Archivo de la etiqueta: área del triángulo

Geometría Moderna I: Circunferencias tritangentes

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión estudiaremos algunas propiedades de las circunferencias tritangentes de un triángulo, esto nos permitirá entre otras cosas, derivar formulas para el área del triángulo.

Definición 1. El incírculo $(I, r)$ y los tres excírculos $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ de un triángulo a veces son referidos como las circunferencias tritangentes del triángulo, sus centros como centros tritangentes y sus radios, radios tritangentes.

Centros tritangentes

Teorema 1. El segmento que une dos centros tritangentes de un triángulo es el diámetro de una circunferencia que contiene dos de los vértices del triángulo, los cuales no son colineales con los centros tritangentes considerados.

Demostración. Sean $\triangle ABC$, $\Gamma$ su circuncírculo, $I$, $I_a$, $I_b$ y $I_c$ sus centros tritangentes.

Consideremos la circunferencia $\Gamma(II_b)$ cuyo diámetro es $II_b$, como las bisectrices internas y externas de $\angle A$, $AI$ y $AI_b$ son perpendiculares entonces $A \in \Gamma(II_b)$, de manera análoga vemos que $C \in \Gamma(II_b)$.

Figura 1

Como $AC$ es cuerda de $\Gamma(II_b)$, entonces su mediatriz interseca a $II_b$ en el centro $P$ de $\Gamma(II_b)$. Ya que $AC$ es cuerda de $\Gamma$, entonces su mediatriz interseca al circuncírculo de $\triangle ABC$ en el punto medio del arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$.

Como $II_b$ es bisectriz de $\angle B$ entonces $II_b$ interseca al circuncírculo de $\triangle ABC$ en el punto medio del arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$.

Por lo tanto, el centro $P$ de $\Gamma(II_b)$ pertenece al circuncírculo de $\triangle ABC$.

Ahora consideremos la circunferencia $\Gamma(I_aI_c)$, cuyo diámetro es $I_aI_c$, como las bisectrices interna y externa de $\angle A$, son perpendiculares entonces $A \in \Gamma(I_aI_c)$, con un razonamiento análogo vemos que $C \in \Gamma(I_aI_c)$.

Considera el punto diametralmente opuesto a $P$, $P’$ en el circuncírculo de $\triangle ABC$ entonces $\angle PBP’$ es ángulo recto y como $BP$ es la bisectriz interna de $\angle B$ entonces $BP’$ es la bisectriz externa de $\angle B$.

Como $AC$ es cuerda de $\Gamma(I_aI_c)$ entonces su mediatriz $PP’$ interseca a $I_aI_c$ en su punto medio.

Por lo tanto, el punto medio, $P’$, del arco $\overset{\LARGE{\frown}}{AC}$, es el punto medio del diámetro, $I_aI_c$, de $\Gamma(I_aI_c)$.

Del mismo modo podemos ver que $\Gamma(II_c)$, $\Gamma(I_bI_a)$ pasan por los vértices $A$, $B$ y que $\Gamma(II_a)$, $\Gamma(I_bI_c)$ pasan por los vertices $C$, $B$.

$\blacksquare$

Puntos de contacto

Notación. Nos referiremos a los puntos de tangencia de los círculos tritangentes $(I, r)$, $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ con el lado $BC$ de un triángulo $\triangle ABC$ como $X$, $X_a$, $X_b$ y $X_c$ respectivamente. Usaremos las letras $Y$ y $Z$ para los lados $AC$ y $AB$ respectivamente.

Emplearemos la letra $s$ para referirnos al semiperímetro $\dfrac{a + b + c}{2}$ de un triángulo $\triangle ABC$ donde $BC = a$, $AC = b$  y $AB = c$.

Proposición 1. La distancia desde el vértice de un triángulo al punto de tangencia de su circuncírculo en uno de sus lados adyacentes es igual al semiperímetro menos la longitud del lado opuesto.

Demostración. Sea $\triangle ABC$ y $(I, r)$ su circuncírculo. Como las tangentes desde un punto exterior a una circunferencia son iguales entonces $AZ = AY$, $BZ = BX$ y $CX = CY$.

Figura 2

Por otra parte, $AZ + BZ + BX + CX + CY +AY = c + a + b = 2s$.

Por lo tanto, $AZ + BX + CX = s$.

Y así, $AY = AZ = s – a$.

Similarmente, $BZ = BX = s – b$ y $CX = CY = s – c$.

$\blacksquare$

Proposición 2. La distancia desde el vértice de un triángulo al punto de tangencia del excírculo opuesto, a uno de los lados adyacentes al vértice considerado es igual al semiperímetro del triángulo.

Demostración. Sea $\triangle ABC$ y $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ sus excentros (figura 2). Como las tangentes desde un punto exterior a una circunferencia son iguales entonces
$AZ_a = AY_a$, $BX_b = BZ_b$ y $CX_c = CY_c$.

Por otro lado,
$AZ_a + AY_a = AB + BZ_a + AC + CY_a $
$= AB + AC + BX_a + CX_a = AB + AC + BC = 2s$.

Por lo tanto, $AZ_a = AY_a = s$.

Igualmente, $BX_b = BY_b = CX_c = CY_c = s$.

$\blacksquare$

Corolario 1. $AZ_c = AY_c = s – b$, y $AY_b = AZ_b = s – c$.

Demostración. En la figura 2 tenemos lo siguiente:
$AY_c = CY_c – AC = s – AC$,
$AZ_b = BZ_b – AB = s – AB$.

Similarmente,
$BZ_c = BX_c = s – a$, $BX_a = BZ_a = s – c$,
$CX_a = CY_a = s – b$, $CY_b = CX_b = s – a$.

$\blacksquare$

Puntos isotómicos

Definición 2. Si dos puntos en uno de los lados de un triángulo equidistan al punto medio del lado considerado decimos que son puntos isotómicos.

Proposición 3. El punto de tangencia del incírculo con uno de los lados de un triángulo y el punto de tangencia del excírculo relativo al lado considerado, son puntos isotómicos.

Demostración. Por la proposición 1 y el corolario 1, tenemos que $BX = s – b = CX_a$ (figura 2).

Esto implica que el punto medio de $XX_a$ es el punto medio de $BC$, por lo tanto, $X$ y $X_a$ son puntos isotómicos.

Análogamente vemos que $Z$, $Z_c$ e $Y$, $Y_b$ son pares de puntos isotómicos.

$\blacksquare$

Proposición 4. Los dos puntos de contacto de un lado de un triángulo con los dos excírculos opuestos a los vértices que pasan por ese lado son isotómicos, además la distancia entre estos dos puntos es igual a la suma de los otros dos lados.

Demostración. En la figura 2, tenemos lo siguiente:
$BX_c = CX_c – BC = s – a$, $CX_b = BX_b – BC = s – a$.

Por lo tanto, el punto medio de $X_cX_b$ coincide con el punto medio de $BC$.

Por otro lado, $X_cX_b = BX_c + a + CX_b = a + 2(s – a) = 2s – a = c + b$.

Igualmente, $Y_aY_c = a + c$, $Z_aZ_b = a + b$.

$\blacksquare$

Radios tritangentes y área del triangulo

Proposición 5. El área de un triángulo es igual al producto del semiperímetro por el inradio.

Demostración. De la figura 2,
$(\triangle ABC) = (\triangle AIB) + (\triangle BIC) + (\triangle AIC) = \dfrac{cr}{2} + \dfrac{ar}{2} + \dfrac{br}{2} = sr$.

$\blacksquare$

Proposición 6. El área de un triángulo es igual al producto de un exradio por la diferencia entre el semiperímetro y el lado relativo al excírculo considerado.

Demostración. En la figura 2,
$(\triangle ABC) = (\triangle AI_aB) + (\triangle AI_aC) – (\triangle BI_aC) $
$= \dfrac{cr_a}{2} + \dfrac{br_a}{2} – \dfrac{ar_a}{2} = \dfrac{r_a}{2}(2s – 2a) = r_a(s – a)$.

$\blacksquare$

Corolario 2. El reciproco del inradio es igual a la suma de los recíprocos de los exradios.

Demostración. De las proposiciones 5 y 6 se sigue que
$\dfrac{1}{r_a} + \dfrac{1}{r_b} + \dfrac{1}{r_c} = \dfrac{(s – a) + (s – b) + (s – c)}{( \triangle ABC)}
= \dfrac{s}{(\triangle ABC)} = \dfrac{1}{r}$.

$\blacksquare$

Proposición 7. El área de un triángulo es igual al producto de sus lados sobre cuatro veces su circunradio.

Demostración. Sean $\triangle ABC$, $(O, R)$ su circuncírculo, $D$ el pie de la altura por $A$, y $A’$ el punto diametralmente opuesto a $A$.

Figura 3

$\angle ABD = \angle AA’C$, pues abarcan el mismo arco y $\angle ACA’ = \dfrac{\pi}{2}$ es recto ya que $AA’$ es diámetro, así que $\triangle ABD \sim \triangle AA’C$, por criterio de semejanza AA.

Esto es, $\dfrac{AB}{AA’} = \dfrac{AD}{AC}$.

Se sigue que, $bc = 2RAD$ y $abc = a2RAD = 4R(\triangle ABC)$.

Por lo tanto, $\dfrac{abc}{4R} = (\triangle ABC)$.

$\blacksquare$

Formula de Herón y teorema de Carnot

Teorema 2, fórmula de Herón. Podemos calcular el área de un triángulo mediante la fórmula
$(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)}$.

Demostración. Como $\angle YCI$ y $\angle I_ACY_a$ son suplementarios, por criterio de semejanza AAA $\triangle YCI \sim \triangle Y_aI_aC$,
por lo tanto, $\dfrac{Y_aI_a}{YC} = \dfrac{Y_aC}{YI}$,
es decir, $\dfrac{r_a}{s – c} = \dfrac{s – b}{r}$.

También $\triangle AYI \sim \triangle AY_aI_a$,
por lo tanto, $\dfrac{Y_aI_a}{YI} = \dfrac{AY_a}{AY}$,  
es decir, $\dfrac{r_a}{r} = \dfrac{s}{s – a}$,
entonces $\dfrac{rs}{s – a} = \dfrac{(s – b)(s – c)}{r}$. 

Por la proposición 5, $(\triangle ABC) = rs$,
por lo tanto, $(\triangle ABC) = \dfrac{(s – a)(s – b)(s – c)}{\dfrac{(\triangle ABC)}{s}}$,
así que $(\triangle ABC)^2 = s(s – a)(s – b)(s – c)$.

En conclusión, $(\triangle ABC) = \sqrt{s(s – a)(s – b)(s – c)}$.

$\blacksquare$

Teorema 3, de Carnot. La suma de las distancias desde el circuncentro a los lados del triángulo es igual a la suma del circunradio y el inradio.

Demostración. Sea $\triangle ABC$ un triángulo acutángulo, $(O, R)$ su circuncírculo y $D$, $E$, $F$ las proyecciones de $O$ en $BC$, $AC$ y $AB$ respectivamente.

Figura 4

Aplicando el teorema de Ptolomeo a $\square AFOE$, $\square FBDO$ y $\square ODCE$ tenemos:
$AF \times OE + AE \times OF = OA \times EF$,
$BF \times OD + BD \times OF = OB \times DF$,
$CE \times OD + CD \times OE = OC \times DE$.

Por otra parte, como $O$ está en la mediatriz de $BC$, $AC$ y $AB$ entonces $D$, $E$ y $F$ son los respectivos puntos medios y podemos aplicar el teorema del segmento medio. Si nombramos $OD = x$, $OE = y$, $OF = z$, entonces:

$\dfrac{cy}{2} + \dfrac{bz}{2} = \dfrac{Ra}{2}$,
$\dfrac{cx}{2} + \dfrac{az}{2} = \dfrac{Rb}{2}$,
$\dfrac{bx}{2} + \dfrac{ay}{2} = \dfrac{Rc}{2}$.

Sumamos las tres expresiones,

$x(c + b) + y(a + c) + z(a + b) = R(a + b + c)$
$\Rightarrow x(2s – a) + y(2s – b) + z(2s – c) = R2s$
$\Rightarrow 2s(x + y + z) – (ax + by + cz) = R2s$
$ \Rightarrow 2s(x + y + z) – 2(\triangle ABC) = R2s$.

De la proposición 5 tenemos $(\triangle ABC) = rs$,
por lo tanto, $2s(x + y + z) – 2rs = R2s$.

Como resultado, $x + y + z = R + r$.

$\blacksquare$

Más adelante…

Con la ayuda de las formulas para el calculo del área de un triángulo vistas en esta entrada, en la próxima entrada mostraremos algunas desigualdades geométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que:
    $i)$ la bisectriz interna del ángulo de un triángulo es perpendicular al segmento que une los puntos donde las otras bisectrices internas intersecan al circuncírculo del triangulo,
    $ii)$ la bisectriz externa del ángulo de un triángulo es paralela al segmento que une los puntos donde las bisectrices externas (internas) de los otros dos ángulos intersecan al circuncírculo del triángulo.
  2. Demuestra que: 
    $i)$ la suma de los catetos de un triángulo rectángulo menos la hipotenusa es igual al diámetro de su incírculo,
    $ii)$ el área de un triángulo rectángulo es igual al producto de los segmentos en los cuales la hipotenusa es dividida por el punto de tangencia de su incírculo.
  3. Muestra que en la figura 2 se tienen las siguientes igualdades:
    $i)$ $XX_a = b – c$, $YY_b = a – c$, $ZZ_c = a – b$,
    $ii)$ $ZZ_a = YY_a = a$, $XX_b = ZZ_b = b$, $YY_c = XX_c = c$,
    $iii)$ $Y_bY_c = Z_bZ_c = a$, $X_aX_c = Z_aZ_c = b$, $X_aX_b = Y_aY_b = c$.
  4. Prueba que:
    $i)$ el producto de los cuatro radios tritangentes de un triángulo es igual al cuadrado del área del triángulo $(\triangle ABC)^2 = rr_ar_br_c$
    $ii)$ el reciproco del inradio de un triángulo es igual a la suma de los recíprocos de las alturas del triangulo, $\dfrac{1}{r} = \dfrac{1}{h_a} + \dfrac{1}{h_b} + \dfrac{1}{h_c}$,
    $iii)$ en la figura 2, $\dfrac{AZ \times BX \times CY}{r} = (\triangle ABC)$.
  5. Demuestra que la razón entre el área de un triangulo y el area del triángulo formado por los puntos de contacto de su circuncírculo con sus lados es igual a la razón entre el inradio y el circundiámetro. En la figura 2, $\dfrac{(\triangle XYZ)}{(\triangle ABC)} = \dfrac{r}{2R}$.
  6. Muestra que en el teorema de Carnot, cuando $\angle A$ es obtuso (figura 4), entonces $y + z – x = R + r$.
  7. Sean $\triangle ABC$, $\alpha = \angle BAC$, $\beta = \angle CBA$, $\gamma = \angle ACB$, $R$ el circunradio y $r$ el inradio, muestra que:
    $i)$ $\sin \dfrac{\alpha}{2} = \sqrt{\dfrac{(s – b)(s – c)}{bc}}$, $\sin \dfrac{\beta}{2} = \sqrt{\dfrac{(s – a)(s – c)}{ac}}$, $\sin \dfrac{\gamma}{2} = \sqrt{\dfrac{(s – a)(s – b)}{ab}}$
    $ii)$ $\cos \alpha + \cos \beta + \cos \gamma = 1 + \dfrac{r}{R}$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 73-79, 87-91.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 11-13.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 86-89, 97-98.
  • Quora
  • Cut the Knot

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Teorema de Pitágoras

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión veremos el teorema de Pitágoras que relaciona la hipotenusa de un triangulo rectángulo con la longitud de sus catetos, esta propiedad permite definir una métrica en el espacio euclidiano, en particular, con esto podemos calcular la longitud de un segmento si conocemos un triángulo rectángulo que tenga como hipotenusa dicho segmento.

Geométricamente el teorema de Pitágoras nos habla sobre el área de cuadrados construidos sobre los lados de un triángulo rectángulo, así que necesitamos presentar un concepto nuevo.

Definición. Definimos el área de un rectángulo como el producto de dos de sus lados adyacentes. De esta manera el área de un cuadrado será su lado al cuadrado.

Figura 1

Como las diagonales de todo rectángulo lo dividen en dos triángulos rectángulos congruentes, de la definición se sigue que el área de un triángulo rectángulo es el semiproducto de sus catetos.  

Teorema de Pitágoras

Teorema 1, de Pitágoras. El área de un cuadrado de lado igual a la hipotenusa de un triángulo rectángulo es igual a la suma de las áreas de cuadrados de lados igual a los catetos del triángulo rectángulo.

Demostración. Consideremos un triángulo rectángulo de catetos $a$, $b$ e hipotenusa $c$.

Construimos un cuadrado $\square ABCD$ de lados $a + b$, y puntos $P \in AB$, $Q \in BC$, $R \in CD$ y $S \in AD$, tales que $AP = BQ = CR = DS = a$ y $BP = CQ = DR = AS = b$.

Figura 2

Como los ángulos en las esquinas son rectos entonces por criterio LAL
$\begin{equation} \triangle ASP \cong \triangle BPQ \cong \triangle CQR \cong \triangle DRS, \end{equation}$
en particular $PQ = QR = RS = SP$.

Por $(1)$, $\angle CQR$ y $\angle PQB$ son complementarios en consecuencia $\angle RQP = \dfrac{\pi}{2}$.

De manera análoga se ve que
$\angle SRQ = \angle QPS = \angle PSR = \angle RQP = \dfrac{\pi}{2}$.

Por lo tanto, $\square PQRS$ es un cuadrado de lado $c$.

Ahora construimos otro cuadrado $\square A’B’C’D’$ de lados $a + b$, y puntos $P’ \in A’B’$ y $Q’ \in B’C’$ tales que $A’P’ = B’Q’ = b$ y $B’P’ = C’Q’ = a$.

Trazamos una perpendicular a $A’B’$ por $P’$ que interseca a $C’D’$ en $R’$, y una perpendicular a $B’C’$ por $Q’$ que interseca a $A’D’$ en $S’$.

Figura 3

Como $A’B’ \parallel C’D’$ entonces $P’R’ \perp C’D’$, análogamente $Q’S’ \perp A’D’$ y entonces $P’R’ \perp Q’S’$.

Por lo tanto, $\square A’P’ES’$, $\square EQ’C’R’$, $\square P’B’Q’E$ y $\square S’ER’D’$ son rectángulos.

Como los lados opuestos de todo rectángulo son iguales, concluimos que $\square A’P’ES’$ y $\square EQ’C’R’$ son cuadrados de lados $b$ y $a$ respectivamente.

$B’E$ y $ED’$ dividen a $\square P’B’Q’E$ y $\square S’ER’D’$ en cuatro triángulos rectángulos congruentes entre si pues los rectángulos son congruentes.

Pero al mismo tiempo los triángulos en $\square A’B’C’D’$ son congruentes con los triángulos en $\square ABCD$, pues tienen los mismos lados $a$ y $b$, y todos son triángulos rectángulos.

Finalmente, como $\square ABCD$ y $\square A’B’C’D’$ son congruentes entonces sus áreas son iguales y podemos sustraer a cada uno el área de los cuatro triángulos resultando así que el área del cuadrado rosa es igual a la suma de las áreas de los cuadrados verde y naranja.

Por lo tanto, $c^2 = a^2 + b^2$.

$\blacksquare$

Reciproco del Teorema de Pitágoras

Teorema 2. Reciproco del teorema de Pitágoras. Si en un triángulo el cuadrado de uno de sus lados es igual a la suma de los cuadrados de los otros dos lados entonces el triángulo es rectángulo.

Demostración. Sea $\triangle ABC$ un triángulo tal que $AC^2 = AB^2 + BC^2$.

Construimos un punto $D$ del lado opuesto a $C$ respecto de $AB$ tal que $BD = BC$ y $BD \perp AB$.

Figura 4

Por construcción $\triangle ABD$ es rectángulo, por el teorema de Pitágoras, $AD^2 = AB^2 + BD^2$.

Como $BD = BC$ $\Rightarrow BD^2 = BC^2$, por lo tanto, $AD^2 = AB^2 + BC^2 = AC^2$.

Por hipótesis, $AC^2 = AB^2 + BC^2 \Rightarrow AD^2 = AC^2 \Rightarrow AD = AC$.

Por criterio LLL, $\triangle ABC \cong \triangle ADC$, en particular $\angle CBA = \angle ABC = \dfrac{\pi}{2}$.

$\blacksquare$

Caracterización de un ángulo interior

Sea $\triangle ABC$ entonces por los teoremas 1 y 2
$\angle B = \dfrac{\pi}{2} \Leftrightarrow AC^2 = AB^2 + BC^2$.

Ahora consideremos un triángulo $\triangle A’B’C’$ con $A’B’ = AB$ y $B’C’ = BC$ pero $\angle B’ > \dfrac{\pi}{2}$, entonces por la proposición 2 de la entrada desigualdad del triángulo y su reciproco, esto ocurre si y solo si $A’C’ > AC$
$\Leftrightarrow A’C’^2 > AC^2 = AB^2 + BC^2 = A’B’^2 + B’C’^2$

Por otra parte, si tenemos $\triangle A’’B’’C’’$ tal que $A’’B’’ = AB$ y $B’’C’’ = BC$ pero $\angle B’’ < \dfrac{\pi}{2}$, por el resultado antes mencionado, esto ocurre si y solo si $A’’C’’ < AC$
$\Leftrightarrow A’’C’’^2 < AC^2 = AB^2 + BC^2 = A’’B’’^2 + B’’C’’^2$

Resumiendo, tenemos lo siguiente para cualquier triángulo $\triangle ABC$, $\angle B$ es:

  • recto $\Leftrightarrow AC^2 = AB^2 + BC^2$,
  • obtuso $\Leftrightarrow AC^2 > AB^2 + BC^2$,
  • agudo $\Leftrightarrow AC^2 < AB^2 + BC^2$.

Ley del paralelogramo

Teorema 3, ley del paralelogramo. La suma de los cuadrados de los lados de un paralelogramo es igual a la suma de los cuadrados de sus diagonales.

Demostración. Sean $\square ABCD$ un paralelogramo, $E$ y $F$ los pies de las perpendiculares a $BC$ trazadas desde $A$ y $D$ respectivamente.

Figura 5

Recordemos que los lados opuestos de un paralelogramo son iguales, por lo que $AB = CD$ y $AD = BC$, además $\square AEFD$ es un rectángulo y todo rectángulo es paralelogramo, por lo tanto, $AE = DF$ y $EF = AD = BC$, $\Rightarrow BE = CF$.

Aplicando el teorema de Pitágoras a los triángulos $\triangle ABE$, $\triangle DBF$ y $\triangle AEC$ obtenemos:

$\begin{equation} AB^2 = AE^2 + BE^2. \end{equation}$

$DB^2 = DF^2 + BF^2$
$= AE^2 + (BC + CF)^2 = AB^2 – BE^2 + (BC + BE)^2$
$= AB^2 – BE^2 +BC^2 + 2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 + 2BC \times BE. \end{equation}$

$AC^2 = AE^2 + EC^2$
$= AE^2 + (BC – BE)^2 = AB^2 – BE^2 + BC^2 -2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 -2BC \times BE. \end{equation}$

Sumamos $(3)$ y $(4)$ para obtener
$AC^2 + BD^2 = 2AB^2 + 2BC^2$.

$\blacksquare$

Teorema de Apolonio

Teorema 4, de Apolonio. En todo triangulo la suma de los cuadrados de dos lados es igual a dos veces el cuadrado de la mitad del tercer lado más dos veces el cuadrado de la mediana que biseca al tercer lado.

Demostración. Sean $\triangle ABC$ y $M$ el punto medio de $BC$. Por demostrar que $AB^2 + AC^2 = 2(BM^2 + AM^2)$.

Sea $D$ el pie de la perpendicular a $BC$ trazada desde $A$, aplicamos el teorema de Pitágoras a los triángulos $\triangle ADM$, $\triangle ADB$ y $\triangle ADC$.

Figura 6

$\begin{equation} AM^2 = AD^2 + DM^2. \end{equation}$

$AB^2 = AD^2 + BD^2$
$= AM^2 – DM^2 + (DM – BM)^2 = AM^2 – DM^2 + DM^2 – 2DM \times BM + BM^2$
$\begin{equation} = AM^2 + BM^2 – 2DM \times BM. \end{equation}$

$AC^2 = AD^2 + DC^2$
$= AM^2 – DM^2 + (DM + MC)^2 = AM^2 – DM^2 +DM^2 + 2DM \times MC + MC^2$
$\begin{equation} = AM^2 + 2DM \times MC + MC^2. \end{equation}$

Como $BM = MC$ sumando $(6)$ y $(7)$ obtenemos
$AB^2 + AC^2 = 2AM^2 + 2MC^2$.

$\blacksquare$

Caracterización de las alturas de un triángulo

Proposición. Sean $BC$ un segmento y $P$ un punto en el plano, considera $D$ el pie de la perpendicular a $BC$ trazada desde $P$, entonces $PB^2 – PC^2 = DB^2 – DC^2$.

Figura 7

Demostración. Los triángulos $\triangle PDB$ y $\triangle PDC$ son rectángulos, por el teorema de Pitágoras tenemos que $PB^2 = PD^2 + DB^2$ y $PC^2 = PD^2 + DC^2$.

Despejando $PD^2$ de ambas ecuaciones e igualando tenemos que $PB^2 – DB^2 = PC^2 – DC^2$
$\Rightarrow PB^2 – PC^2 = DB^2 – DC^2$.

$\blacksquare$

Teorema 5. Sea $\triangle ABC$ un triángulo entonces un punto $P$ está en la altura por $A$ si y solo si $PB^2 – PC^2 = AB^2 – AC^2$.

Demostración. Supongamos que $P$ es un punto en la altura desde $A$ entonces podemos considerar el triángulo $\triangle PBC$.

Figura 8

Por la proposición tenemos que los puntos $P$ y $A$ cumplen que $PB^2 – PC^2 = DB^2 – DC^2$ y $AB^2 – AC^2 = DB^2 – DC^2$ donde $D$ es el pie de la altura.

Por lo tanto $PB^2 – PC^2 = AB^2 – AC^2$.

$\blacksquare$

Ahora supongamos que $P$ es un punto en el plano tal que $PB^2 – PC^2 = AB^2 – AC^2$ por la proposición sabemos que $AB^2 – AC^2 = DB^2 – DC^2$, con $D$ el pie de la altura desde $A$.

Por transitividad se tiene que $PB^2 – PC^2 = DB^2 – DC^2$.

Sea $E$ el pie de la perpendicular a $BC$ trazada desde $P$, nuevamente por la proposición tenemos que $PB^2 – PC^2 = EB^2 – EC^2$ $\Rightarrow DB^2 – DC^2 = EB^2 – EC^2$

Figura 9

Supongamos que $D$ está en el segmento $BC$ y $E$ fuera del segmento y del lado de $B$ (figura 9), otros casos se muestran de manera similar, entonces $EB = ED – BD$ y $EC = ED + DC$.

$\Rightarrow DB^2 – DC^2 = (ED – BD)^2 – (ED + DC)^2$
$= ED^2 – 2ED \times BD + BD^2 – ED^2 – 2ED \times DC – DC^2$
$\Rightarrow 0 = ED \times BD + ED \times DC = ED(BD + DC)$

Como $BD + DC \neq 0 \Rightarrow ED = 0$
$\Rightarrow E = D$

De esto se concluye que $P$ está en la altura trazada desde $A$.

$\blacksquare$

Más adelante…

En la siguiente entada estudiaremos el teorema de Tales también conocido como teorema de la proporcionalidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Dado un segmento unitario construye un segmento de longitud $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ …
  2. Si $a$, $b$, $c$, $d$, y $e$ son las longitudes de cinco segmentos tales que con cualesquiera tres de ellos es posible construir un triángulo, muestra que al menos uno de los triángulos es acutángulo.
  3. Sea $P$ un punto en el interior de $\triangle ABC$, considera $D$, $E$ y $F$ las proyecciones de $P$ a los lados $BC$, $AC$ y $AB$ respectivamente, expresa $AE$ en términos de $AF$, $FB$, $BD$, $DC$ y $CE$.
  4. Muestra que en un triángulo con ángulos interiores iguales a $\dfrac{\pi}{2}$, $\dfrac{\pi}{3}$ y $\dfrac{\pi}{6}$, se tiene que el cateto opuesto al ángulo de $\dfrac{\pi}{6}$ es igual a la mitad de la hipotenusa y el cateto opuesto al ángulo de $\dfrac{\pi}{3}$ es igual a $\dfrac{\sqrt{3}}{2}$ veces la hipotenusa.
  5. Si dos de los lados de un triángulo miden $a$ y $b$ y el ángulo entre ellos mide $\dfrac{3\pi}{4}$ encuentra la longitud del segmento medio entre los lados dados.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 22-27, 43-44.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 11-14.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 39-41.
  • Wikipedia
  • Geometría interactiva
  • Geometry Help

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Teorema de Tales

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiaremos el teorema de Tales y algunas aplicaciones. Este teorema nos dice que dos rectas paralelas cortan a otras dos en segmentos proporcionales.

En la entrada anterior definimos el área de un rectángulo y vimos que como consecuencia de esto el área de un triángulo rectángulo era el semiproducto de sus catetos. En esta ocasión necesitaremos hablar del área de un triángulo en general.

Denotaremos al área de un triángulo $\triangle ABC$ como $(\triangle ABC)$.

Área del triángulo

Proposición 1. El área de un triángulo es el producto de la altura trazada por uno de sus vértices por la base o lado contrario a dicho vértice.

Demostración. Sea $\triangle ABC$ un triángulo, tracemos la altura desde el vértice $A$, existen dos posibilidades, el pie de la altura $D$, se encuentra en el segmento $BC$ o está en la extensión del segmento.

Caso 1, $D \in BC$.

Figura 1

Notemos que se forman dos triángulos rectángulos, $\triangle ABD$ y $\triangle ADC$.
$\Rightarrow (\triangle ABC) = (\triangle ABD) + (\triangle ADC)$
$= \dfrac{BD \times AD}{2} + \dfrac{DC \times AD}{2}$
$= \dfrac{(BD + DC)AD}{2} = \dfrac{BC \times AD}{2}$.

Caso 2, $D \notin BC$.

Figura 2

Notemos que se forman dos triángulos rectángulos, $\triangle ADB$ y $\triangle ADC$.
$\Rightarrow (\triangle ABC) = (\triangle ADC) – (\triangle ADB)$
$= \dfrac{ DC \times AD }{2} – \dfrac{DB \times AD}{2}$
$= \dfrac{(DC – DB)AD}{2} = \dfrac{BC \times AD}{2}$.

$\blacksquare$

Proposición 2. Si dos triángulos tienen una misma altura entonces las razones entre sus áreas es igual a la razón entre las bases perpendiculares a las alturas.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ dos triángulos tales que las alturas trazadas desde $A$ y $A’$ son iguales, digamos $h$.

Figura 3

$\dfrac{(\triangle ABC)}{(\triangle A’B’C’)} = \dfrac{\dfrac{BC \times h}{2}}{\dfrac{B’C’ \times h}{2}}$
$ = \dfrac{BC \times h}{B’C’ \times h} = \dfrac{BC}{B’C’}$.

$\blacksquare$

Teorema fundamental de la proporcionalidad

Teorema 1, de Tales. Sean $\triangle ABC$, $B’$ y $C’$ en $AB$ y $AC$ respectivamente tales que $B’C’ \parallel BC$, entonces
$i)$ $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ y $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$,
$ii)$ $\dfrac{AB}{AB’} = \dfrac{AC}{AC’} = \dfrac{BC}{B’C’}$.

Demostración. Como $\triangle B’C’B$ y $\triangle B’C’C$ tienen la misma base $B’C’$ y están contenidos en las mismas paralelas, lo que implica que su altura es la misma, entonces tienen la misma área.

Figura 4

$\begin{equation} (\triangle B’C’B) = (\triangle B’C’C) \end{equation}$
$\Rightarrow (\triangle AB’C’) + (\triangle B’C’B) = (\triangle AB’C’) + (\triangle B’C’C)$
$\begin{equation} \Rightarrow (\triangle AC’B) = (\triangle AB’C). \end{equation}$

De las escuaciones $(1)$ y $(2)$ y la proposición 2 obtenemos
$\dfrac{(\triangle AC’B)}{(B’C’B)} = \dfrac{(\triangle AB’C)}{(\triangle B’C’C)}$
$\Rightarrow \dfrac{AB}{B’B} = \dfrac{AC}{C’C}$.

Notemos que $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ y $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$ son equivalentes.

$\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$
$\Leftrightarrow \dfrac{AB’ + B’B}{B’B} = \dfrac{AC’ + C’C}{C’C}$
$\Leftrightarrow \dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$

$\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$, equivale a
$\dfrac{AB’ + B’B}{AB’} = \dfrac{AC’ + C’C}{AC’}$
$\Leftrightarrow \dfrac{B’B}{AB’} = \dfrac{C’C}{AC’}$
$\Leftrightarrow \dfrac{AB’}{B’B} = \dfrac{AC’}{C´C}$.

Para la parte $ii)$ trazamos una paralela a $AB$ por $C’$ que interseca a $BC$ en $D$, por la parte $i)$, se cumple
$\dfrac{AC}{AC’} = \dfrac{BC}{BD}$.

Figura 5

Como $\square B’BDC$ es paralelogramo $BD = B’C’$
$\Rightarrow \dfrac{AC}{AC’} = \dfrac{BC}{B’C’}$.

$\blacksquare$

Reciproco del teorema de Tales.

Teorema 2, reciproco del teorema de Tales. Sean $\triangle ABC$, $B’$ y $C’$ en $AB$ y $AC$ respectivamente tales que, $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$ o $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ o $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$, entonces $B’C’ \parallel BC$.

Demostración. Supongamos que $B’C’$ y $BC$ no son paralelas, sea $D \in AC$ tal que $B’D \parallel BC$, por el teorema de Tales, $\dfrac{AB}{B’B} = \dfrac{AC}{DC}$.

Figura 6

Pero por hipótesis $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, y por transitividad
$\dfrac{AC}{DC} = \dfrac{AC}{C’C}$
$\Rightarrow DC = C’C \Rightarrow D = C’ \Rightarrow B’C’ \parallel BC$.

Por la equivalencia entre las expresiones $\dfrac{AB}{B’B} = \dfrac{AC}{C’C}$, $\dfrac{AB}{AB’} = \dfrac{AC}{AC’}$ y $\dfrac{AB’}{B’B} = \dfrac{AC’}{C’C}$,
queda demostrado el teorema.

$\blacksquare$

Teorema de la bisectriz

Teorema 3, de la bisectriz. Las bisectrices interna y externa del ángulo de un triángulo dividen al lado opuesto en segmentos proporcionales a los otros dos lados del triángulo.

Demostración. Consideremos un triángulo $\triangle ABC$ y la bisectriz interior de $A$, la cual interseca a $BC$ en $D$.

Trazamos la paralela a $AD$ por $C$, y sea $E$ la intersección de la extensión de $AB$ con la paralela.

Figura 7

Como $AD \parallel CE$ entonces $\angle BAD = \angle AEC$ por ser ángulos correspondientes entre paralelas y $\angle DAC = \angle ECA$ por ser ángulos alternos internos entre paralelas.

Ya que $AD$ es bisectriz de $A$ entonces $\angle BAD = \angle DAC$ y por lo tanto $\angle AEC = \angle ECA$
$\Rightarrow \triangle ACE$ es isósceles, es decir, $AC = AE$.

Aplicando el teorema de Tales a $\triangle BCE$ tenemos que
$\dfrac{BD}{DC} = \dfrac{AB}{AE} = \dfrac{AB}{AC}$.

$\blacksquare$

Definición. Una ceviana es un segmento que tiene extremos en el vértice de un triángulo y en el lado opuesto a dicho vértice.

Reciproco del teorema de la bisectriz

Teorema 4, reciproco del teorema de la bisectriz. Si una ceviana divide internamente al lado de un triángulo en segmentos proporcionales a los otros lados del triángulo entonces es la bisectriz interna del ángulo por donde pasa.

Demostración. Sea $\triangle ABC$ y $AD$ con $D \in BC$ tal que $\dfrac{AB}{AC} = \dfrac{BD}{DC}$.

Extendemos $AB$ del lado de $A$ hasta $E$ talque $AE = AC$ (figura 7), como $\triangle AEC$ es isósceles entonces
$\begin{equation} \angle AEC = \angle ECA. \end{equation}$

En el triángulo $\triangle BCE$ tenemos que $\dfrac{AB}{AE} = \dfrac{BD}{DC}$,
por el reciproco del teorema de Tales, $AD \parallel EC$,
$\Rightarrow \angle BAD = \angle AEC$, por ser ángulos correspondientes,
$\Rightarrow \angle DAC = \angle ECA$, por ser ángulos alternos internos.

Por $(3)$ se sigue que $\angle BAD = \angle DAC$, por lo tanto, $AD$ es la bisectriz interna de $A$.

$\blacksquare$

El caso para la bisectriz exterior se deja como ejercicio.

Construcciones

Problema. Dados dos segmentos y un segmento unitario, construye el producto y el cociente de los segmentos dados.

Solución. Sean $a$ y $b$ la magnitud de los segmentos dados.

Sea $AB$ el segmento unitario, extendemos $AB$ hasta $B’$ tal que $BB’ = a$.

Levantamos sobre $AB$ en $A$ un segmento $AC = b$, unimos $B$ con $C$ y trazamos por $B’$ la paralela a $BC$.

Sea $C’$ la intersección de $AC$ con la paralela trazada, por el teorema de Tales aplicado a $\triangle AB’C’$, $\dfrac{AB}{BB’} = \dfrac{AC}{CC’} $.
$\Rightarrow AB \times CC’ = AC \times BB’ $
$\Rightarrow CC’ = ab$.

Figura 8

Para el cociente seguimos el mismo procedimiento, pero esta vez con $AB = a$ y $BB’ = 1$, por el teorema de Tales obtendremos
$a = \dfrac{b}{CC’} \Rightarrow CC’ = \dfrac{b}{a}$.

Figura 9

$\blacksquare$

Más adelante…

En la siguiente entrada y con la ayuda del Teorema de Tales veremos otra herramienta importante en el estudio de la geometría, los criterios de semejanza de triángulos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que la suma de las distancias de un punto interior a los lados de un triangulo equilátero es constante. Este resultado es conocido como teorema de Viviani.
Figura 10
  1. $i)$ Muestra que si dos rectas $l_{1}$ y $l_{2}$ son transversales a tres paralelas $AA’$, $BB’$ y $CC’$ (figura 11), entonces $\dfrac{AB}{BC} = \dfrac{A’B’}{B’C’}$.
    $ii)$ Recíprocamente si $\dfrac{AB}{BC} = \dfrac{A’B’}{B’C’}$ y dos de las tres rectas $AA’$, $BB’$, $CC’$son paralelas, entonces las tres rectas son paralelas.
Figura 11
  1. Usando el teorema de Tales,
    $i)$ muestra que el segmento que une puntos medios de dos lados de un triangulo es paralelo e igual a la mitad del tercer lado,
    $ii)$ recíprocamente muestra que si una recta pasa por el punto medio de un triangulo y es paralela a un segundo lado entonces pasa por el punto medio del tercer lado.
  2. Prueba que un segmento que pasa por el vértice de un triangulo divide externamente al lado opuesto en segmentos proporcionales a los restantes lados del triangulo si y solo si es la bisectriz exterior del ángulo.
Figura 12
  1. Divide un segmento dado en una razón dada.
  2. Divide un segmento dado en $n$ partes iguales.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»