal con $U$ y con $V$.

Por lo tanto, $M \in l$.

$\blacksquare$

Pascal, Desargues y un punto al infinito

Problema 2. Sean $\triangle ABC$ un triángulo acutángulo, $B’$ y $C’$ los puntos medios de $CA$ y $AB$ respectivamente, sea $\Gamma_1$ una circunferencia que pasa por $B’$ y $C’$ y que es tangente al circuncírculo de $\triangle ABC$, $\Gamma(ABC)$ en $T$. Muestra que $T$, el pie de la altura por $A$, y el centroide de $\triangle ABC$, son colineales.

Demostración. Sean $B’’ = TB’ \cap \Gamma(ABC)$, $C’’ = TC’ \cap \Gamma(ABC)$ y $D’ = BB’’ \cap CC’’$

Figura 7

Por el teorema de Pascal en el hexágono $ABB’’TC’’C$, $B’$, $D’$ y $C’$ son colineales.

Notemos que existe una homotecia con centro en $T$ que lleva a $\Gamma_1$ en $\Gamma(ABC)$, así que, $C’B’ \parallel C’’B’’$.

Como resultado, $\angle C’’CB = \angle CC’’B’’ = \angle CBB’’$, pues $\angle CC’’B’’$ y $\angle CBB’’$ abarcan el mismo arco.

En consecuencia, $\triangle D’BC$ es isósceles, por lo tanto, el pie de la altura por $D’$ en $\triangle D’BC$ es $A’$, el punto medio de $BC$, o conversamente, la proyección de $A’$ el punto medio de $BC$, en $B’C’$ es $D’$.

Recordemos que existe una homotecia con centro en $G$, el centroide de $\triangle ABC$, que lleva a $\triangle A’B’C’$ en $\triangle ABC$, como $D$ es el pie de altura por $A$ en $\triangle ABC$ y $D’$ el pie de la altura por $A’$ en $\triangle A’B’C’$, entonces $D$ y $D’$ son puntos homólogos en esta homotecia, por lo tanto, $D$, $G$ y $D’$ son colineales.

Por otro lado, como $BB’$, $CC’$ y $DD’$ concurren en $G$, $\triangle D’BC$ y $\triangle DB’C’$ están en perspectiva desde $G$.

Por el teorema de Desargues, los puntos $X = D’B \cap DB’$, $Y = D’C \cap DC’$, $P = BC \cap B’C’$, son colineales, pero $P$ es un punto ideal, pues por la homotecia entre $\triangle A’B’C’$ y $\triangle ABC$, $B’C’ \parallel BC$.

En consecuencia, $XY \parallel B’C’$.

Como $DB’ \cap D’B’’ = X$, $DC’ \cap D’C’’ = Y$ y $B’C’ \cap B’’C’’ = P$, entonces $\triangle DB’C’$ y $\triangle D’B’’C’’$ están en perspectiva desde $XY$, por el teorema de Desargues, $DD’$, $B’B’’$ y $C’C’’$ son concurrentes.

Por lo tanto, $T$, $D$ y $G$ son colineales.

$\blacksquare$

Más adelante…

En la siguiente entrada mostraremos el teorema de Ceva, que nos da condiciones necesarias y suficientes para que tres rectas, cada una por un vértice distinto de un triángulo dado, sean concurrentes.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que si tres triángulos:
    $i)$ tienen un eje común de perspectiva, entonces los tres centros de perspectiva son colineales,
    $ii)$ tienen un centro común de perspectiva, entonces los tres ejes de perspectiva son concurrentes.
  2. Muestra que todo triángulo esta en perspectiva desde una recta con:
    $i)$ su triángulo medial,
    $ii)$ su triángulo órtico.
  3. Sean $\triangle ABC$ y $D \in BC$, $\Gamma_1$, $\Gamma_2$, considera los incírculos de $\triangle ABD$ y $\triangle ADC$ respectivamente, $\Gamma_3,$ $\Gamma_4$ los excírculos tangentes a $BC$ de $\triangle ABD$ y $\triangle ADC$ respectivamente (figura 8). Prueba que las tangentes comunes externas a $\Gamma_1$, $\Gamma_2$ y $\Gamma_3$, $\Gamma_4$, concurren en $BC$.
Figura 8
  1. Sea $\square BB’C’C$ un rectángulo construido externamente sobre el lado $BC$ de un triángulo $\triangle ABC$, sean sea $A’ \in BC$, el pie de la altura por $A$, $X = AB \cap A’B’$, $Y = CA \cap C’A’$, muestra que $XY \parallel BC$.
  2. Considera $\Gamma$ el circuncírculo de un triangulo $\triangle ABC$, sean $Q$ el punto medio del arco $\overset{\LARGE{\frown}}{AB}$ que no contiene a $C$, $R$ el punto medio del arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$, $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ que no contiene a $A$, $H = AB \cap PQ$, $J = CA \cap PR$, prueba que $HJ$ pasa por el incentro de $\triangle ABC$.
  3. Sea $\triangle ABC$ y $B’ \in CA$, $C’ \in AB$, sean $D$, $E$ los puntos de tangencia de $\Gamma$ el incírculo de $\triangle ABC$, con $CA$ y $AB$ respectivamente, sean $C’X$ y $B’Y$ segmentos tangentes a $\Gamma$ tal que $X$, $Y \in \Gamma$ (figura 9), demuestra que $B’C’$, $DE$ y $XY$ son concurrentes.
Figura 9

Entradas relacionadas

Fuentes

  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 71-82.
  • Lozanovski, S., A Beautiful Journey Through Olympiad Geometry. Version 1.4. 2020, pp 103-109.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 230-239.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 67-76.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Teorema de Menelao

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión presentamos el teorema de Menelao, una herramienta muy útil que nos da condiciones necesarias y suficientes para que tres puntos, cada uno sobre los lados de un triángulo, sean colineales.

Teorema de Menelao

Teorema 1, de Menelao. Sean $\triangle ABC$ y $X$, $Y$, $Z$ puntos en los lados $BC$, $CA$ y $AB$ respectivamente, tal que uno o los tres puntos se encuentran en la extensión de los lados de $\triangle ABC$, entonces $X$, $Y$ y $Z$ son colineales si y solo si
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

Demostración. Supongamos que $X$, $Y$ y $Z$ son colineales, sea $D \in XYZ$ tal que $CD \parallel AB$ entonces $\triangle XZB \sim \triangle XDC$ y $\triangle YAZ \sim \triangle YCD$, esto es

$\dfrac{DC}{ZB} = \dfrac{XC}{XB} \Leftrightarrow DC = \dfrac{ZB \times XC}{XB}$,

$\dfrac{DC}{ZA} = \dfrac{YC}{YA} \Leftrightarrow DC = \dfrac{ZA \times YC}{YA}$.

Figura 1

Por lo tanto,
$ \dfrac{ZA}{YA} \dfrac{YC}{ZB} \dfrac{XB}{XC} = 1 \Leftrightarrow \dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

La última ecuación se obtiene al considerar segmentos dirigidos.

$\blacksquare$

Conversamente, ahora supongamos sin pérdida de generalidad que $Z$ e $Y$ se encuentran en $AB$ y $CA$ respectivamente y $X$ en la extensión de $BC$ (izquierda figura 1), el caso en que los tres puntos están en las extensiones de los lados es análogo, y supongamos que
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

Sea $X’ = YZ \cap BC$, entonces por la implicación que ya probamos tenemos que
$\dfrac{AZ}{ZB} \dfrac{BX’}{X’C} \dfrac{CY}{YA} = – 1$.

Esto, junto con nuestra hipótesis nos dice que $\dfrac{BX’}{X’C} = \dfrac{BX}{XC}$, es decir $BC$ es dividido exteriormente por $X$ y $X’$ en la misma razón.

Por lo tanto, $X = X’$, entonces $X$, $Y$ y $Z$ son colineales.

$\blacksquare$

Forma trigonométrica del teorema de Menelao

Lema de la razón. Considera $\triangle ABC$ y sea $X$ un punto en $BC$ o su extensión, entonces
$\begin{equation} \dfrac{BX}{XC} = \dfrac{AB}{CA} \dfrac{\sin \angle BAX}{\sin \angle CAX}. \end{equation}$.

Demostración. Aplicamos la ley de los senos a los triángulos $\triangle BAX$ y $\triangle XAC$ (figura 1),
$\begin{equation} \dfrac{BX}{\sin \angle BAX} = \dfrac{AB}{\sin \angle AXB}, \end{equation}$

$\begin{equation} \dfrac{CX}{\sin \angle CAX} = \dfrac{AC}{\sin \angle AXC}. \end{equation}$

Notemos que $\sin \angle AXB = \sin \angle AXC$, pues si $X$ está en la extensión de $BC$ entonces $\angle AXB = \angle AXC$ o si $X$ está en el segmento $BC$ entonces $\angle AXB$ y $\angle AXC$ son suplementarios.

Por lo tanto, haciendo el cociente de $(2)$ entre $(3)$ obtenemos $(1)$.

$\blacksquare$

Forma trigonométrica del teorema de Menelao. Sea $\triangle ABC$ y $X$, $Y$, $Z$ puntos en los lados $BC$, $CA$ y $AB$ respectivamente, tal que uno o los tres puntos se encuentran en la extensión de los lados de $\triangle ABC$, entonces $X$, $Y$ y $Z$ son colineales si y solo si

$\dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBY}{\sin \angle YBA} \dfrac{\sin \angle ACZ}{\sin \angle ZCB} = – 1$.

Demostración. Aplicamos el lema de la razón a $X$, $Y$ y $Z$, entonces:
$-1 = \dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA}$

$= (\dfrac{CA}{BC} \dfrac{\sin \angle ACZ}{\sin \angle ZCB}) (\dfrac{AB}{CA} \dfrac{\sin \angle BAX}{\sin \angle XAC}) (\dfrac{BC}{AB} \dfrac{\sin \angle CBY}{\sin \angle YBA})$

$= \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBY}{\sin \angle YAC} \dfrac{\sin \angle ACZ}{\sin \angle ZCB}$.

En consecuencia, por el teorema de Menelao la igualdad es cierta si y solo si $X$, $Y$ y $Z$ son colineales.

$\blacksquare$

Bisectrices

Proposición 1.
$i)$ Dos bisectrices internas y la bisectriz externa del tercer ángulo de un triángulo intersecan a los lados opuestos del triángulo en tres puntos colineales,
$ii)$ las tres bisectrices externas de un triángulo intersecan a los lados opuestos del triángulo en tres puntos colineales.

Demostración. Sean $\triangle ABC$, $X’$, la intersección de la bisectriz externa de $\angle A$ con $BC$, $Y$ y $Z$ las intersecciones de las bisectrices internas de $\angle B$ y $\angle C$ con $CA$ y $AB$ respectivamente.

Figura 2

Por el teorema de la bisectriz tenemos las siguientes igualdades
$\dfrac{BX’}{X’C} = \dfrac{AB}{AC}$,
$\dfrac{CY}{YA} = \dfrac{BC}{BA}$,
$\dfrac{AZ}{ZB} = \dfrac{CA}{CB}$.

Considerando segmentos dirigidos,
$\dfrac{AZ}{ZB} \dfrac{BX’}{X’C} \dfrac{CY}{YA} = \dfrac{CA}{CB} \dfrac{AB}{AC} \dfrac{BC}{BA} = -1$.

Por lo tanto, $X’$, $Y$ y $Z$ son colineales.

Análogamente, si $Y’$ y $Z’$ son las intersecciones de las bisectrices externas de $\angle B$ y $\angle C$ con $CA$ y $AB$ respectivamente, entonces por el teorema de la bisectriz
$\dfrac{CY’}{Y’A} = \dfrac{BC}{BA}$,
$\dfrac{AZ’}{Z’B} = \dfrac{CA}{CB}$.

Por lo tanto
$\dfrac{AZ’}{Z’B} \dfrac{BX’}{X’C} \dfrac{CY’}{Y’A} = \dfrac{CA}{CB} \dfrac{AB}{AC} \dfrac{BC}{BA} = -1$.

Por lo tanto, por el teorema de Menelao, $X’$, $Y’$ y $Z’$ son colineales.

$\blacksquare$

Recta de Lemoine y recta de Gergonne

Teorema 2. Las rectas tangentes al circuncírculo de un triángulo a través de sus vértices intersecan a los lados opuestos del triángulo en tres puntos colineales.

Demostración. Sean $\triangle ABC$ y $\triangle DEF$ su triángulo tangencial, sean $X = EF \cap BC$, $Y = DF \cap CA$ y $Z = DE \cap AB$.

Figura 3

Como el ángulo semiinscrito $\angle XAB$ abarca el mismo arco que el ángulo inscrito $\angle ACB$ entonces son iguales, por criterio de semejanza AA, $\triangle AXB \sim \triangle CXA$, por lo tanto,
$\dfrac{AX}{CX} = \dfrac{AB}{CA}$ $\Leftrightarrow \dfrac{AX^2}{CX^2} = \dfrac{AB^2}{CA^2}$.

Por otro lado, la potencia de $X$ respecto al circuncírculo de $\triangle ABC $ es
$AX^2 = XB \times XC$.

Por lo tanto,
$\begin{equation} \dfrac{XB}{XC} = \dfrac{AB^2}{CA^2}. \end{equation}$

Igualmente podemos encontrar,
$\dfrac{YC}{YA} = \dfrac{BC^2}{BA^2}$ y $\dfrac{ZB}{ZA} = \dfrac{CB^2}{CA^2}$.

Por lo tanto,
$\dfrac{XB}{XC} \dfrac{YC}{YA} \dfrac{ZA}{ZB} = \dfrac{AB^2}{CA^2} \dfrac{BC^2}{BA^2} \dfrac{CA^2}{CB^2} = 1$.

Considerando segmentos dirigidos tenemos
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = – 1$.

Como resultado, por el teorema de Menelao, $X$, $Y$ y $Z$ son colineales.

A la recta $XYZ$ se le conoce como recta de Lemoine de $\triangle ABC$.

$\blacksquare$

Observación 1. Notemos que $X$, $Y$ y $Z$ son los centros de las circunferencias de Apolonio de $\triangle ABC$.

Observación 2. También hemos mostrado que la tangente al circuncírculo de un triangulo por uno de sus vértices divide al lado opuesto al vértice, en la razón de los cuadrados de los lados que concurren en el vértice, ecuación $(4)$.

Corolario. Los lados del triángulo cuyos vértices son los puntos de tangencia del incírculo de un triángulo dado con sus lados, intersecan a los lados opuestos del triángulo dado en tres puntos colineales.

Demostración. Notemos que en el teorema anterior si el triángulo dado es $\triangle DEF$, entonces su incírculo es el circuncírculo de $\triangle ABC$.

Por lo tanto, se tiene el resultado.

A la recta $XYZ$ se le conoce como recta de Gergonne de $\triangle DEF$.

$\blacksquare$

Teorema de Monge

Teorema 3. Las tangentes externas comunes a tres circunferencias, tales que ninguna esta completamente contenida en las otras dos, se intersecan dos a dos en tres puntos colineales.

Demostración. Sean $\Gamma(A)$, $\Gamma(B)$ y $\Gamma(C)$, tres circunferencias que cumplen las hipótesis. Sean $X = X_bX_c \cap X’_bX’_c$, $Y = Y_aY_c \cap Y’_aY’_c$ y $Z = Z_aZ_b \cap Z’_aZ’_b$, las intersecciones de las tangentes comunes a $\Gamma(B)$, $\Gamma(C)$; $\Gamma(A)$, $\Gamma(C)$  y $\Gamma(A)$, $\Gamma(B)$ respectivamente (figura 4).

Figura 4

Recordemos que la intersección de dos tangentes externas comunes a dos circunferencias es un centro de homotecia entre dichas circunferencias.

Entonces $X$ es un centro de homotecia para $\Gamma(B)$ y $\Gamma(C)$, por lo tanto
$\dfrac{XB}{XC} = \dfrac{BX_b}{CX_c}$.

Igualmente vemos que
$\dfrac{YC}{YA} = \dfrac{CY_c}{AY_a}$ y $\dfrac{ZB}{ZA} = \dfrac{BZ_b}{AZ_a}$.

Tomando en cuenta que $AZ_a = AY_a$, $BZ_b = BX_b$ y $CX_c = CY_c$, tenemos
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = \dfrac{- AZ_a}{BZ_b} \dfrac{- BX_b}{CX_c} \dfrac{- CY_c}{AY_a} = – 1$.

Por lo tanto, por el teorema de Menelao $X$, $Y$ y $Z$ son colineales.

$\blacksquare$

Puntos isotómicos

Proposición 2. Los puntos isotómicos de tres puntos colineales son colineales.

Demostración. Recordemos que dos puntos en uno de los lados de un triángulo son isotómicos si equidistan al punto medio de ese lado.

Sean $\triangle ABC$ y $X$, $Y$, $Z$ en los lados $BC$, $CA$ y $AB$ respectivamente tal que $XYZ$ es una recta, consideremos $X’$, $Y’$ y $Z’$ sus correspondientes puntos isotómicos.

Figura 5

Entonces
$\dfrac{AZ’}{Z’B} \dfrac{BX’}{X’C} \dfrac{CY’}{Y’A} = \dfrac{ZB}{AZ} \dfrac{XC}{BX} \dfrac{YA}{CY} = (\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA})^-1 = – 1$.

Por lo tanto, por el teorema de Menelao $X’$, $Y’$ y $Z’$ son colineales.

$\blacksquare$

Proposición 3. Si sobre los lados de $\triangle ABC$ tenemos pares de puntos isotómicos $X$, $X’ \in BC$, $Y$, $Y’ \in CA$ y $Z$, $Z’ \in AB$ entonces las áreas de los triángulos $\triangle XYZ$ y $\triangle X’Y’Z’$ coinciden.

Demostración. Sean $U = ZY \cap BC$ y $U’ = Z’Y’ \cap BC$, consideremos $D$ y $F$ las proyecciones de $X$ y $C$ en $ZU$, entonces $\triangle XDU \sim \triangle CEU$.

Figura 6

Entonces,
$\dfrac{(\triangle XYZ)}{(\triangle CYZ)} = \dfrac{XD}{CE} = \dfrac{XU}{CU}$.

Igualmente vemos que, $\dfrac{(\triangle X’Y’Z’)}{(\triangle BY’Z’)} = \dfrac{X’U’}{BU’}$.

Por la proposición anterior, el punto isotómico de $U$ debe ser colineal con $Y’$ y $Z’$, por lo tanto, $U$ y $U’$ son isotómicos $\Rightarrow CU = U’B$ y $XU = U’X’$.

Por lo tanto $\dfrac{(\triangle XYZ)}{( \triangle CYZ)} = \dfrac{(\triangle X’Y’Z’)}{( \triangle BY’Z’)}$.

Pero $(\triangle CYZ) = (\triangle AY’Z) = (\triangle BY’Z’)$.

Por lo tanto, $\triangle XYZ$ y $\triangle X’Y’Z’$ tienen la misma área.

$\blacksquare$

Más adelante…

Con la ayuda del teorema de Menelao, en la próxima entrada definiremos y estableceremos algunos resultados sobre triángulos en perspectiva. También mostraremos el teorema de Pascal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que si una recta que pasa por el centroide $G$ de un triangulo $\triangle ABC$ interseca a $AB$ y $AC$ en $Z$ e $Y$ respectivamente, entonces $AZ \times YC + AY \times ZB = AZ \times AY$.
  2. Una recta interseca los lados de un cuadrilátero $\square ABCD$, $BC$, $CD$, $DA$ y $AB$ en $X$, $Y$, $Z$ y $W$ respectivamente, muestra que $\dfrac{BX}{XC} \dfrac{CY}{YD} \dfrac{DZ}{ZA} \dfrac{AW}{WB} = 1$.
  3. Una circunferencia cuyo centro es equidistante a los vértices $B$ y $C$ de un triángulo $\triangle ABC$ interseca a $AB$ en $P$ y $P’$ y a $AC$ en $Q’$ y $Q$, las rectas $PQ$ y $P’Q’$ intersecan a $BC$ en $X$ y $X’$ respectivamente, muestra que:
    $i)$ $BX \times BX’ = CX \times CX’$,
    $ii)$ $X$ y $X’$ son puntos isotómicos.
  4. Sean $\triangle ABC$ y $B’$ el punto medio de $CA$, considera $G$ el centroide de $\triangle ABC$, sea $P$ tal que $B’$ es el punto medio de $GP$, la paralela a $AC$ por $P$ interseca a $BC$ en $X$, la paralela a $AB$ por $P$ corta a $AC$ en $Y$, la paralela a $BC$ por $P$ interseca a $AB$ en $Z$ (figura 7), muestra que $X$, $Y$ y $Z$ son colineales.
Figura 7
  1. Demuestra que las mediatrices de las bisectrices de los ángulos internos de un triángulo, intersecan a los lados opuestos a los ángulos desde donde se trazo la bisectriz, en tres puntos colineales. Considera el segmento de bisectriz formado por el vértice y el punto de intersección con el lado opuesto.
  2. Considera $XYZ$ y $X’Y’Z’$ dos rectas transversales a los lados de un triángulo $\triangle ABC$, tales que $X$, $X’ \in BC$, $Y$, $Y’ \in CA$ y $Z$, $Z’ \in AB$, sean $D = Z’Y \cap BC$, $E = X’Z \cap CA$ y $F = Y’X \cap AB$, prueba que $D$, $E$ y $F$ son colineales.
  3. Demuestra el teorema de la recta de Simson usando el teorema de Menelao.
  4. Dadas tres circunferencias tales que dos a dos sus interiores son ajenos, muestra que las tangentes comunes externas de dos de ellas se intersecan en un punto colineal con las intersecciones de las tangentes comunes internas de esas dos circunferencias con la tercera.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 153-158.
  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 57-68.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 36-42.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 85-88.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Segmento dirigido y teorema de Stewart

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada presentamos los conceptos de segmento dirigido, razón en la que un punto divide a un segmento y punto al infinito, que nos serán de ayuda en los próximos temas, además demostramos el teorema de Stewart, el cual nos sirve para calcular el valor de cualquier ceviana en un triángulo.

Segmento dirigido

Para un segmento $AB$ hasta ahora solo habíamos considerado su magnitud, la cual siempre es positiva o $0$ si $A = B$, ahora también consideraremos el sentido en el que recorremos el segmento es decir de $A$ a $B$ o de $B$ a $A$, lo que nos permitirá asignarles un signo.

Si hacemos el recorrido $AB$ y luego el recorrido $BA$ entonces terminaremos en $A$ que es donde empezamos, por lo que podemos decir que:

$\begin{equation} AB + BA = 0 \Leftrightarrow BA = – AB \Leftrightarrow AB = – BA. \end{equation}$

Figura 1

Igualmente, si tenemos tres puntos colineales $A$, $B$ y $C$, y hacemos el recorrido $AB$, luego $BC$ y al final $CA$, regresaremos al punto inicial, es decir:

$\begin{equation} AB + BC + CA = 0 \Leftrightarrow AB + BC = – CA = AC. \end{equation}$

donde la última igualdad se da por la ecuación $(1)$.

Teorema 1, de Euler. Para cualesquiera cuatro puntos colineales $A$, $B$, $C$ y $D$ tenemos lo siguiente: $AB \times CD + AC \times DB + AD \times BC = 0$.

Demostración. Por las ecuaciones $(1)$ y $(2)$ tenemos
$CD = CA + AD = – AC + AD$,
$DB = DA + AB = – AD + AB$,
$BC = BA + AC = – AB + AC$.

Entonces,
$AB \times CD + AC \times DB + AD \times BC$
$= AB(- AC + AD) + AC(- AD + AB) + AD(- AB + AC)$
$= – (AB \times AC) + (AB \times AD) – (AC \times AD) + (AC \times AB) – (AD \times AB) + (AD \times AC)$
$ = 0$.

$\blacksquare$

División de un segmento en una razón dada

Definición 1. Sean $AB$ un segmento y $P$ un punto en la recta $AB$ definimos la razón en que $P$ divide al segmento $AB$ como $\dfrac{AP}{PB}$.

Si $P$ esta entre $A$ y $B$ decimos que la división es interna y entonces $AP$ y $PB$ tienen el mismo sentido, por lo que la razón será positiva, si $P = A$ la razón será $0$ e ira creciendo hasta llegar a $1$ en el punto medio de $AB$ y continuará creciendo positivamente tanto como queramos mientras $P$ se acerque más a $B$ pero sin llegar a ser $B$.

Figura 2

 Si $P$ esta fuera del segmento $AB$ la división es externa, en tal caso $AP$ y $PB$ tienen sentidos opuestos, por lo tanto, la razón será negativa, para valores del lado opuesto a $B$ respecto de $A$, $|AP| < |PB|$, por lo tanto, la razón será mayor a $- 1$ y menor que $0$, si $P$ está en el lado opuesto a $A$ respecto de $B$ entonces $|AP| > |PB|$, por lo tanto, la razón será menor que $- 1$.

Teorema 2. Sean $A$ y $B$ dos puntos fijos entonces para todo número real $\lambda$ diferente de $- 1$, existe un único punto $P$ en la recta que pasa por $A$ y $B$ tal que la razón $\dfrac{AP}{PB} = \lambda$.

Demostración. Sean $AB = a$ y $AP = x$, por la ecuación $(2)$,
$PB = PA + AB = – AP + AB = – x + a$.

Por lo tanto, $\dfrac{x}{a – x} = \dfrac{AP}{PB} = \lambda$.

Resolviendo para $x$ obtenemos
$PA = x = \dfrac{a \lambda}{1 + \lambda}$.

Ahora supongamos que $\lambda > 0$ y que existen $P$ y $P’$ tal que $\dfrac{AP}{PB} = \lambda =  \dfrac{AP’}{P’B}$.

Por la observación hecha en la definición 1, $P$ y $P’$ están dentro del segmento $AB$, además $AP = \dfrac{a \lambda}{1 + \lambda} = AP’$.

Por lo tanto, $P = P’$.

Similarmente, en caso de que $\lambda < 0$ vemos que $P = P’$, solo hay que considerar dos subcasos, $\lambda > – 1$ y $\lambda < – 1$.

$\blacksquare$

Punto al infinito

Ahora consideremos una recta fija $AB$ y un punto fijo $Q$ fuera de la recta y consideremos el conjunto de todas las rectas que pasan por $Q$ e intersecan a $AB$, a cada recta que pasa por $Q$ le podemos asociar el punto $P$ de intersección con $AB$, notemos que cuanto más se aleja $P$ de $A$ y de $B$, $\dfrac{AP}{PB}$ se aproxima más a $- 1$, esto pasa en ambos sentidos, pero al mismo tiempo la rectas se parecen más a la paralela a $AB$ por $Q$.

Esto motiva la siguiente definición.

Definición 2. Decimos que dos rectas paralelas se intersecan en el punto al infinito, o punto ideal, el cual cumple lo siguiente.

  • Para cada recta en el plano, existe solo un punto ideal.
  • El conjunto de todos los puntos ideales se encuentran en una recta, llamada recta al infinito o recta ideal.
  • Si $P$ es el punto ideal de la recta $AB$ entonces $\dfrac{AP}{PB} = – 1$.

Teorema de Stewart

Teorema 3, de Stewart. Si $A$, $B$, $C$ son tres puntos colineales y $P$ cualquier otro punto en el plano entonces:
$PA^2 \times BC + PB^2 \times CA + PC^2 \times AB + AB \times BC \times CA = 0$.

Demostración. Supongamos que $P$ no pertenece a la recta $ABC$, sea $D$ la proyección de $P$ en $ABC$, por el teorema de Pitágoras y las ecuación $(1)$ y $(2)$ tenemos:

$PC^2 = PD^2 + CD^2$,

$PA^2 = PD^2 + AD^2 = PD^2 + (AC + CD)^2 = PD^2 + AC^2 + 2AC \times CD + CD^2$
$= PC^2 + AC^2 – 2CA \times CE$,

$PB^2 = PD^2 + BD^2 = PD^2 + (BC + CD)^2 = PD^2 + BC^2 + 2BC \times CD + CD^2$
$= PC^2 + BC^2 + 2BC \times CE$.

Figura 3

Multiplicamos $PA^2$ por $BC$ y $PA^2$ por $CA$, luego sumamos,
$PA^2 \times BC = PC^2 \times BC + AC^2 \times BC – 2CA \times CE \times BC$,
$PB^2 \times CA = PC^2 \times CA + BC^2 \times CA + 2BC \times CE \times CA$.

$PA^2 \times BC + PB^2 \times CA$
$= PC^2(BC + CA) + AC^2 \times BC – BC^2 \times AC$
$= PC^2 \times BA + AC \times BC(AC – BC)$
$= – PC^2 \times AB – CA \times BC(AC + CB)$.

Como resultado,
$PA^2 \times BC + PB^2 \times CA + PC^2 \times AB + AB \times BC \times CA = 0$.

Ahora supongamos que $P$ pertenece a la recta $ABC$, sea $Q$ un punto en la perpendicular a $ABC$ por $P$, por Pitágoras y el resultado anterior tenemos,

$QA^2 = QP^2 + PA^2, QB^2 = QP^2 + PB^2, QC^2 = QP^2 + PC^2$.

$\Rightarrow$
$0 = QA^2 \times BC + QB^2 \times CA + QC^2 \times AB + AB \times BC \times CA$
$= PA^2\times BC + PB^2\times CA + PC^2 \times AB + AB \times BC \times CA + QP^2(BC + CA + AB)$.

Como, $BC + CA + AB = 0$, por la ecuación $(2)$, se tiene el resultado esperado.

$\blacksquare$

Ejemplo

Problema. Muestra que si $A$, $B$ y $O$ son tres puntos colineales entonces
$OA^2 + OB^2 = AB^2 + 2OA \times OB$.

Solución. Por la ecuacion $(1)$, $AB = AO + OB$.

Entonces,
$AB^2 = AO^2 + 2AO \times OB + OB^2 = OA^2 – 2OA \times OB + OB^2$.

Por lo tanto,
$OA^2 + OB^2 = AB^2 + 2OA \times OB$.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos los puntos notables del triángulo que resultan de la intersección de las mediatrices, las bisectrices, las medianas y las alturas del triángulo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $A$, $B$ y $O$ tres puntos colineales, considera $M$, el punto medio de $AB$, muestra que $PM = \dfrac{PA + PB}{2}$.
  2. Si $P$, $O$, $A$, $B$ y $C$ son colineales y $OA + OB + OC = 0$, muestra que $PA + PB + PC = 3PO$.
  3. Muestra que si en la misma recta sucede que $OA + OB + OC = 0$ y $O’A’ + O’B’ + O’C’ = 0,$ entonces $AA’ + BB’ + CC’ = 3OO’$.
  4. ¿Qué nos dice el teorema de la bisectriz si el triángulo es isósceles o equilátero?
  5. Usando el teorema de Stewart, demuestra que en cualquier triángulo el cuadrado de la bisectriz interna de uno de los ángulos es igual al producto de los lados que forman dicho ángulo menos el producto de los segmentos en los cuales el lado opuesto es dividido por la bisectriz.
  6. Prueba que la suma de los cuadrados de las distancias desde el vértice del ángulo recto en un triángulo rectángulo a los puntos de trisección de la hipotenusa es igual a $\dfrac{5}{9}$ por el cuadrado de la hipotenusa.

Entradas relacionadas

Fuentes

  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 2-8.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 151-153.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 45-47.
  • Shively, L., Introducción a la Geómetra Moderna. México: Ed. Continental, 1961, pp 13-15, 154.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Puntos de Fermat y triángulos de Napoleón

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión veremos algunos resultados sobre los puntos de Fermat y los triángulos de Napoleón, objetos que aparecen al construir triángulos equiláteros sobre los lados de un triángulo cualquiera.

Definición. Sean $\triangle ABC$ y puntos $A’$, $B’$, $C’$ tales que los triángulos $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son equiláteros y ninguno se traslapa con $\triangle ABC$, decimos que $ABCA’B’C’$ es una configuración externa de Napoleón.

De manera análoga definimos una configuración interna de Napoleón, si los triángulos $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son equiláteros y todos se traslapan con $\triangle ABC$.

Puntos de Fermat

Teorema 1. Sea $ABCA’B’C’$ una configuración externa de Napoleón, entonces
$i)$ los circuncírculos de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y las rectas $AA’$, $BB’$, $CC’$ son concurrentes, al punto de concurrencia se le conoce como primer punto de Fermat,
$ii)$ $AA’ = BB’ = CC’$.

Demostración. Sea $F_1 = \Gamma(AB’C) \cap \Gamma(ABC’)$ la intersección de los circuncírculos de $\triangle AB’C$ y $\triangle ABC’$ respectivamente.

Como $\square AF_1CB’$ y $\square AF_1BC’$ son cíclicos entonces los pares de ángulos $\angle BC’A$, $\angle AF_1B$ y $\angle AB’C$, $\angle CF_1A$ son suplementarios, por lo tanto, $\angle AF_1B = \angle CF_1A = \dfrac{2\pi}{3}$.

Figura 1

En consecuencia, $\angle BF_1C = \dfrac{2\pi}{3}$, por lo tanto, $\angle BF_1C$ y $\angle PA’B$ son suplementarios, así, $\square F_1BA’C$ es cíclico, es decir $F_1 \in \Gamma(A’BC)$.

Por otra parte, $\angle BF_1A’ = \angle BCA$, pues abarcan el mismo arco, entonces, $\angle AF_1B + \angle BF_1A’ = (\pi – \angle BC’A) + \angle BCA’ = \pi – \dfrac{\pi}{3} + \dfrac{\pi}{3} = \pi$, por lo tanto, $F_1 \in AA’$.

Igualmente podemos ver que $F_1 \in BB’$ y $F_1 \in CC’$.

Finalmente, hagamos una rotación de $\dfrac{\pi}{3}$ en sentido contrario al de las manecillas y centro en $B$, entonces $A$ toma el lugar de $C’$ y $A’$ toma el lugar de $C$, por lo tanto, $AA’ = CC’$.

Con una rotación de $\dfrac{\pi}{3}$ en el sentido de las manecillas, con centro en $C$, $A’$ toma el lugar de $B$ y $A$ el de $B’$, por lo tanto, $CC’ = AA’ = BB’$.

$\blacksquare$

Nota. Si $ABCA’B’C’$ es una configuración interna de Napoleón, los mismos resultados son ciertos y al punto de concurrencia le llamamos segundo punto de Fermat.

Problema de Fermat

Problema de Fermat. Dado un triángulo $\triangle ABC$ tal que ninguno de sus ángulos internos es mayor a $\dfrac{2\pi}{3}$, encuentra el punto $P$ que minimiza la suma de las distancias a los vértices de $\triangle ABC$, $PA + PB + PC$.

Solución. Sea $P$ un punto fuera de $\triangle ABC$ (figura 2), sin pérdida de generalidad supongamos que $P$ y $C$ se encuentran en lados contrarios respecto de $AB$.

Sea $D = PC \cap AB$ aplicando la desigualdad del triángulo tenemos lo siguiente
$PA + PB + PC = P’A + P’B + PC$
$= P’A + P’B + PD + DC$
$= P’A + P’B + P’D + DC$
$\geq P’A + P’B + P’C$.

Figura 2

De lo anterior concluimos que el punto buscado debe estar dentro de $\triangle ABC$.

Ahora supongamos que $P$ está dentro de $\triangle ABC$ (figura 3), sea $\triangle BC’P’$ la imagen de $\triangle BAP$ bajo una rotación de $\dfrac{\pi}{3}$ en sentido contrario al de las manecillas y centro en $B$.

Como $BP = BP’$ y $\angle PBP’ = \dfrac{\pi}{3}$ entonces $\triangle BPP’$ es equilátero y tenemos lo siguiente
$PA + PB + PC = P’C’ + PP’ + PC \geq CC’$.

Figura 3

Por lo tanto, para que la suma de distancias sea mínima es necesario que $P \in CC’$, pero por un razonamiento análogo también es necesario que $P \in AA’$ y $P \in BB’$, donde $ABCA’B’C’$ es una configuración externa de Napoleón.

Por el teorema 1, $P = F_1$, es el primer punto de Fermat.

Sin embargo, notemos que, $\angle BPC = \pi – \angle P’PB = \dfrac{2\pi}{3}$, por lo tanto, por el ejercicio 3 de la entrada desigualdad del triángulo, cualquier ángulo interno de $\triangle ABC$ debe ser menor o igual que $\dfrac{2\pi}{3}$, si esto se cumple entonces $F_1$ es el punto buscado.

$\blacksquare$

Triángulos de Napoleón

Teorema 2, de Napoleón. Sea $ABCA’B’C’$ una configuración externa de Napoleón, entonces los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son los vértices de un triángulo equilátero, conocido como triángulo exterior de Napoleón y su centroide coincide con el centroide de $\triangle ABC$.

Demostración. Sean $G_1$, $G_2$ y $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ respectivamente, $G$ el centroide de $\triangle ABC$ y $M$ el punto medio de $BC$.

Figura 4

Como $\dfrac{MA}{MG} = \dfrac{MA’}{MG_1} = 3$ por el reciproco del teorema de Tales $GG_1 \parallel AA’$, además $AA’ = 3GG_1$.

Igualmente podemos ver que $GG_2 \parallel BB’$, $BB’ = 3GG_2$ y $GG_3 \parallel CC’$ y $CC’ = 3GG_3$.

Como $AA’ = BB’ = CC’$, entonces $GG_1 = GG_2 = GG_3$, por lo tanto, $G$ es el circuncentro de $\triangle G_1G_2G_3$.

Por el teorema 1, $\angle A’F_1B’ = \dfrac{2\pi}{3}$, por lo tanto, $\angle G_1GG_2 = \dfrac{2\pi}{3}$.

Igualmente vemos que $\angle G_2GG_3 = \angle G_3GG_1 = \dfrac{2\pi}{3}$.

Por criterio de congruencia LAL, $\triangle GG_1G_2 \cong \triangle GG_2G_3 \cong \triangle GG_1G_3$.

En consecuencia, $\triangle G_1G_2G_3$ es equilátero, como en un triángulo equilátero el circuncentro y el centroide coinciden entonces $G$ es el centroide de $\triangle G_1G_2G_3$.

$\blacksquare$

Nota. Si $ABCA’B’C’$ es una configuración interna de Napoleón se obtienen los mismos resultados y al triángulo formado por los centroides se le conoce como triángulo interior de Napoleón.

Área del triángulo externo de Napoleón

Teorema 3. El área del triangulo externo de Napoleón es igual a la la mitad del área de su triángulo de referencia mas un sexto de la sumas de las áreas de los triángulos equiláteros construidos.

Demostración. Sea $ABCA’B’C’$ una configuración externa de Napoleón y $G_1$, $G_2$, $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ respectivamente.

Figura 5

Sean $F_1$ el primer punto de Fermat, como $AF_1$ es una cuerda común de $\Gamma(ABC’)$ y $\Gamma(AB’C)$, entonces $G_2G_3$ es la mediatriz de $AF_1$, es decir, la reflexión de $A$ en $G_2G_3$ es $F_1$.

Por lo tanto, $\triangle AG_2G_3$ y $\triangle F_1G_2G_3$ son congruentes.

Similarmente vemos que $\triangle BG_1G_3 \cong \triangle F_1G_1G_3$ y $\triangle CG_1G_2 \cong \triangle F_1G_1G_2$.

Esto implica que,
$(\triangle G_1G_2G_3) = \dfrac{(AG_3BG_1CG_2)}{2} $
$= \dfrac{1}{2} ((\triangle ABC) + (\triangle ABG_3) + (\triangle BCG_1) + (\triangle ACG_2))$
$= \dfrac{1}{6} ((\triangle ABC’) + (\triangle A’BC) + (\triangle AB’C)) + \dfrac{(\triangle ABC)}{2}$.

$\blacksquare$

Área del triángulo interno de Napoleón

Teorema 3. El área del triangulo interno de Napoleón es igual a menos la mitad del área de su triángulo de referencia mas un sexto de la sumas de las áreas de los triángulos equiláteros construidos.

Demostración. Sea $ABCA’’B’’C’’$ una configuración interna de Napoleón, $F_2$ el segundo punto de Fermat y $G’_1$, $G’_2$, $G’_3$ los centroides de $\triangle A’’BC$, $\triangle AB’’C$, $\triangle ABC’’$ respectivamente.

Sea $F_2$ el segundo punto de Fermat, siguiendo un razonamiento análogo al teorema anterior tenemos
$(\triangle G’_1G’_2G’_3) $
$= (\triangle F_2G’_1G’_3) + (\triangle F_2G’_3G’_2) – (\triangle F_2G’_1G’_2)$
$\begin{equation} = (\triangle BG’_1G’_3) + (\triangle AG’_3G’_2) – (\triangle CG’_1G’_2). \end{equation}$.

Figura 6

Por otro lado,
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’))$
$\begin{equation} = (\triangle G’_1BC) + (\triangle AG’_2C) + (\triangle ABG’_3). \end{equation}$.

Sean, $E = AB \cap G’_1G’_3$, $D = BC \cap G’_1G’_3$, $J = BC \cap G’_2G’_3$ e $I = G’_1C \cap G’_2G’_3$, entonces tenemos lo siguiente:

$(\triangle G’_1BC) = (\triangle BED) + (\triangle BEG’_1) + (\triangle CJI) + (\square G’_1DJI)$.

$(\triangle ABG’_3) = (\triangle BEG’_3) + (\triangle AG’_2G’_3) + (AEDJG’_2) + (\triangle DG’_3J)$.

Sustituyendo en $(2)$
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’)) $
$= ((\triangle BEG’_3) + (\triangle BEG’_1)) + (\triangle AG’_2G’_3) + ((\triangle BED) + (AEDJG’_2)$
$+ (\triangle CJI) + (\triangle AG’_2C)) + ((\triangle DG’_3J) + (\square G’_1DJI))$
$= (\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) + ((\triangle ABC) – (\triangle CIG’_2)) + (\triangle IG’_1G’_3)$
$= (\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) + ((\triangle ABC) – (\triangle CIG’_2)) + ((\triangle G’_1G’_2G’_3) – (\triangle G’_1G’_2I))$
$ = (\triangle ABC) + ((\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) – (\triangle CG’_1G’_2)) + (\triangle G’_1G’_2G’_3)$.

Usando $(1)$
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’))$
$= (\triangle ABC) + 2(\triangle G’_1G’_2G’_3)$.

Por lo tanto,
$(\triangle G’_1G’_2G’_3) = \dfrac{1}{6} ((\triangle ABC’) + (\triangle A’BC) + (\triangle AB’C)) –  \dfrac{(\triangle ABC)}{2}$.

$\blacksquare$

Corolario. La diferencia entre el área del triángulo externo de Napoleón y el área del triángulo interno de Napoleón es igual al área de su triángulo de referencia.

Como consecuencia de los teorema 3 y 4 tenemos,
$(\triangle G_1G_2G_3) – (\triangle G’_1G’_2G’_3) = (\triangle ABC)$.

$\blacksquare$

Rectas de Euler concurrentes

Proposición 1. Sea $ABCA’B’C’$ una configuración externa de Napoleón y $F_1$ el primer punto de Fermat, entonces las rectas de Euler de $\triangle ABF_1$, $\triangle AF_1C$ y $\triangle F_1BC$ concurren en el centroide de $\triangle ABC$.

Demostración. Sean $G$, $G’$ y $G_3$ los centroides de $\triangle ABC$, $\triangle ABF_1$ y $\triangle ABC’$ respectivamente, consideremos el $M$ el punto medio de $AB$.

Figura 7

Por el teorema 1, $G_3$ es el circuncentro de $\triangle ABF_1$ y $C$, $F_1$ y $C’$ son colineales, como $G_3$, $G’$ y $G$ son los centroides de $\triangle ABC’$, $\triangle AF_1$ y $\triangle ABC$ entonces
$\dfrac{MG_3}{MC’} = \dfrac{MG’}{MF_1} = \dfrac{MG}{MC} = \dfrac{1}{3}$.

Por el reciproco del teorema de Tales $G_3G’ \parallel C’F_1$ y $G’G \parallel F_1C$.

Por lo tanto, $G_3$, $G’$ y $G$ son colineales, y $G_3G’$ es la recta de Euler de $\triangle ABF_1$.

Igualmente podemos ver que las rectas de Euler de $\triangle AF_1C$ y $\triangle F_1BC$ pasan por el centroide de $\triangle ABC$.

$\blacksquare$

Hexágono de Napoleón

Proposición 2. Sea $ABCA’B’C’$ una configuración externa de Napoleón, sean $G_1$, $G_2$, $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y $G_a$, $G_b$, $G_c$ los centroides de $\triangle AB’C’$, $\triangle A’BC’$, $\triangle A’B’C$, entonces $G_aG_3G_1G_bG_2G_c$ es un hexágono regular.

Demostración. Sea $M$ el punto medio de $CB’$, en $\triangle MAA’$ tenemos
$\dfrac{MG_2}{MA} = \dfrac{MG_c}{MA’} = \dfrac{1}{3}$.

Por lo tanto, $G_2G_c \parallel AA’$ y $3G_2G_c = AA’$.

Figura 8

Análogamente consideremos $N$ el punto medio de $CA’$, en $\triangle NBB’$ tenemos
$\dfrac{NG_c}{NB’} = \dfrac{NG_1}{NB} = \dfrac{1}{3}$.

Por lo tanto, $G_1G_c \parallel BB’$ y $3G_1G_c = BB’$.

Por el teorema 1, $AA’ = BB’$, por lo que $G_1G_c = G_cG_2$, sea $F_1$ el primer punto de Fermat entonces $\angle G_1G_cG_2 = \angle BF_1A = \dfrac{2\pi}{3}$.

Igualmente podemos ver que los demás lados del hexágono son iguales y que el ángulo entre ellos es de $\dfrac{2\pi}{3}$.

En conclusión, $G_aG_3G_1G_bG_2G_c$ es un hexágono regular.

$\blacksquare$

Más adelante…

Con la siguiente entrada daremos inicio a la unidad III y con la ayuda de segmentos dirigidos mostraremos el teorema de Menelao, que nos dice cuando tres puntos sobre los lados de un triángulo son colineales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $ABCA’B’C’$ una configuración interna de Napoleón (figura 6), para los ejercicios 1, 2 y 3 demuestra lo siguiente:
    $i)$ los circuncírculos de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y las rectas $AA’$, $BB’$, $CC’$ son concurrentes,
    $ii)$ $AA’ = BB’ = CC’$.
  2. Prueba que los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son los vértices de un triángulo equilátero y que su centroide coincide con el centroide de $\triangle ABC$ (figura 6).
  3. Considera $F_2$, el segundo punto de Fermat, muestra que las rectas de Euler de $\triangle ABF_2$, $\triangle AF_2C$ y $\triangle F_2BC$ concurren en el centroide de $\triangle ABC$ (figura 6).
  4. Sean $ABCA’B’C’$ una configuración externa de Napoleón y $ABCA’’B’’C’’$ una configuración interna de Napoleón, demuestra que
    $i)$ el punto medio de $CC»$ coincide con el punto medio de $A’B’$,
    $ii)$ el punto medio de $CC’$ coincide con el punto medio de $A»B»$.
  5. Sea $ABCA’B’C’$ una configuración externa de Napoleón demuestra que el centroide de $\triangle A’B’C’$ coincide con el centroide de $\triangle ABC$.
  6. Divide los lados de un triángulo en tres partes iguales, sobre el tercio de en medio de cada lado del triángulo, construye externamente (internamente) triángulos equiláteros, muestra que los terceros vértices construidos son los vértices de un triángulo equilátero (figura 9).
Figura 9
  1. Sea $ABCA’B’C’$ una configuración externa de Napoleón, considera los arcos $\overset{\LARGE{\frown}}{BC}$, $\overset{\LARGE{\frown}}{CA}$ y $\overset{\LARGE{\frown}}{AB}$ de los circuncírculos de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ respectivamente que no contienen a los vértices de $\triangle ABC$ (figura 1), sean $P \in \overset{\LARGE{\frown}}{AB}$ arbitrario y $Q = PA \cap \overset{\LARGE{\frown}}{CA}$, muestra que la intersección $R$ de $PB$ y $QC$ esta en el arco $\overset{\LARGE{\frown}}{BC}$ y que $\triangle PQR$ es equilátero.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Circunferencias tritangentes

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión estudiaremos algunas propiedades de las circunferencias tritangentes de un triángulo, esto nos permitirá entre otras cosas, derivar formulas para el área del triángulo.

Definición 1. El incírculo $(I, r)$ y los tres excírculos $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ de un triángulo a veces son referidos como las circunferencias tritangentes del triángulo, sus centros como centros tritangentes y sus radios, radios tritangentes.

Centros tritangentes

Teorema 1. El segmento que une dos centros tritangentes de un triángulo es el diámetro de una circunferencia que contiene dos de los vértices del triángulo, los cuales no son colineales con los centros tritangentes considerados.

Demostración. Sean $\triangle ABC$, $\Gamma$ su circuncírculo, $I$, $I_a$, $I_b$ y $I_c$ sus centros tritangentes.

Consideremos la circunferencia $\Gamma(II_b)$ cuyo diámetro es $II_b$, como las bisectrices internas y externas de $\angle A$, $AI$ y $AI_b$ son perpendiculares entonces $A \in \Gamma(II_b)$, de manera análoga vemos que $C \in \Gamma(II_b)$.

Figura 1

Como $AC$ es cuerda de $\Gamma(II_b)$, entonces su mediatriz interseca a $II_b$ en el centro $P$ de $\Gamma(II_b)$. Ya que $AC$ es cuerda de $\Gamma$, entonces su mediatriz interseca al circuncírculo de $\triangle ABC$ en el punto medio del arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$.

Como $II_b$ es bisectriz de $\angle B$ entonces $II_b$ interseca al circuncírculo de $\triangle ABC$ en el punto medio del arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$.

Por lo tanto, el centro $P$ de $\Gamma(II_b)$ pertenece al circuncírculo de $\triangle ABC$.

Ahora consideremos la circunferencia $\Gamma(I_aI_c)$, cuyo diámetro es $I_aI_c$, como las bisectrices interna y externa de $\angle A$, son perpendiculares entonces $A \in \Gamma(I_aI_c)$, con un razonamiento análogo vemos que $C \in \Gamma(I_aI_c)$.

Considera el punto diametralmente opuesto a $P$, $P’$ en el circuncírculo de $\triangle ABC$ entonces $\angle PBP’$ es ángulo recto y como $BP$ es la bisectriz interna de $\angle B$ entonces $BP’$ es la bisectriz externa de $\angle B$.

Como $AC$ es cuerda de $\Gamma(I_aI_c)$ entonces su mediatriz $PP’$ interseca a $I_aI_c$ en su punto medio.

Por lo tanto, el punto medio, $P’$, del arco $\overset{\LARGE{\frown}}{AC}$, es el punto medio del diámetro, $I_aI_c$, de $\Gamma(I_aI_c)$.

Del mismo modo podemos ver que $\Gamma(II_c)$, $\Gamma(I_bI_a)$ pasan por los vértices $A$, $B$ y que $\Gamma(II_a)$, $\Gamma(I_bI_c)$ pasan por los vertices $C$, $B$.

$\blacksquare$

Puntos de contacto

Notación. Nos referiremos a los puntos de tangencia de los círculos tritangentes $(I, r)$, $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ con el lado $BC$ de un triángulo $\triangle ABC$ como $X$, $X_a$, $X_b$ y $X_c$ respectivamente. Usaremos las letras $Y$ y $Z$ para los lados $AC$ y $AB$ respectivamente.

Emplearemos la letra $s$ para referirnos al semiperímetro $\dfrac{a + b + c}{2}$ de un triángulo $\triangle ABC$ donde $BC = a$, $AC = b$  y $AB = c$.

Proposición 1. La distancia desde el vértice de un triángulo al punto de tangencia de su circuncírculo en uno de sus lados adyacentes es igual al semiperímetro menos la longitud del lado opuesto.

Demostración. Sea $\triangle ABC$ y $(I, r)$ su circuncírculo. Como las tangentes desde un punto exterior a una circunferencia son iguales entonces $AZ = AY$, $BZ = BX$ y $CX = CY$.

Figura 2

Por otra parte, $AZ + BZ + BX + CX + CY +AY = c + a + b = 2s$.

Por lo tanto, $AZ + BX + CX = s$.

Y así, $AY = AZ = s – a$.

Similarmente, $BZ = BX = s – b$ y $CX = CY = s – c$.

$\blacksquare$

Proposición 2. La distancia desde el vértice de un triángulo al punto de tangencia del excírculo opuesto, a uno de los lados adyacentes al vértice considerado es igual al semiperímetro del triángulo.

Demostración. Sea $\triangle ABC$ y $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ sus excentros (figura 2). Como las tangentes desde un punto exterior a una circunferencia son iguales entonces
$AZ_a = AY_a$, $BX_b = BZ_b$ y $CX_c = CY_c$.

Por otro lado,
$AZ_a + AY_a = AB + BZ_a + AC + CY_a $
$= AB + AC + BX_a + CX_a = AB + AC + BC = 2s$.

Por lo tanto, $AZ_a = AY_a = s$.

Igualmente, $BX_b = BY_b = CX_c = CY_c = s$.

$\blacksquare$

Corolario 1. $AZ_c = AY_c = s – b$, y $AY_b = AZ_b = s – c$.

Demostración. En la figura 2 tenemos lo siguiente:
$AY_c = CY_c – AC = s – AC$,
$AZ_b = BZ_b – AB = s – AB$.

Similarmente,
$BZ_c = BX_c = s – a$, $BX_a = BZ_a = s – c$,
$CX_a = CY_a = s – b$, $CY_b = CX_b = s – a$.

$\blacksquare$

Puntos isotómicos

Definición 2. Si dos puntos en uno de los lados de un triángulo equidistan al punto medio del lado considerado decimos que son puntos isotómicos.

Proposición 3. El punto de tangencia del incírculo con uno de los lados de un triángulo y el punto de tangencia del excírculo relativo al lado considerado, son puntos isotómicos.

Demostración. Por la proposición 1 y el corolario 1, tenemos que $BX = s – b = CX_a$ (figura 2).

Esto implica que el punto medio de $XX_a$ es el punto medio de $BC$, por lo tanto, $X$ y $X_a$ son puntos isotómicos.

Análogamente vemos que $Z$, $Z_c$ e $Y$, $Y_b$ son pares de puntos isotómicos.

$\blacksquare$

Proposición 4. Los dos puntos de contacto de un lado de un triángulo con los dos excírculos opuestos a los vértices que pasan por ese lado son isotómicos, además la distancia entre estos dos puntos es igual a la suma de los otros dos lados.

Demostración. En la figura 2, tenemos lo siguiente:
$BX_c = CX_c – BC = s – a$, $CX_b = BX_b – BC = s – a$.

Por lo tanto, el punto medio de $X_cX_b$ coincide con el punto medio de $BC$.

Por otro lado, $X_cX_b = BX_c + a + CX_b = a + 2(s – a) = 2s – a = c + b$.

Igualmente, $Y_aY_c = a + c$, $Z_aZ_b = a + b$.

$\blacksquare$

Radios tritangentes y área del triangulo

Proposición 5. El área de un triángulo es igual al producto del semiperímetro por el inradio.

Demostración. De la figura 2,
$(\triangle ABC) = (\triangle AIB) + (\triangle BIC) + (\triangle AIC) = \dfrac{cr}{2} + \dfrac{ar}{2} + \dfrac{br}{2} = sr$.

$\blacksquare$

Proposición 6. El área de un triángulo es igual al producto de un exradio por la diferencia entre el semiperímetro y el lado relativo al excírculo considerado.

Demostración. En la figura 2,
$(\triangle ABC) = (\triangle AI_aB) + (\triangle AI_aC) – (\triangle BI_aC) $
$= \dfrac{cr_a}{2} + \dfrac{br_a}{2} – \dfrac{ar_a}{2} = \dfrac{r_a}{2}(2s – 2a) = r_a(s – a)$.

$\blacksquare$

Corolario 2. El reciproco del inradio es igual a la suma de los recíprocos de los exradios.

Demostración. De las proposiciones 5 y 6 se sigue que
$\dfrac{1}{r_a} + \dfrac{1}{r_b} + \dfrac{1}{r_c} = \dfrac{(s – a) + (s – b) + (s – c)}{( \triangle ABC)}
= \dfrac{s}{(\triangle ABC)} = \dfrac{1}{r}$.

$\blacksquare$

Proposición 7. El área de un triángulo es igual al producto de sus lados sobre cuatro veces su circunradio.

Demostración. Sean $\triangle ABC$, $(O, R)$ su circuncírculo, $D$ el pie de la altura por $A$, y $A’$ el punto diametralmente opuesto a $A$.

Figura 3

$\angle ABD = \angle AA’C$, pues abarcan el mismo arco y $\angle ACA’ = \dfrac{\pi}{2}$ es recto ya que $AA’$ es diámetro, así que $\triangle ABD \sim \triangle AA’C$, por criterio de semejanza AA.

Esto es, $\dfrac{AB}{AA’} = \dfrac{AD}{AC}$.

Se sigue que, $bc = 2RAD$ y $abc = a2RAD = 4R(\triangle ABC)$.

Por lo tanto, $\dfrac{abc}{4R} = (\triangle ABC)$.

$\blacksquare$

Formula de Herón y teorema de Carnot

Teorema 2, fórmula de Herón. Podemos calcular el área de un triángulo mediante la fórmula
$(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)}$.

Demostración. Como $\angle YCI$ y $\angle I_ACY_a$ son suplementarios, por criterio de semejanza AAA $\triangle YCI \sim \triangle Y_aI_aC$,
por lo tanto, $\dfrac{Y_aI_a}{YC} = \dfrac{Y_aC}{YI}$,
es decir, $\dfrac{r_a}{s – c} = \dfrac{s – b}{r}$.

También $\triangle AYI \sim \triangle AY_aI_a$,
por lo tanto, $\dfrac{Y_aI_a}{YI} = \dfrac{AY_a}{AY}$,  
es decir, $\dfrac{r_a}{r} = \dfrac{s}{s – a}$,
entonces $\dfrac{rs}{s – a} = \dfrac{(s – b)(s – c)}{r}$. 

Por la proposición 5, $(\triangle ABC) = rs$,
por lo tanto, $(\triangle ABC) = \dfrac{(s – a)(s – b)(s – c)}{\dfrac{(\triangle ABC)}{s}}$,
así que $(\triangle ABC)^2 = s(s – a)(s – b)(s – c)$.

En conclusión, $(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)}$.

$\blacksquare$

Teorema 3, de Carnot. La suma de las distancias desde el circuncentro a los lados del triángulo es igual a la suma del circunradio y el inradio.

Demostración. Sea $\triangle ABC$ un triángulo acutángulo, $(O, R)$ su circuncírculo y $D$, $E$, $F$ las proyecciones de $O$ en $BC$, $AC$ y $AB$ respectivamente.

Figura 4

Aplicando el teorema de Ptolomeo a $\square AFOE$, $\square FBDO$ y $\square ODCE$ tenemos:
$AF \times OE + AE \times OF = OA \times EF$,
$BF \times OD + BD \times OF = OB \times DF$,
$CE \times OD + CD \times OE = OC \times DE$.

Por otra parte, como $O$ está en la mediatriz de $BC$, $AC$ y $AB$ entonces $D$, $E$ y $F$ son los respectivos puntos medios y podemos aplicar el teorema del segmento medio. Si nombramos $OD = x$, $OE = y$, $OF = z$, entonces:

$\dfrac{cy}{2} + \dfrac{bz}{2} = \dfrac{Ra}{2}$,
$\dfrac{cx}{2} + \dfrac{az}{2} = \dfrac{Rb}{2}$,
$\dfrac{bx}{2} + \dfrac{ay}{2} = \dfrac{Rc}{2}$.

Sumamos las tres expresiones,

$x(c + b) + y(a + c) + z(a + b) = R(a + b + c)$
$\Rightarrow x(2s – a) + y(2s – b) + z(2s – c) = R2s$
$\Rightarrow 2s(x + y + z) – (ax + by + cz) = R2s$
$ \Rightarrow 2s(x + y + z) – 2(\triangle ABC) = R2s$.

De la proposición 5 tenemos $(\triangle ABC) = rs$,
por lo tanto, $2s(x + y + z) – 2rs = R2s$.

Como resultado, $x + y + z = R + r$.

$\blacksquare$

Más adelante…

Con la ayuda de las formulas para el calculo del área de un triángulo vistas en esta entrada, en la próxima entrada mostraremos algunas desigualdades geométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que:
    $i)$ la bisectriz interna del ángulo de un triángulo es perpendicular al segmento que une los puntos donde las otras bisectrices internas intersecan al circuncírculo del triangulo,
    $ii)$ la bisectriz externa del ángulo de un triángulo es paralela al segmento que une los puntos donde las bisectrices externas (internas) de los otros dos ángulos intersecan al circuncírculo del triángulo.
  2. Demuestra que: 
    $i)$ la suma de los catetos de un triángulo rectángulo menos la hipotenusa es igual al diámetro de su incírculo,
    $ii)$ el área de un triángulo rectángulo es igual al producto de los segmentos en los cuales la hipotenusa es dividida por el punto de tangencia de su incírculo.
  3. Muestra que en la figura 2 se tienen las siguientes igualdades:
    $i)$ $XX_a = b – c$, $YY_b = a – c$, $ZZ_c = a – b$,
    $ii)$ $ZZ_a = YY_a = a$, $XX_b = ZZ_b = b$, $YY_c = XX_c = c$,
    $iii)$ $Y_bY_c = Z_bZ_c = a$, $X_aX_c = Z_aZ_c = b$, $X_aX_b = Y_aY_b = c$.
  4. Prueba que:
    $i)$ el producto de los cuatro radios tritangentes de un triángulo es igual al cuadrado del área del triángulo $(\triangle ABC)^2 = rr_ar_br_c$
    $ii)$ el reciproco del inradio de un triángulo es igual a la suma de los recíprocos de las alturas del triangulo, $\dfrac{1}{r} = \dfrac{1}{h_a} + \dfrac{1}{h_b} + \dfrac{1}{h_c}$,
    $iii)$ en la figura 2, $\dfrac{AZ \times BX \times CY}{r} = (\triangle ABC)$.
  5. Demuestra que la razón entre el área de un triangulo y el area del triángulo formado por los puntos de contacto de su circuncírculo con sus lados es igual a la razón entre el inradio y el circundiámetro. En la figura 2, $\dfrac{(\triangle XYZ)}{(\triangle ABC)} = \dfrac{r}{2R}$.
  6. Muestra que en el teorema de Carnot, cuando $\angle A$ es obtuso (figura 4), entonces $y + z – x = R + r$.
  7. Sean $\triangle ABC$, $\alpha = \angle BAC$, $\beta = \angle CBA$, $\gamma = \angle ACB$, $R$ el circunradio y $r$ el inradio, muestra que:
    $i)$ $\sin \dfrac{\alpha}{2} = \sqrt{\dfrac{(s – b)(s – c)}{bc}}$, $\sin \dfrac{\beta}{2} = \sqrt{\dfrac{(s – a)(s – c)}{ac}}$, $\sin \dfrac{\gamma}{2} = \sqrt{\dfrac{(s – a)(s – b)}{ab}}$
    $ii)$ $\cos \alpha + \cos \beta + \cos \gamma = 1 + \dfrac{r}{R}$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 73-79, 87-91.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 11-13.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 86-89, 97-98.
  • Quora
  • Cut the Knot

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»