Archivo de la etiqueta: complejos

Álgebra Superior II: Simplificación, suma y producto de complejos

Por Claudia Silva

Introducción

En una entrada de blog anterior, construimos el campo de los números complejos y definimos sus operaciones básicas. Ahora resolveremos algunos problemas de operaciones con complejos.

Haremos dos tipos de problemas. El primer tipo se trata de simplificar expresiones en números complejos para que se vuelvan de la forma $x+yi$ con $x$ y $y$ números reales. El segundo tipo es de realizar operaciones de suma, resta, producto y división de complejos, y luego simplificar.

Simplificación de expresiones complejas

Comenzamos con un vídeo de simplificar expresiones de números complejos.

Expresar en la forma $a+bi$ las expresiones…

Problemas de operaciones con complejos

Ahora vemos varios ejemplos de realizar sumas con números complejos.

Sumar números complejos

En todos los ejemplos del vídeo, realizamos sólo sumas de dos números, pero se podrían realizar sumas con cualquier cantidad de sumandos. Por ejemplo, podemos considerar la suma $$(5+2i)+(8+i)-(1-7i).$$ ¿Cuál sería el resultado de esta operación?

Finalmente, a continuación se muestra un vídeo en donde se realizan operaciones de productos y de divisiones de números complejos.

Productos y divisiones de números complejos

En el vídeo se define al conjugado del número complejo $z=a+bi$, que se denota por $\overline{z}$ y se obtiene de cambiarle el signo a la parte imaginaria. Por ejemplo, $\overline{4-5i}=4+5i$. Si multiplicas a un número complejo $a+bi$ por su conjugado, obtienes el real $a^2+b^2$. Esto es útil para quitar las partes imaginarias de los denominadores de expresiones fraccionales con complejos.

Más ejemplos y práctica extra

En otro curso, el Seminario de Resolución de Problemas, escribimos una entrada de cómo se pueden usar los números complejos para la resolución de problemas matemáticos. Ahí hay teoría más avanzada, pero puedes echarle un ojo para que veas lo que veremos más adelante en el curso.

En la página de Khan Academy en Español, puedes aprender más acerca de los números complejos, así como hacer muchos ejercicios de práctica.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Esbozo de construcción de los números racionales y reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la unidad pasada vimos la construcción de los números enteros a partir de los números naturales. Lo que hicimos fue considerar parejas de números naturales $(a,b)$ para las que dimos la relación $\sim$ definida por $(a,b)\sim (c,d)$ si y sólo si $a+d=b+c$, vimos que esta relación es de equivalencia. Dijimos que, aunque era incorrecto formalmente, convenía pensar a la pareja $(a,b)$ como $a-b$ (es incorrecto ya que no siempre se puede restar en $\mathbb{N}$).

La relación $\sim$, así definida, genera las clases de equivalencia $$\overline{(a, b)}=\lbrace (c, d)\in \mathbb{N}\times\mathbb{N} : a+d=b+c\rbrace$$ en $\mathbb{N}\times\mathbb{N}$. El conjunto $\mathbb{Z}$ lo construimos como el conjunto de todas estas clases de equivalencia. En él definimos las operaciones:

  • Suma: $\overline{(a,b)}+\overline{(c,d)}=\overline{(a+c,b+d)}$.
  • Producto: $ \overline{(a,b)}\overline{(c,d)}=\overline{(ac+bd,ad+bc)}$.

Vimos que estas operaciones están bien definidas. La suma es bastante natural. El producto parece algo artificial, pero se vuelve natural si pensamos en «multiplicar $a-b$ con $c-d$», pues $(a-b)(c-d)=(ac+bd)-(ad+bc)$. Recordemos que es una justificación informal, pero ayuda a entender la intuición.

Después, nos dedicamos a probar que con estas operaciones, suma y producto, el conjunto $\mathbb{Z}$ es un anillo conmutativo con $1$ en donde se vale cancelar. A partir de ahí empezamos a ver a $\mathbb{Z}$ desde el punto de vista de la teoría de números. Estudiamos el máximo común divisor, la relación de divisibilidad, el anillo de enteros módulo $n$, congruencias, ecuaciones en congruencias, teorema chino del residuo y mencionamos un poco de ecuaciones diofantinas.

Con eso terminamos la unidad de enteros, correspondiente al segundo segundo parcial del curso.

Las siguientes dos unidades contempladas por el temario oficial son:

  • Números complejos.
  • Anillo de polinomios.

Vale la pena hacer una observación. Típicamente tenemos la siguiente cadena de contenciones entre sistemas numéricos $$\mathbb{N}\subset \mathbb{Z}\subset \mathbb{Q} \subset \mathbb{R}\subset \mathbb{C}.$$

En las primeras dos unidades del curso hablamos de $\mathbb{N}$ y de $\mathbb{Z}$. De acuerdo a las contenciones anteriores, lo siguiente sería tratar a detalle los racionales $\mathbb{Q}$ y los reales $\mathbb{R}$. Sin embargo el temario oficial «se los salta». Esto es un poco raro, pero podría estar justificado en que estos sistemas numéricos se estudian en otros cursos del plan de estudios. Por ejemplo, $\mathbb{R}$ se estudia con algo de profundidad en los cursos de cálculo.

De cualquier forma nos va a ser muy útil mencionar, por lo menos por «encima», cómo hacer la construcción de $\mathbb{Q}$ y $\mathbb{R}$. La construcción de los números racionales ayuda a repasar la construcción de los enteros. En la construcción de los números reales nos encontraremos con propiedades útiles que usaremos, de manera continua, cuando hablemos de la construcción de los números complejos $\mathbb{C}$. Por estas razones, aunque no vayamos a evaluar, las construcciones de $\mathbb{Q}$ y $\mathbb{R}$, en el curso, las ponemos aquí para que las conozcas o las repases.

Motivación de construcción de los racionales

Los naturales no son suficientes para resolver todas las ecuaciones de la forma $$x+a=b,$$ pues si $a>b$ la ecuación no tiene solución en $\mathbb{N}$ y esta fue nuestra motivación para construir los números enteros. En $\mathbb{Z}$ todas estas ecuaciones tienen solución. Sin embargo, en $\mathbb{Z}$ la ecuación $$ax=b$$ tiene solución si y sólo si $a$ divide a $b$ (por definición se tiene que $a$ divide a $b$ si y sólo si $b$ es un múltiplo de $a$), pero no siempre sucede esto. Por ejemplo, $3x=7$ no tiene solución en $\mathbb{Z}$.

Construcción de los racionales

Para la construcción de los racionales consideremos el conjunto $\mathbb{Z}\times \mathbb{Z}\setminus\{0\}$ y sobre él la relación $\sim$ definida por $(a,b)\sim (c,d)$ si y sólo si $ad=bc$. Resulta que $\sim$ es relación de equivalencia, así que, para cada pareja $(a,b)$ denotaremos como $\overline{(a,b)}$ a su clase de equivalencia. En este caso $$\overline{(a, b)}=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\} : an=bm\rbrace.$$

Observa que esta construcción se parece mucho a la que hicimos para $\mathbb{Z}$, aunque ahora nos basamos en el producto en $\mathbb{Z}$ (antes era la suma en $\mathbb{N}$). De nuevo, una forma de pensar bastante intuitiva (aunque formalmente incorrecta), es pensar a cada clase $\overline{(a,b)}$ «como $\frac{a}{b}$». Nota que estamos considerando sólo aquellas parejas $(a,b)$ tales que $b\neq 0$.

De esta forma $\mathbb{Q}$ es el conjunto de clases de equivalencia de las parejas $(a,b)$ tales que $b\neq 0$, en símbolos, $$\mathbb{Q}:=\{\overline{(a,b)}: a\in \mathbb{Z}, b\in \mathbb{Z}\setminus\{0\}\}.$$

Operaciones y orden en los racionales

Vamos a definir las operaciones en $\mathbb{Q}$. Ahora el producto es «intuitivo» y la suma no tanto.

  • Suma: $\overline{(a,b)} + \overline{(c,d)} = \overline{(ad+bc,bd)}$.
  • Producto: $\overline{(a,b)}\overline{(c,d)}=\overline{(ac,bd)}$.

La suma se vuelve mucho más intuitiva si primero pensamos en nuestra interpretación (informal) de $\overline{(a,b)}$ como $\frac{a}{b}$ y luego, por lo que aprendimos en educación primaria sobre la suma de fracciones, vemos que $$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}.$$

Ahora, para definir el orden en $\mathbb{Q}$, tomemos la pareja $(a,b)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}$. Tenemos que la clase $\overline{(a,b)}$ es

  • Cero si $a=0$,
  • Positiva si ambos ($a$ y $b$) son negativos o ninguno es negativo con el orden definido en $\mathbb{Z}$ y
  • Negativa si exactamente alguno ($a$ o $b$) es negativo con el orden definido en $\mathbb{Z}$.

Diremos que $\overline{(a,b)}>\overline{(c,d)}$ si $\overline{(a,b)}-\overline{(c,d)}$ es positiva.

Se puede probar que estas operaciones suma y producto, así como el orden están bien definidas (es decir que no dependen del representante que se tome).

Antes, de continuar, consideremos lo siguiente: un campo se puede pensar como un conjunto en el que están definidas la «suma» y la «multiplicación» tales que:

  • La suma es asociativa, conmutativa, tiene un neutro (el $0$) e inversos aditivos.
  • La multiplicación es asociativa, conmutativa, tiene un neutro (el $1$) y todo elemento distinto de $0$ tiene un inverso multiplicativo.
  • Se tiene la distributividad del producto sobre la suma $a(b+c)=ab+bc$.

En vista de lo anterior queremos mencionar que se puede probar lo siguiente:

Teorema. El conjunto $\mathbb{Q}$ con sus operaciones de suma y producto es un campo ordenado.

Retomando lo que hablamos del neutro para la multiplicación, en un campo, veamos un ejemplo.

Ejemplo. La clase $\overline{(c,c)}$ es el neutro multiplicativo en $\mathbb{Q}$, veamos:

Se tiene que $$\overline{(a, b)(c, c)} = \overline{(ac,bc)}=\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: acn=bcm\rbrace$$

y $\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: acn=bcm\rbrace=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: anc=bmc\rbrace$, pero $\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: anc=bmc\rbrace=\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: an=bm\rbrace=\overline{(a, b)}$. Por lo tanto $\overline{(a, b)(c, c)}=\overline{(a, b)}$. Nota que aquí estamos usando que el producto en $\mathbb{Z}$ es asociativo, conmutativo y que se pueden cancelar factores distintos de cero.

En $\mathbb{Q}$, el inverso multiplicativo de la clase $\overline{(a,b)}$ es $\overline{(b,a)}$, veamos:

Su producto es $$\overline{(ab,ba)}=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: abn=bam\rbrace$$ y $\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: abn=bam\rbrace=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: m=n\rbrace=\overline{(c, c)}$.

$\triangle$

Notación simple de racionales y ecuaciones aún sin solución

Vamos a denotar la clase de equivalencia $\overline{(a,b)}$ por $\frac{a}{b}$, a partir de lo cual nuestra interpretación de pensarlo así ya se vuelve formal. Se puede mostrar que todo lo que aprendimos de esta notación en la primaria se deduce de las propiedades de $\mathbb{Q}$.

La ecuación $$ax=b$$ tiene solución casi siempre, el único problema es si $a=0$. Pero si $a\neq 0$, la solución es única y es $x=\frac{b}{a}$.

El conjunto $\mathbb{Q}$ es bastante bueno algebraicamente, pero le falta todavía más para ser bueno para análisis y cálculo. Todavía tiene «bastantes hoyos»: en él no podemos probar, por ejemplo, el teorema del valor intermedio para funciones continuas. Así mismo, hay varias ecuaciones que todavía no tienen solución en $\mathbb{Q}$.

Ejercicio. La ecuación $x^2=3$ no tiene una solución en $\mathbb{Q}$.

Una forma de enunciar el resultado anterior es decir «$\sqrt{3}$ es irracional». Pero nota que es incorrecto enunciarlo así, pues para ponerle un nombre a $\sqrt{3}$, es necesario saber quién es, y justo el punto del ejercicio es que, tan sólo con $\mathbb{Q}$, no podemos definirlo.

Solución. Vamos a proceder por contradicción. Supongamos que la ecuación $x^2=3$ tiene una solución $p/q$ en los racionales. De esta forma,$(p/q)^2=3$. Multiplicando por $q^2$ en ambos lados, $p^2=3q^2$.

La factorización en primos del lado izquierdo tiene una cantidad par de $3$’s. La factorización en primos del lado derecho tiene una cantidad impar de $3$’s. Esto es una contradicción al teorema fundamental de la aritmética, por lo tanto, no existe $p/q$ solución racional de $x^2=3$.

$\triangle$

Reales y hoyos en los racionales

Para la construcción de los reales, ya no podemos proceder como le hemos estado haciendo, considerando simplemente parejas de números del sistema anterior y construyendo una relación de equivalencia sobre ellas. Lo que buscamos cuando damos el paso entre $\mathbb{Q}$ y $\mathbb{R}$ ya no es sólo que los números tengan «inversos aditivos» o «inversos multiplicativos», sino que «todos los conjuntos acotados por abajo tengan un mejor mínimo». Esto es lo que garantiza que se «llenen los hoyos» que tienen los racionales.

Entendamos el concepto de «hoyo»:

Definición. Sea $X$ un orden total $\le$ y $S$ un subconjunto de $X$, un ínfimo de $S$, en $X$, es un $r\in X$ tal que

  • $r\leq s$ para todo $s\in S$ y
  • si $t\leq s$ para todo $t\in S$, entonces $t\leq s$.

Definición. Un conjunto $X$ con un orden total $\le$ es completo si todo subconjunto $S$ de $X$, acotado inferiormente, tiene un ínfimo.

Ejemplo. El conjunto $\mathbb{Q}$ no es completo, pues el subconjunto $$S=\{x\in \mathbb{Q}: x^2\geq 3\}$$ está acotado inferiormente, pero no tiene un ínfimo en $\mathbb{Q}$ (su ínfimo es $\sqrt{3}$ y $\sqrt{3}$ no pertenece a $\mathbb{Q}$).

$\triangle$

Sucesiones de Cauchy y construcción de los reales

Hay varias formas de construir un sistema numérico que extienda a $\mathbb{Q}$ y que no tenga hoyos. Se puede hacer mediante cortaduras de Dedekind, mediante expansiones decimales o mediante sucesiones de Cauchy de números racionales. Todas estas construcciones son equivalentes. Daremos las ideas generales de la última.

Definición. Una sucesión $$\{x_n\}=\{x_1,x_2,x_3,\ldots\}$$ es de Cauchy si para todo $N$ existe un $M$ tal que si $m\geq M$ y $n\geq M$, entonces $|x_m-x_n|<\frac{1}{N}$. Denotaremos con $C(\mathbb{Q})$ al conjunto de todas las sucesiones de Cauchy de números racionales.

Construiremos una relación de equivalencia $\sim$ en $C(\mathbb{Q})$. Si tenemos dos de estas sucesiones:
\begin{align*}
\{x_n\}&=\{x_1,x_2,x_3,\ldots\} \quad \text{y}\\
\{y_n\}&=\{y_1,y_2,y_3,\ldots\},
\end{align*}

diremos que $\{x_n\}\sim \{y_n\}$ si para todo natural $N$ existe un natural $M$ tal que para $n\geq M$ tenemos que $$|x_n-y_n|<\frac{1}{N}.$$

Se puede probar que $\sim$ es una relación de equivalencia. Para cada sucesión $\{x_n\}$ de Cauchy usamos $\overline{\{x_n\}}$ para denotar a la clase de equivalencia de $\{x_n\}$. Por definición, el conjunto $\mathbb{R}$ es el conjunto de clases de equivalencia de $\sim$, en símbolos: $$\mathbb{R}:=\{\overline{\{x_n\}}: \{x_n\} \in C(\mathbb{Q})\}.$$

Operaciones y orden en los reales

En $\mathbb{R}$ podemos definir las siguientes operaciones:

  • Suma: $\overline{\{x_n\}} + \overline{\{y_n\}}= \overline{\{x_n + y_n\}}$ .
  • Producto: $\overline{\{x_n\}} \overline{\{y_n\}}= \overline{\{x_ny_n\}}$.

También podemos definir el orden en $\mathbb{R}$. Decimos que $\overline{\{x_n\}}$ es positivo si para $n$ suficientemente grande tenemos $x_n>0$. Decimos que $\overline{\{x_n\}}>\overline{\{y_n\}}$ si $\overline{\{x_n\}}- \overline{\{y_n\}}$ es positivo.

Se puede ver que las operaciones de suma y producto, así como el orden, están bien definidos. Más aún, se puede probar el siguiente resultado.

Teorema. El conjunto $\mathbb{R}$ con sus operaciones de suma y producto es un campo ordenado y completo.

Como antes, una vez que se prueba este teorema, se abandona la notación de sucesiones y de clases de equivalencia. En realidad se oculta, pues la construcción siempre está detrás, como un esqueleto que respalda las propiedades que encontramos.

El teorema nos dice que $\mathbb{R}$ ya no tiene hoyos, y esto es precisamente lo que necesitamos para resolver algunas ecuaciones como $x^2=3$. Un esbozo de por qué es el siguiente. Gracias a la existencia de ínfimos se puede probar el teorema del valor intermedio en $\mathbb{R}$. Se puede probar que la función $x^2$ es continua, que en $x=0$ vale $0$ y que en $x=2$ vale $4$, de modo que por el teorema del valor intermedio debe haber un real $x$ tal que $x^2=3$.

Más adelante…

Las muchas otras importantes consecuencias de que $\mathbb{R}$ sea un campo ordenado y completo se discuten a detalle en cursos de cálculo. Si bien este es un logro enorme, aún tenemos un pequeño problema: ¡todavía no podemos resolver todas las ecuaciones polinomiales! Consideremos la ecuación $$x^2+1=0.$$ Podemos mostrar que para cualquier real $x$ tenemos que $x^2\geq 0$, de modo que $x^2+1\geq 1>0$. ¡Esta ecuación no tiene solución en los números reales!

Para encontrar una solución vamos a construir los números complejos. Con ellos podremos, finalmente, resolver todas las ecuaciones polinomiales, es decir, aquellas de la forma

$$a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0.$$

Hablaremos de esto en el transcurso de las siguientes dos unidades: números complejos y polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuál de las clases de equivalencia sería el neutro aditivo en $\mathbb{Q}$?
  2. ¿Por qué la definición de orden en $\mathbb{Q}$ no depende del representante elegido?
  3. ¿Cómo construirías el inverso multiplicativo de la sucesión de Cauchy $\{x_n\}$? Ten cuidado, pues algunos de sus racionales pueden ser $0$.
  4. Aprovecha esta entrada de transición entre unidades para repasar las construcciones de $\mathbb{N}$ y de $\mathbb{Z}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Aritmética de números complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores de esta sección hablamos de propiedades aritméticas de números enteros. En esta entrada veremos varias de las propiedades aritméticas de los números complejos y cómo se pueden usar para resolver problemas, incluso aquellos en los que los números complejos no están mencionados de manera explícita en el enunciado.

Distintas formas de los números complejos

La forma más común en la que pensamos en números complejos es en su forma rectangular, en donde un complejo se escribe de la forma $z=a+bi$, en donde $a$ y $b$ son números reales y pensamos a $i$ como un número tal que $i^2=-1$. A $a$ le llamamos la parte real y a $b$ la parte imaginaria.

Podemos colocar al complejo $z=a+ib$ en el plano cartesiano, identificándolo con el punto $(a,b)$. De aquí, la forma polar del complejo es $z=r(\cos \theta + i \sin \theta)$, en donde $r$ es la norma $|z|:=\sqrt{a^2+b^2}$ y si $z\neq 0$, $\theta$ es el argumento, que es el ángulo en el sentido antihorario desde el origen entre el eje horizontal y el punto $(a,b)$. Si $z=0+i0=0$, no definimos el argumento.

Forma polar y rectangular de un complejo
Forma polar y rectangular de un complejo.

Así como le hacíamos en el caso de trabajar con módulos, a veces conviene pensar que el argumento es el único ángulo en $[0,2\pi)$ que cumple lo anterior. En otras ocasiones, conviene pensar al argumento como a veces que es la clase de todos los ángulos módulo $2\pi$.

Cuando tenemos a complejos $w=a+ib$ y $z=c+id$ en forma rectangular, su suma $w+z=(a+c) + i(b+d)$ corresponde geométricamente a encontrar la diagonal del paralelogramo definido por $(a,b)$, $(c,d)$ y el origen, pues corresponde justo al punto $(a+c,b+d)$.

Suma de números complejos
Suma de números complejos.

Su multiplicación $wz$ en forma rectangular es $(ac-bd)+(ad+bc)i$, que geométricamente no es tan claro que sea.

La forma exponencial $z=re^{i\theta}$ es simplemente una forma de abreviar a la forma polar, pues por definición $e^{i\theta}=\cos \theta + i \sin \theta$. En forma exponencial, el producto es más sencillo de entender.

Ejercicio. Demuestra lo siguiente:

  • Muestra que la norma es multiplicativa, es decir, que para complejos $r$ y $s$ se tiene que $|rs|=|r||s|$.
  • Muestra que $e^{i\alpha}e^{i\beta}=e^{i(\alpha+\beta)}$.

Sugerencia. Para el primer punto, haz las cuentas usando la forma rectangular. Para el segundo punto, escribe las definiciones de todos los términos en forma polar. Haz las multiplicaciones en el lado izquierdo y usa las fórmulas trigonométricas para sumas de ángulos.

Por el ejercicio anterior, si tenemos a los complejos en forma polar $w=re^{i\alpha}$, $z=se^{i\beta}$, entonces el producto es $wz=rse^{i(\alpha+\beta)}$, de modo que el producto corresponde al complejo con el producto de normas y suma de argumentos. En ocasiones esto nos permite plantear algunos problemas geométricos en términos de números complejos.

Producto de números complejos.
Multiplicación de números complejos.


Aplicaciones de aritmética de complejos

Veamos dos aplicaciones de la teoría anterior a problemas que no mencionan en el enunciado a los números complejos.

Problema. Sean $a$ y $b$ enteros. Muestra que el número $(a^2+b^2)^n$ se puede expresar como la suma de los cuadrados de dos números enteros.

Podría ser tentador usar el binomio de Newton para elevar el binomio a la $n$-ésima potencia. Sugerimos que intentes esto para darte cuenta de las dificultades que presenta.

Sugerencia pre-solución. Escribe a $a^2+b^2$ como el cuadrado de la norma de un complejo y usa que es multiplicativa.

Solución. El número $r=a^2+b^2$ es la norma al cuadrado del número complejo $z=a+ib$. Entonces, el número $r^n=(a^2+b^2)^n$ es la norma al cuadrado del número complejo $z^n=(a+ib)^n$. Pero al desarrollar $(a+ib)^n$ obtenemos únicamente a $i$, potencias de $a$ y de $b$, y coeficientes binomiales. De modo que $z^n=(a+ib)^n=c+id$ con $c$ y $d$ enteros (aquí estamos usando notación adecuada: no es necesario saber quienes son, sólo que son enteros). Así, $r^n=c^2+d^2$ con $c$ y $d$ enteros.

$\square$

Veamos ahora un ejemplo de geometría. Este problema es posible resolverlo de muchas formas, pero notemos que los números complejos nos dan una forma de hacerlo de manera algebraica de manera inmediata.

Problema. En la siguiente figura hay tres cuadrados de lado $1$ pegados uno tras otro. Determina la suma de los ángulos marcados con $\alpha$ y $\beta$.

Problema de suma de ángulos
Determinar el valor de la suma $\alpha+\beta$.

Sugerencia pre-solución. El problema pide determinar una suma de ángulos, así que conviene pensar esta suma de ángulos como el ángulo del producto de dos complejos. Haz tu propia figura, pero ahora sobre el plano complejo.

Solución. El ángulo $\alpha$ es igual al argumento del complejo $2+i$ y el ángulo $\beta$ es igual al argumento del complejo $3+i$. De esta forma, $\alpha+\beta$ es igual al argumento del complejo $(2+i)(3+i)=(6-1)+(2+3)i=5+5i$. Este complejo cae sobre la recta $\text{Re}(z)=\text{Im}(z)$, de modo que su argumento es $\pi / 4$.

$\square$

Este problema también se puede resolver de (numerosas) maneras geométricas, que puedes consultar en este video.

Fórmula de De Moivre

El siguiente teorema se puede demostrar por inducción sobre $n$.

Teorema (fórmula de De Moivre). Para cualquier entero $n$ y ángulo $\theta$ se tiene que $$(\cos \theta + i \sin \theta)^n=\cos (n\theta) + i \sin (n\theta).$$ Dicho de otra forma, en términos de la forma exponencial, se vale usar la siguiente ley de los exponentes $$(e^{\theta i})^n=e^{(n\theta) i}.$$

La fórmula de De Moivre es otra herramienta que ayuda a resolver problemas de números reales enunciándolos en términos trigonométricos. El truco consiste en:

  1. Tomar una expresión real que queramos entender.
  2. Identificarla como la parte real o imaginaria de una expresión compleja.
  3. Usar la aritmética de números complejos para entender la expresión compleja.
  4. Regresar lo que entendamos a los reales.

Veamos un par de ejemplos, relacionados con funciones trigonométricas. Comenzamos con una fórma de encontrar la fórmula para el coseno de cinco veces un ángulo.

Problema. Sea $\theta\in [0,2\pi)$. Expresa a $\cos 5\theta$ en términos de $\cos \theta$.

Sugerencia pre-solución. Identifica a $\cos 5\theta$ como la parte real de un número complejo. Inspírate en la fórmula de De Moivre. Usa binomio de Newton.

Solución. Por la fórmula de De Moivre, $\cos 5\theta$ es la parte real del complejo $(\cos \theta + i \sin \theta)^5$, así que calculemos quién es exactamente este número usando binomio de Newton. Para simplificar la notación, definimos $a=\cos \theta$ y $b=\sin \theta$. Tenemos que

\begin{align*}
(a+ib)^5&=a^5+5a^4(bi)+10a^3(ib)^2+10a^2(ib)^3+5a(ib)^4+(ib)^5\\
&=(a^5-10a^3b^2+5ab^4) + (5a^4b-10a^2b^3+b^5) i.
\end{align*}

Además, por la identidad pitagórica recordemos que $a^2+b^2=1$, de donde $b^2=1-a^2$, de modo que la parte real de la expresión anterior es $$a^5-10a^3(1-a^2)+5a(1-2a^2+a^4),$$ que agrupando es $$16a^5-20a^3+5a.$$ Recordando que $a$ es $\cos \theta$, obtenemos la fórmula final $$\cos 5\theta = 16\cos^5 \theta – 20 \cos^3 \theta + 5\cos \theta.$$

$\square$

Raíces de la unidad

En muchos problemas se utilizan las raíces de la ecuación $x^n=1$.

Teorema. Sea $n\geq 1$ un entero. Las ecuación $x^n=1$ tiene $n$ soluciones complejas, que en el plano complejo forman los vértices del $n$-ágono regular con centro en $0$ y tal que uno de sus vértices es $1$. Si $\omega$ es la raíz de menor argumento positivo, entonces estas soluciones son $1,\omega, \omega^2,\ldots,\omega^{n-1}$.

Raíces de la unidad en los números complejos
Raíces $n$-ésimas de la unidad para $n=5$.

A estas soluciones les llamamos las raíces $n$-ésimas de la unidad. Notemos que $\omega^{n}=1$, y que en general si escribimos a un entero $m$ usando el algoritmo de la división como $m=qn+r$, entonces $\omega^m=\omega^r$. ¡Los productos de raíces de la unidad se comportan como los elementos de $\mathbb{Z}_n$ bajo suma módulo $n$!

Proposición. Sea $n\geq 2$ un entero. La suma de las $n$ raíces $n$-ésimas de la unidad es $0$ y su producto es $1$.

La proposición anterior nos permite, en ocasiones, «filtrar» ciertas expresiones algebraicas. A continuación presentamos un ejemplo, que retomamos de los primeros ejemplos que vimos, cuando estábamos aprendiendo la heurística de encontrar un patrón.

Problema. Determina el valor de la suma $$\binom{100}{0}+\binom{100}{3}+\binom{100}{6}+\ldots+\binom{100}{99}.$$

Sugerencia pre-solución. Si no recuerdas lo que debería salir, vuelve a experimentar con los primeros valores, para cuando en vez de usar $100$ se usan números más chiquitos. Para entender mejor el patron, generaliza el problema, y en vez de sólo tener múltiplos de $3$ abajo, explora también qué sucede cuando tienes los números que dejan residuo $0$, $1$ o $2$ módulo $3$.

Ya que recuerdes la fórmula que queremos, considera una raíz cúbica $\omega$ de la unidad distinta de $1$. Calcula $(1+1)^{100}$, $(1+\omega)^{100}$ y $(1+\omega^2)^{100}$ usando el binomio de Newton y aprovechando que toda potencia de $\omega$ es $1$, $\omega$ u $\omega^2$ para simplificar la notación.

Solución. Sea $\omega$ una raíz cúbica de la unidad distinta de $1$. Tenemos que $\omega^3=1$ y que $1+\omega+\omega^2=0$. De este modo, podemos usar $\omega$ y el binomio de Newton para calcular las siguientes expresiones

\begin{align*}
(1+1)^{100}&=\binom{100}{0}+\binom{100}{1}+\binom{100}{2}+ \binom{100}{3}+ \ldots\\
(1+\omega)^{100}&= \binom{100}{0}+\binom{100}{1}\omega+\binom{100}{2}\omega^2+\binom{100}{3}+\ldots\\
(1+\omega^2)^{100}&= \binom{100}{0}+\binom{100}{1}\omega^2+\binom{100}{2}\omega+ \binom{100}{3}+\ldots
\end{align*}

¿Qué sucede al sumar las tres expresiones? En el lado derecho, cada vez que $m$ es un múltiplo de $3$, tenemos $3\binom{100}{m}$, y cada vez que $m$ no es un múltiplo de $3$, tenemos $$(1+\omega+\omega^2)\binom{100}{m}=0.$$ ¡Se filtran exactamente los coeficientes binomiales con parte inferior múltiplo de $3$! Así, tres veces la suma que buscamos es igual a $$2^{100}+(1+\omega)^{100}+(1+\omega^2)^{100}.$$

Esta ya es una expresión suficientemente cerrada, pero podemos simplificar todavía más:

\begin{align*}
(1+\omega)^{100}&=(-\omega^2)^{100}=\omega^{200}=\omega^2\\
(1+\omega^2)^{100}&=(-\omega)^{100}=\omega\\
(1+\omega)^{100}+(1+\omega^2)^{100}&=\omega^2+\omega=-1.
\end{align*}

Así, la expresión que queremos es $\frac{2^{100}-1}{3}$.

$\square$

Más ejemplos

Puedes ver más ejemplos del uso de esta teoría en la Sección 3.5 del libro Problem Solving through Problems de Loren Larson.

Tres (+1) soluciones a un problema de tres ángulos

Por Leonardo Ignacio Martínez Sandoval

GeometriaA veces un problema admite más de una solución. Una buena idea que surgió en la página del FB de la OMM es hacer un video en el cual se muestre cómo un problema puede tener más de una solución, en específico, tres soluciones.

Ir a los videos…