Archivo de la etiqueta: álgebra superior

Álgebra Superior II: Forma polar y cambios de coordenadas de un complejo

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores comenzamos a hablar acerca de cómo resolver algunas ecuaciones en $\mathbb{C}$. Platicamos de ecuaciones cuadráticas y la fórmula general. Luego, vimos sistemas de ecuaciones lineales y varios métodos para resolverlos. Lo siguiente que haremos será resolver ecuaciones de la forma $z^n=w$, en donde $w$ en $\mathbb{C}$ y $n$ en $\mathbb{N}$ están dados y $z$ es la variable a determinar. Antes de resolver esta ecuación, necesitamos entender mejor la multiplicación en $\mathbb{C}$, y para ello vamos a estudiar la forma polar de un complejo.

En esta entrada comenzaremos recordando las coordenadas rectangulares de un número complejo, además definiremos sus coordenadas polares. Veremos cómo pasar de coordenadas rectangulares a polares de manera biyectiva, con lo cual podremos definir qué es la forma polar.

Más adelante, la forma polar nos ayudará a entender mejor la geometría de la multiplicación y exponenciación en $\mathbb{C}$. Esto será muy útil cuando queramos «sacar raíces $n$-ésimas», lo cual necesitaremos para resolver ecuaciones del estilo $z^n=w$.

De coordenadas rectangulares a coordenadas polares

Tomemos un número complejo $z=x+yi$ y pensémoslo como un punto del plano complejo, es decir, como el punto $(x,y)$ . Diremos que $(x,y)$ son las coordenadas rectangulares de $z$. Es recomendable recordar la siguiente figura, y regresar a ella frecuentemente.

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

El número complejo $z$ tiene norma $r=\sqrt{x^2+y^2}$. Además, si $z\neq 0$, tenemos que $z$ define un ángulo $\theta$ con el eje real positivo, medido en el sentido contrario al avance de las manecillas del reloj a partir del eje real positivo, al cual le llamaremos el argumento de $z$ y lo denotaremos por $\text{arg}(z)$. Todos los ángulos que manejamos están en radianes.

Sin embargo, este ángulo no es único. El complejo $z$ define al ángulo $\theta$ pero, por ejemplo, también define al ángulo $\theta+2\pi$, pues la suma de $2\pi$ corresponde a dar una vuelta completa alrededor del origen. Por ello, pensaremos que el argumento de $z$ toma todos los valores $$\{\theta+2k\pi:k\in \mathbb{Z}\}.$$ Así, $\text{arg}(z)$ es una multifunción, algo así como una función, pero que toma varios valores. Cuando digamos que un complejo tiene argumento $\theta$, nos referiremos a $\theta$ o cualquier otro ángulo que difiera un múltiplo entero de $2\pi$ Más adelante hablaremos de esto con detalle.

Aunque haya varios ángulos que le correspondan a $z$, hay uno único en el intervalo $[0,2\pi)$.

Definición. Definimos las coordenadas polares de un número complejo $z=x+yi$ como sigue:

  • Si $z=0$, sus coordenadas polares son $(0,0)$.
  • Si $z\neq 0$, entonces tomamos $r=\Vert z \Vert = \sqrt{x^2+y^2}$ y $\theta$ el único ángulo en $[0,2\pi)$ que hace $z$ con el eje real positivo. Las coordenadas polares de $z$ son $(r,\theta)$.

Observa que $r$ siempre es no negativo y es cero si y sólo si $z=0$. Además por trigonometría para el ángulo $\theta$ se cumple que \begin{align*}\sin \theta &= \frac{y}{r}\\ \cos \theta &= \frac{x}{r},\end{align*} lo cual nos da la siguiente forma práctica para encontrar $\theta$:

  • Calculamos $\frac{y}{r}$ o $\frac{x}{r}$ (el que parezca más sencillo).
  • Aplicamos una función trigonométrica inversa para reducir el problema a dos opciones.
  • Elegimos la opción correcta de acuerdo al signo de $x$ o $y$.

Ejemplo. Tomemos al complejo $z=3-3\sqrt{3}i$. Vamos a pasarlo a forma polar. Su norma es $\sqrt{9+27}=\sqrt{36}=6$. Para determinar el ángulo $\theta$ que define con el eje real, podemos notar que $$\cos{\theta}=\frac{3}{6}=\frac{1}{2},$$ así que $\theta = \frac{\pi}{3}$ ó $\theta= 2\pi-\frac{\pi}{3}=\frac{5\pi}{3}$, pues son los únicos ángulos en $[0,2\pi)$ con ese coseno. Como la parte imaginaria es negativa, se da el segundo caso. Por lo tanto, las coordenadas polares de $z$ son $\left(6,\frac{5\pi}{3}\right)$.

$\triangle$

De coordenadas polares a coordenadas rectangulares

También hay una forma de pasar de coordenadas polares a coordenadas rectangulares. En efecto, tomemos un real no negativo $r$ y consideremos la pregunta ¿quienes son los números complejos de norma $r$?

Por un lado, si $r=0$, necesitamos que $x^2+y^2=0^2=0$, de donde $x=y=0$, así que las coordenadas rectangulares deben ser $(0,0)$. Por otro lado, si $r>0$, se necesita que $$x^2+y^2=r^2,$$ lo cual, por el teorema de Pitágoras, define una circunferencia de radio $r$ con centro en el origen.

Circunferencia de complejos de norma r.
Circunferencia de complejos de norma $r$

Si además elegimos un ángulo, $\theta$ en $[0,2\pi)$, que el complejo haga con el eje real, entonces queda determinado de manera única. Supongamos que este complejo es $z=x+yi$

Por trigonometría, tenemos que
\begin{align*}x&=r\cos \theta\\ y &= r\sin \theta.\end{align*}

Problema. Determina en la forma $x+yi$ al número complejo cuyas coordenadas polares son $\left(7,\frac{3\pi}{4}\right)$.

Solución. Usamos las fórmulas obtenidas arriba. Tenemos que

\begin{align*}\\
x&=7\cos \frac{3\pi}{4}=7\cdot \left(-\frac{1}{\sqrt{2}}\right)=-\frac{7}{\sqrt{2}}\\
y &= 7\sin \frac{3\pi}{4}= 7\cdot \frac{1}{\sqrt{2}}=\frac{7}{\sqrt{2}}.
\end{align*}

De este modo, el complejo buscado es el $$-\frac{7}{\sqrt{2}}+\frac{7}{\sqrt{2}}.$$

$\square$

Los cambios de coordenadas son inversos entre sí

La primer sección explica cómo de coordenadas rectangulares podemos pasar a coordenadas polares. La anterior dice cómo pasar de coordenadas polares a rectangulares. Resulta que estas operaciones son inversas la una de la otra como veremos en la siguiente:

Proposición. Si tomamos coordenadas polares $(r,\theta)$ de un complejo, las pasamos a coordenadas rectangulares $(x,y)$ y luego éstas las pasamos a coordenadas polares $(r’,\theta’)$ de nuevo, tenemos que $$(r,\theta)=(r’,\theta’).$$

Demostración. En el caso $r=0$, sólo definimos coordenadas polares con $\theta=0$. Al ir a coordenadas rectangulares vamos al punto $(0,0)$, que de nuevo regresa a polares $(0,0)$. Podemos suponer entonces que $r>0$.

Como mencionamos en la segunda sección, las coordenadas rectangulares correspondientes a $(r,\theta)$ son exactamente $$(x,y)=(r\cos \theta,r\sin \theta).$$ Pasemos este complejo a coordenadas polares $(r’,\theta’)$. Usando la identidad pitagórica $\cos ^2\theta + \sin^2 \theta = 1$, la norma de este complejo es
\begin{align*}
\sqrt{r^2\cos^2\theta+r^2\sin^2 \theta} &= r\sqrt{\cos ^2\theta +\sin^2 \theta}\\
&=r\sqrt{1}\\
&=r,
\end{align*}

lo que prueba $r=r’$. Además, como discutimos en la primer sección, tenemos que
\begin{align*}
\sin \theta’ = \frac{r\sin \theta}{r} = \sin \theta\\
\cos \theta’ = \frac{r\cos \theta}{r}=\cos \theta.
\end{align*}

De esta forma, $\theta$ y $\theta’$ son ángulos en $[0,2\pi)$ con el mismo seno y coseno, lo cual implica $\theta=\theta’$.

$\square$

Corolario. El cambio de coordenadas rectangulares a polares , visto como una función de $$\mathbb{R}\times \mathbb{R}$$ a $$(\mathbb{R}^+\times [0,2\pi))\cup \{(0,0)\}$$ es biyectivo.

La forma polar de un número complejo

En las secciones anteriores pensamos a los complejos como parejas ordenadas. Podemos regresar los resultados obtenidos a la forma $x+yi$ de los complejos para justificar la siguiente definición.

Definición. La forma polar de un número complejo $z=x+yi$ es $z=r(\cos \theta + i\sin \theta)$, donde $(r,\theta)$ son las coordenadas polares de $(x,y)$.

Por costumbre, en la forma polar se pone $i$ antes de $\sin \theta$, a diferencia de la forma rectangular, en donde se pone $i$ después de $y$. A veces en expresiones como las de la forma polar aparecen ángulos $\theta$ fuera del rango $[0,2\pi)$. Podemos hacer las cuentas que necesitemos fuera de este rango sin problema. Al final podemos sumar o restar un múltiplo entero de $2\pi$ para caer en el rango $[0,2\pi)$. Esto no cambia el seno ni coseno del ángulo, por lo que no cambia al número complejo.

Como la expresión $ \cos \theta + i\sin \theta$ se usa mucho, usualmente se abrevia.

Definición. Para un ángulo $\theta$ definimos $\text{cis}(\theta) = \cos \theta + i \sin \theta$.

Problema. Determina la forma polar de los complejos $1$, $-1$, $i$ y $-i$.

Solución. Todos estos números tienen norma $1$. Además, hacen ángulos $0, \pi, \frac{\pi}{2}, \frac{3\pi}{2}$ con el eje real positivo, respectivamente. De esta forma, sus coordenadas polares son
\begin{align*}
(1,0)\quad (1,\pi)\quad\left(1,\frac{\pi}{2}\right)\quad \left(1,\frac{3\pi}{2}\right),
\end{align*}

respectivamente.

De esta forma, la forma polar de cada uno es:
\begin{align*}
1&=\cos 0+i \sin 0=\text{cis} (0)\\
-1&=\cos \pi + i \sin \pi = \text{cis} (\pi) \\
i&=\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = \text{cis} \left(\frac{\pi}{2}\right)\\
-i&= \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = \text{cis} \left( \frac{3\pi}{2}\right).
\end{align*}

$\triangle$

Una aclaración muy importante es que la forma polar de $z=x+yi$ no es $r+\theta i$. La forma polar es exactamente el mismo número complejo que el original, simplemente escrito de manera diferente.

Si la forma polar de un complejo es exactamente el mismo número que el original, ¿de qué nos sirve tenerlo en coordenadas polares? Resulta que la multiplicación compleja se entiende mucho mejor en términos de la forma polar. En la siguiente entrada veremos esto y cómo lo podemos usar para encontrar potencias de números complejos fácilmente.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina la forma polar de los siguientes complejos: $7-7i$ y $-2+2\sqrt{3}i$.
  2. Determina la forma rectangular de los complejos con coordenadas polares $\left(2,\frac{\pi}{3}\right)$ y $\left(1, \frac{11\pi}{6}\right)$.
  3. Si la forma polar del complejo $z$ es $r\text{cis} \theta$, ¿quién es la forma polar del conjugado?
  4. ¿Cuáles son aquellos números complejos que se obtienen al variar $\theta$ en la forma polar $3\text{cis}(\theta)$?
  5. ¿Qué figura en el plano definen aquellos números complejos que se obtienen al variar $r$ en la forma polar $r\text{cis}(\pi)$?

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Construcción de números complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En una entrada anterior esbozamos las construcciones de los números racionales y los números reales. Es hora de construir los números complejos. Para ello, definiremos primero el conjunto, $\mathbb{C}$, sobre el que trabajaremos, después definiremos sus operaciones.

Una forma intuitiva de visualizar a $\mathbb{C}$ es tomar el conjunto de los números reales ($\mathbb{R}$) y en ellos introducir un nuevo elemento, $i$, el cual satisface que $i^2=-1$. Este es, realmente, un nuevo elemento, pues en $\mathbb{R}$ siempre se tiene que $x^2\geq 0$.

Una vez que introducimos a $i$, queremos que las operaciones de suma y producto estén definidas en $\mathbb{C}$ y que, además este conjunto, sea cerrado bajo estas operaciones. Es decir, es necesario que para cualquier número real $b$ se tenga $bi\in \mathbb{C}$ y que para cualesquiera números reales $a$ y $b$ tengamos, también, $a+bi\in \mathbb{C}$. Resulta que esto «es suficiente», en el sentido de que ya no hay que meter más números para que las operaciones estén bien definidas. Veamos como es esto, si tenemos los números de la forma $a+bi$ y $c+di$ con $a,b,c,d\in \mathbb{R}$ y los sumamos y multiplicamos como sigue: $$(a+bi)+(c+di)=(a+c)+(b+d)i$$, vemos que, la suma, «tiene la misma forma» (ya que $a+c$ y $b+d$ son números reales) así como su producto:
\begin{align*}
(a+bi)(c+di)&=ac+bci+adi+bdi^2\\
&=(ac-bd)+(ad+bc)i.
\end{align*}
Desde luego que lo anterior es soló una discusión informal. En las siguientes secciones veremos cómo formalizar estas ideas.

Los números complejos se comportan muy bien en términos algebraicos y en términos de análisis. En términos algebraicos, esto se comenzará a notar en la última parte del curso en donde veremos que cualquier polinomio tiene por lo menos una raíz compleja. En cursos posteriores, como el de álgebra lineal, verás otras de las propiedades algebraicas de los polinomios. Más adelante, si llevas un curso de variable compleja verás las bellas propiedades analíticas que tienen los números complejos.

El campo de los números complejos

La construcción del conjunto de números complejos es bastante sencilla. Para hacerla, simplemente consideraremos las parejas de números reales $$\mathbb{C}=\{(a,b): a,b\in \mathbb{R}\}.$$

Por el momento a cada $(a,b)$ lo puedes pensar de manera informal como el complejo $a+bi$. Lo interesante del conjunto de los números complejos no son sus elementos en sí, sino las siguientes operaciones que están definidas en él.

Definición. Para $(a,b)$ y $(c,d)$ en $\mathbb{C}$, definimos su suma como $$(a,b)+(c,d)=(a+c,b+d).$$

Recordemos que dentro del paréntesis se usa la suma de $\mathbb{R}$ ya que $a$, $b$, $c$ y $d$ son números reales.

Definición. Para $(a,b)$ y $(c,d)$ en $\mathbb{C}$, definimos su producto como $$(a,b)(c,d)=(ac-bd,ad+bc).$$

Igualmente dentro del paréntesis se usan la suma y producto de $\mathbb{R}$. La definición de producto está motivada por la discusión que hicimos en la introducción.

Teorema. El conjunto $\mathbb{C}$, junto con las operaciones de suma y producto que definimos, es un campo.

Demostración. La suma es conmutativa y asociativa ya que cada entrada pertenece a $\mathbb{R}$ y en $\mathbb{R}$ la suma es conmutativa y asociativa. El neutro es $(0,0)$ pues $$(a,b)+(0,0)=(a+0,b+0)=(a,b)$$ y para $(a,b)$ su inverso aditivo es $(-a,-b)$.

Veamos ahora el producto. Probemos que es conmutativo. Para dos complejos $(a,b)$ y $(c,d)$ tenemos que $$(a,b)(c,d)=(ac-bd,ad+bc)$$ y que $$(c,d)(a,b)=(ca-db,cb+da).$$

Ambos resultados son iguales ya que cada entrada pertenece a $\mathbb{R}$ y la suma y el producto son conmutativos en $\mathbb{R}$.

Probemos que el producto es asociativo. Para ello tomemos tres complejos $(a,b)$, $(c,d)$ y $(e,f)$. Tenemos que
\begin{align*}
[(a,b)(c,d)](e,f)&=(ac-bd,ad+bc)(e,f)\\
&=(ace-bde-adf-bcf,acf-bdf+ade+bce),
\end{align*} y que
\begin{align*}
(a,b)[(c,d)(e,f)]&=(a,b)(ce-df,cf+de)\\
&=(ace-adf-bcf-bde,acf+ade+bce-bdf),
\end{align*}

Ambas expresiones son iguales ya que cada entrada pertenece a $\mathbb{R}$ y la suma es conmutativa en $\mathbb{R}$.

El complejo $(1,0)$ actúa como neutro multiplicativo, pues $$(a,b)(1,0)=(a\cdot 1 – b\cdot 0, a\cdot 0 + b\cdot 1)=(a,b).$$ Además, si tomamos un complejo $(a,b)\neq (0,0)$ y lo multiplicamos por $\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)$ obtenemos \begin{align*}
(a,b)\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)&= \left(\frac{a^2+b^2}{a^2+b^2}, \frac{-ab}{a^2+b^2}+\frac{ba}{a^2+b^2}\right)\\ &= (1,0),
\end{align*} lo cual muestra que tenemos inversos multiplicativos.

Sólo falta demostrar la propiedad distributiva. Su verificación se deja como tarea moral.

$\square$

La copia de los reales en los números complejos

Dentro de $\mathbb{C}$ hay una copia de los números reales. Esta consiste en asociarle, a cada número real $a$, el número complejo $\varphi(a)=(a,0)$. Esta asociación es claramente biyectiva. Además, si $a$ y $b$ son números reales, tenemos que $$(a,0)+(b,0)=(a+b,0)=\varphi(a+b)$$ y
\begin{align*}
(a,0)(b,0) &= (ab-0\cdot 0, a\cdot 0 + b\cdot 0)\\
&= (ab,0) = \varphi(ab).
\end{align*}
Además los neutros se van a neutros y los inversos a inversos. Esto muestra que $\varphi$ es una asociación biyectiva entre $\mathbb{R}$ y los complejos de la forma $(a,0)$ y que respeta la estructura de campo de $\mathbb{R}$.

Por otro lado, notemos que $$(0,1) (0,1)= (0\cdot 0 – 1\cdot 1, 0\cdot 1 + 1\cdot 0)= (-1, 0).$$

En otras palabras, al elevar el complejo $(0,1)$ al cuadrado obtenemos el número $(-1,0)$, que es precisamente $\varphi(-1)$.

Tras toda esta discusión, estamos justificados entonces en llamar simplemente $1$ al complejo $(1,0)$, en llamar $i$ al complejo $(0,1)$, y por lo tanto en llamar $a+bi$ al complejo $(a,b)$. A partir de aquí ya podemos olvidar la notación de parejas y tratar a los números complejos como lo discutimos en la introducción.

Operaciones en la notación $a+bi$

La notación $a+bi$ para números complejos es bastante práctica. Podemos trabajar con los complejos «igualito que en $\mathbb{R}$, pero, además, con la propiedad de que $i^2=-1$».

Como $i^4=(-1)^2=1$, tenemos que las potencias de $i$ se ciclan cada cuatro: $$1, i, i^2, i^3, i^4, i^5, i^6, \ldots$$ son $$1,i, -1, -i, 1, i,\ldots .$$ Ya mencionamos en la introducción que para complejos $a+bi$ y $c+di$ se tiene que $$(a+bi)+(c+di)=(a+c)+(b+d)i$$ y que $$(a+bi)(c+di)=(ac-bd)+(ad+bc)i,$$ de modo que cualquier composición de sumas y productos de números complejos se puede simplificar a la forma $x+yi$ con $x$ y $y$ reales.

Ejemplo. Simplifica la expresión $$(1+i)(1-i)+(2+i)(3-4i).$$ Solución. Haciendo el producto del primer sumando tenemos $(1+i)(1-i)=1^2-i^2=1-(-1)=2$. Haciendo el producto del segundo sumando tenemos \begin{align*}
(2+i)(3-4i)&=6+3i-8i-4i^2\\
&=6-5i+4\\
&=10-5i.
\end{align*}
De esta forma, el resultado de la operación es $$2+(10-5i)=12-5i.$$

$\triangle$

En complejos también podemos usar expresiones fraccionales, como $\frac{3+2i}{5-i}$. Si queremos pasar estas expresiones a la forma $x+yi$ con $x$ y $y$ reales, tenemos que pensar a $\frac{1}{5-i}$ como «el inverso multiplicativo de $5-i$», que como vimos en la demostración de que $\mathbb{C}$ es un campo, es $$\frac{5}{5^2+(-1)^2}+\frac{1}{5^2+(-1)^2}i=\frac{5}{26}+\frac{1}{26} i.$$ Una vez hecho esto, tenemos que \begin{align*}
\frac{3+2i}{5-i}&=(3+2i)\left( \frac{5}{26}+\frac{1}{26} i \right)\\
&=\frac{13}{26} + \frac{13}{26} i\\
&=\frac{1}{2}+\frac{1}{2} i.
\end{align*}

Otra forma de pensarlo es que a una expresión de la forma $\frac{a+bi}{c+di}$ la podemos simplificar «multiplicando arriba y abajo» por $c-di$. De esta forma, obtenemos
\begin{align*}
\frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i.
\end{align*}

Ambos métodos dan el mismo resultado.

Más adelante…

Al tomar un número complejo $z=a+bi$ y calcular su inverso, aparecen de manera natural las expresiones $a-bi$ y $a^2+b^2$. Estas expresiones son fundamentales.

  • A $a-bi$ se le conoce como el conjugado de $z$, y se denota por $\overline{z}$.
  • A $\sqrt{a^2+b^2}$ se le conoce como la norma de $z$ y se denota por $|z|$.

En la siguiente ocasión hablaremos de las propiedades de estas dos operaciones y cómo están relacionadas entre sí. Más adelante veremos su utilidad al resolver ecuaciones cuadráticas en los números complejos.

Si quieres, puedes revisar esta entrada sobre aplicaciones interesantes de los números complejos en la resolución de problemas. Tiene teoría que no hemos visto, pero te puede servir de motivación para aprender lo que veremos a continuación.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que en los complejos se satisface la ley distributiva.
  2. Verifica que bajo la asociación $\varphi$ en efecto los neutros se van a los neutros y los inversos a inversos.
  3. Realiza la operación $(1+i)(2+i)(1+2i)(2+2i)$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.
  4. Realiza la operación $$\frac{3+5i}{2+i}-\frac{1+2i}{4-3i}$$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.
  5. Realiza la operación $$1+(1+i)+(1+i)^2+(1+i)^3+(1+i)^4$$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Simplificación, suma y producto de complejos

Por Claudia Silva

Introducción

En una entrada de blog anterior, construimos el campo de los números complejos y definimos sus operaciones básicas. Ahora resolveremos algunos problemas de operaciones con complejos.

Haremos dos tipos de problemas. El primer tipo se trata de simplificar expresiones en números complejos para que se vuelvan de la forma $x+yi$ con $x$ y $y$ números reales. El segundo tipo es de realizar operaciones de suma, resta, producto y división de complejos, y luego simplificar.

Simplificación de expresiones complejas

Comenzamos con un vídeo de simplificar expresiones de números complejos.

Expresar en la forma $a+bi$ las expresiones…

Problemas de operaciones con complejos

Ahora vemos varios ejemplos de realizar sumas con números complejos.

Sumar números complejos

En todos los ejemplos del vídeo, realizamos sólo sumas de dos números, pero se podrían realizar sumas con cualquier cantidad de sumandos. Por ejemplo, podemos considerar la suma $$(5+2i)+(8+i)-(1-7i).$$ ¿Cuál sería el resultado de esta operación?

Finalmente, a continuación se muestra un vídeo en donde se realizan operaciones de productos y de divisiones de números complejos.

Productos y divisiones de números complejos

En el vídeo se define al conjugado del número complejo $z=a+bi$, que se denota por $\overline{z}$ y se obtiene de cambiarle el signo a la parte imaginaria. Por ejemplo, $\overline{4-5i}=4+5i$. Si multiplicas a un número complejo $a+bi$ por su conjugado, obtienes el real $a^2+b^2$. Esto es útil para quitar las partes imaginarias de los denominadores de expresiones fraccionales con complejos.

Más ejemplos y práctica extra

En otro curso, el Seminario de Resolución de Problemas, escribimos una entrada de cómo se pueden usar los números complejos para la resolución de problemas matemáticos. Ahí hay teoría más avanzada, pero puedes echarle un ojo para que veas lo que veremos más adelante en el curso.

En la página de Khan Academy en Español, puedes aprender más acerca de los números complejos, así como hacer muchos ejercicios de práctica.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Esbozo de construcción de los números racionales y reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la unidad pasada vimos la construcción de los números enteros a partir de los números naturales. Lo que hicimos fue considerar parejas de números naturales $(a,b)$ para las que dimos la relación $\sim$ definida por $(a,b)\sim (c,d)$ si y sólo si $a+d=b+c$, vimos que esta relación es de equivalencia. Dijimos que, aunque era incorrecto formalmente, convenía pensar a la pareja $(a,b)$ como $a-b$ (es incorrecto ya que no siempre se puede restar en $\mathbb{N}$).

La relación $\sim$, así definida, genera las clases de equivalencia $$\overline{(a, b)}=\lbrace (c, d)\in \mathbb{N}\times\mathbb{N} : a+d=b+c\rbrace$$ en $\mathbb{N}\times\mathbb{N}$. El conjunto $\mathbb{Z}$ lo construimos como el conjunto de todas estas clases de equivalencia. En él definimos las operaciones:

  • Suma: $\overline{(a,b)}+\overline{(c,d)}=\overline{(a+c,b+d)}$.
  • Producto: $ \overline{(a,b)}\overline{(c,d)}=\overline{(ac+bd,ad+bc)}$.

Vimos que estas operaciones están bien definidas. La suma es bastante natural. El producto parece algo artificial, pero se vuelve natural si pensamos en «multiplicar $a-b$ con $c-d$», pues $(a-b)(c-d)=(ac+bd)-(ad+bc)$. Recordemos que es una justificación informal, pero ayuda a entender la intuición.

Después, nos dedicamos a probar que con estas operaciones, suma y producto, el conjunto $\mathbb{Z}$ es un anillo conmutativo con $1$ en donde se vale cancelar. A partir de ahí empezamos a ver a $\mathbb{Z}$ desde el punto de vista de la teoría de números. Estudiamos el máximo común divisor, la relación de divisibilidad, el anillo de enteros módulo $n$, congruencias, ecuaciones en congruencias, teorema chino del residuo y mencionamos un poco de ecuaciones diofantinas.

Con eso terminamos la unidad de enteros, correspondiente al segundo segundo parcial del curso.

Las siguientes dos unidades contempladas por el temario oficial son:

  • Números complejos.
  • Anillo de polinomios.

Vale la pena hacer una observación. Típicamente tenemos la siguiente cadena de contenciones entre sistemas numéricos $$\mathbb{N}\subset \mathbb{Z}\subset \mathbb{Q} \subset \mathbb{R}\subset \mathbb{C}.$$

En las primeras dos unidades del curso hablamos de $\mathbb{N}$ y de $\mathbb{Z}$. De acuerdo a las contenciones anteriores, lo siguiente sería tratar a detalle los racionales $\mathbb{Q}$ y los reales $\mathbb{R}$. Sin embargo el temario oficial «se los salta». Esto es un poco raro, pero podría estar justificado en que estos sistemas numéricos se estudian en otros cursos del plan de estudios. Por ejemplo, $\mathbb{R}$ se estudia con algo de profundidad en los cursos de cálculo.

De cualquier forma nos va a ser muy útil mencionar, por lo menos por «encima», cómo hacer la construcción de $\mathbb{Q}$ y $\mathbb{R}$. La construcción de los números racionales ayuda a repasar la construcción de los enteros. En la construcción de los números reales nos encontraremos con propiedades útiles que usaremos, de manera continua, cuando hablemos de la construcción de los números complejos $\mathbb{C}$. Por estas razones, aunque no vayamos a evaluar, las construcciones de $\mathbb{Q}$ y $\mathbb{R}$, en el curso, las ponemos aquí para que las conozcas o las repases.

Motivación de construcción de los racionales

Los naturales no son suficientes para resolver todas las ecuaciones de la forma $$x+a=b,$$ pues si $a>b$ la ecuación no tiene solución en $\mathbb{N}$ y esta fue nuestra motivación para construir los números enteros. En $\mathbb{Z}$ todas estas ecuaciones tienen solución. Sin embargo, en $\mathbb{Z}$ la ecuación $$ax=b$$ tiene solución si y sólo si $a$ divide a $b$ (por definición se tiene que $a$ divide a $b$ si y sólo si $b$ es un múltiplo de $a$), pero no siempre sucede esto. Por ejemplo, $3x=7$ no tiene solución en $\mathbb{Z}$.

Construcción de los racionales

Para la construcción de los racionales consideremos el conjunto $\mathbb{Z}\times \mathbb{Z}\setminus\{0\}$ y sobre él la relación $\sim$ definida por $(a,b)\sim (c,d)$ si y sólo si $ad=bc$. Resulta que $\sim$ es relación de equivalencia, así que, para cada pareja $(a,b)$ denotaremos como $\overline{(a,b)}$ a su clase de equivalencia. En este caso $$\overline{(a, b)}=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\} : an=bm\rbrace.$$

Observa que esta construcción se parece mucho a la que hicimos para $\mathbb{Z}$, aunque ahora nos basamos en el producto en $\mathbb{Z}$ (antes era la suma en $\mathbb{N}$). De nuevo, una forma de pensar bastante intuitiva (aunque formalmente incorrecta), es pensar a cada clase $\overline{(a,b)}$ «como $\frac{a}{b}$». Nota que estamos considerando sólo aquellas parejas $(a,b)$ tales que $b\neq 0$.

De esta forma $\mathbb{Q}$ es el conjunto de clases de equivalencia de las parejas $(a,b)$ tales que $b\neq 0$, en símbolos, $$\mathbb{Q}:=\{\overline{(a,b)}: a\in \mathbb{Z}, b\in \mathbb{Z}\setminus\{0\}\}.$$

Operaciones y orden en los racionales

Vamos a definir las operaciones en $\mathbb{Q}$. Ahora el producto es «intuitivo» y la suma no tanto.

  • Suma: $\overline{(a,b)} + \overline{(c,d)} = \overline{(ad+bc,bd)}$.
  • Producto: $\overline{(a,b)}\overline{(c,d)}=\overline{(ac,bd)}$.

La suma se vuelve mucho más intuitiva si primero pensamos en nuestra interpretación (informal) de $\overline{(a,b)}$ como $\frac{a}{b}$ y luego, por lo que aprendimos en educación primaria sobre la suma de fracciones, vemos que $$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}.$$

Ahora, para definir el orden en $\mathbb{Q}$, tomemos la pareja $(a,b)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}$. Tenemos que la clase $\overline{(a,b)}$ es

  • Cero si $a=0$,
  • Positiva si ambos ($a$ y $b$) son negativos o ninguno es negativo con el orden definido en $\mathbb{Z}$ y
  • Negativa si exactamente alguno ($a$ o $b$) es negativo con el orden definido en $\mathbb{Z}$.

Diremos que $\overline{(a,b)}>\overline{(c,d)}$ si $\overline{(a,b)}-\overline{(c,d)}$ es positiva.

Se puede probar que estas operaciones suma y producto, así como el orden están bien definidas (es decir que no dependen del representante que se tome).

Antes, de continuar, consideremos lo siguiente: un campo se puede pensar como un conjunto en el que están definidas la «suma» y la «multiplicación» tales que:

  • La suma es asociativa, conmutativa, tiene un neutro (el $0$) e inversos aditivos.
  • La multiplicación es asociativa, conmutativa, tiene un neutro (el $1$) y todo elemento distinto de $0$ tiene un inverso multiplicativo.
  • Se tiene la distributividad del producto sobre la suma $a(b+c)=ab+bc$.

En vista de lo anterior queremos mencionar que se puede probar lo siguiente:

Teorema. El conjunto $\mathbb{Q}$ con sus operaciones de suma y producto es un campo ordenado.

Retomando lo que hablamos del neutro para la multiplicación, en un campo, veamos un ejemplo.

Ejemplo. La clase $\overline{(c,c)}$ es el neutro multiplicativo en $\mathbb{Q}$, veamos:

Se tiene que $$\overline{(a, b)(c, c)} = \overline{(ac,bc)}=\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: acn=bcm\rbrace$$

y $\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: acn=bcm\rbrace=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: anc=bmc\rbrace$, pero $\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: anc=bmc\rbrace=\lbrace (m, n)\in\mathbb{Z}\times\mathbb{Z}\setminus\{0\}: an=bm\rbrace=\overline{(a, b)}$. Por lo tanto $\overline{(a, b)(c, c)}=\overline{(a, b)}$. Nota que aquí estamos usando que el producto en $\mathbb{Z}$ es asociativo, conmutativo y que se pueden cancelar factores distintos de cero.

En $\mathbb{Q}$, el inverso multiplicativo de la clase $\overline{(a,b)}$ es $\overline{(b,a)}$, veamos:

Su producto es $$\overline{(ab,ba)}=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: abn=bam\rbrace$$ y $\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: abn=bam\rbrace=\lbrace (m, n)\in \mathbb{Z}\times\mathbb{Z}\setminus\{0\}: m=n\rbrace=\overline{(c, c)}$.

$\triangle$

Notación simple de racionales y ecuaciones aún sin solución

Vamos a denotar la clase de equivalencia $\overline{(a,b)}$ por $\frac{a}{b}$, a partir de lo cual nuestra interpretación de pensarlo así ya se vuelve formal. Se puede mostrar que todo lo que aprendimos de esta notación en la primaria se deduce de las propiedades de $\mathbb{Q}$.

La ecuación $$ax=b$$ tiene solución casi siempre, el único problema es si $a=0$. Pero si $a\neq 0$, la solución es única y es $x=\frac{b}{a}$.

El conjunto $\mathbb{Q}$ es bastante bueno algebraicamente, pero le falta todavía más para ser bueno para análisis y cálculo. Todavía tiene «bastantes hoyos»: en él no podemos probar, por ejemplo, el teorema del valor intermedio para funciones continuas. Así mismo, hay varias ecuaciones que todavía no tienen solución en $\mathbb{Q}$.

Ejercicio. La ecuación $x^2=3$ no tiene una solución en $\mathbb{Q}$.

Una forma de enunciar el resultado anterior es decir «$\sqrt{3}$ es irracional». Pero nota que es incorrecto enunciarlo así, pues para ponerle un nombre a $\sqrt{3}$, es necesario saber quién es, y justo el punto del ejercicio es que, tan sólo con $\mathbb{Q}$, no podemos definirlo.

Solución. Vamos a proceder por contradicción. Supongamos que la ecuación $x^2=3$ tiene una solución $p/q$ en los racionales. De esta forma,$(p/q)^2=3$. Multiplicando por $q^2$ en ambos lados, $p^2=3q^2$.

La factorización en primos del lado izquierdo tiene una cantidad par de $3$’s. La factorización en primos del lado derecho tiene una cantidad impar de $3$’s. Esto es una contradicción al teorema fundamental de la aritmética, por lo tanto, no existe $p/q$ solución racional de $x^2=3$.

$\triangle$

Reales y hoyos en los racionales

Para la construcción de los reales, ya no podemos proceder como le hemos estado haciendo, considerando simplemente parejas de números del sistema anterior y construyendo una relación de equivalencia sobre ellas. Lo que buscamos cuando damos el paso entre $\mathbb{Q}$ y $\mathbb{R}$ ya no es sólo que los números tengan «inversos aditivos» o «inversos multiplicativos», sino que «todos los conjuntos acotados por abajo tengan un mejor mínimo». Esto es lo que garantiza que se «llenen los hoyos» que tienen los racionales.

Entendamos el concepto de «hoyo»:

Definición. Sea $X$ un orden total $\le$ y $S$ un subconjunto de $X$, un ínfimo de $S$, en $X$, es un $r\in X$ tal que

  • $r\leq s$ para todo $s\in S$ y
  • si $t\leq s$ para todo $t\in S$, entonces $t\leq s$.

Definición. Un conjunto $X$ con un orden total $\le$ es completo si todo subconjunto $S$ de $X$, acotado inferiormente, tiene un ínfimo.

Ejemplo. El conjunto $\mathbb{Q}$ no es completo, pues el subconjunto $$S=\{x\in \mathbb{Q}: x^2\geq 3\}$$ está acotado inferiormente, pero no tiene un ínfimo en $\mathbb{Q}$ (su ínfimo es $\sqrt{3}$ y $\sqrt{3}$ no pertenece a $\mathbb{Q}$).

$\triangle$

Sucesiones de Cauchy y construcción de los reales

Hay varias formas de construir un sistema numérico que extienda a $\mathbb{Q}$ y que no tenga hoyos. Se puede hacer mediante cortaduras de Dedekind, mediante expansiones decimales o mediante sucesiones de Cauchy de números racionales. Todas estas construcciones son equivalentes. Daremos las ideas generales de la última.

Definición. Una sucesión $$\{x_n\}=\{x_1,x_2,x_3,\ldots\}$$ es de Cauchy si para todo $N$ existe un $M$ tal que si $m\geq M$ y $n\geq M$, entonces $|x_m-x_n|<\frac{1}{N}$. Denotaremos con $C(\mathbb{Q})$ al conjunto de todas las sucesiones de Cauchy de números racionales.

Construiremos una relación de equivalencia $\sim$ en $C(\mathbb{Q})$. Si tenemos dos de estas sucesiones:
\begin{align*}
\{x_n\}&=\{x_1,x_2,x_3,\ldots\} \quad \text{y}\\
\{y_n\}&=\{y_1,y_2,y_3,\ldots\},
\end{align*}

diremos que $\{x_n\}\sim \{y_n\}$ si para todo natural $N$ existe un natural $M$ tal que para $n\geq M$ tenemos que $$|x_n-y_n|<\frac{1}{N}.$$

Se puede probar que $\sim$ es una relación de equivalencia. Para cada sucesión $\{x_n\}$ de Cauchy usamos $\overline{\{x_n\}}$ para denotar a la clase de equivalencia de $\{x_n\}$. Por definición, el conjunto $\mathbb{R}$ es el conjunto de clases de equivalencia de $\sim$, en símbolos: $$\mathbb{R}:=\{\overline{\{x_n\}}: \{x_n\} \in C(\mathbb{Q})\}.$$

Operaciones y orden en los reales

En $\mathbb{R}$ podemos definir las siguientes operaciones:

  • Suma: $\overline{\{x_n\}} + \overline{\{y_n\}}= \overline{\{x_n + y_n\}}$ .
  • Producto: $\overline{\{x_n\}} \overline{\{y_n\}}= \overline{\{x_ny_n\}}$.

También podemos definir el orden en $\mathbb{R}$. Decimos que $\overline{\{x_n\}}$ es positivo si para $n$ suficientemente grande tenemos $x_n>0$. Decimos que $\overline{\{x_n\}}>\overline{\{y_n\}}$ si $\overline{\{x_n\}}- \overline{\{y_n\}}$ es positivo.

Se puede ver que las operaciones de suma y producto, así como el orden, están bien definidos. Más aún, se puede probar el siguiente resultado.

Teorema. El conjunto $\mathbb{R}$ con sus operaciones de suma y producto es un campo ordenado y completo.

Como antes, una vez que se prueba este teorema, se abandona la notación de sucesiones y de clases de equivalencia. En realidad se oculta, pues la construcción siempre está detrás, como un esqueleto que respalda las propiedades que encontramos.

El teorema nos dice que $\mathbb{R}$ ya no tiene hoyos, y esto es precisamente lo que necesitamos para resolver algunas ecuaciones como $x^2=3$. Un esbozo de por qué es el siguiente. Gracias a la existencia de ínfimos se puede probar el teorema del valor intermedio en $\mathbb{R}$. Se puede probar que la función $x^2$ es continua, que en $x=0$ vale $0$ y que en $x=2$ vale $4$, de modo que por el teorema del valor intermedio debe haber un real $x$ tal que $x^2=3$.

Más adelante…

Las muchas otras importantes consecuencias de que $\mathbb{R}$ sea un campo ordenado y completo se discuten a detalle en cursos de cálculo. Si bien este es un logro enorme, aún tenemos un pequeño problema: ¡todavía no podemos resolver todas las ecuaciones polinomiales! Consideremos la ecuación $$x^2+1=0.$$ Podemos mostrar que para cualquier real $x$ tenemos que $x^2\geq 0$, de modo que $x^2+1\geq 1>0$. ¡Esta ecuación no tiene solución en los números reales!

Para encontrar una solución vamos a construir los números complejos. Con ellos podremos, finalmente, resolver todas las ecuaciones polinomiales, es decir, aquellas de la forma

$$a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0.$$

Hablaremos de esto en el transcurso de las siguientes dos unidades: números complejos y polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Cuál de las clases de equivalencia sería el neutro aditivo en $\mathbb{Q}$?
  2. ¿Por qué la definición de orden en $\mathbb{Q}$ no depende del representante elegido?
  3. ¿Cómo construirías el inverso multiplicativo de la sucesión de Cauchy $\{x_n\}$? Ten cuidado, pues algunos de sus racionales pueden ser $0$.
  4. Aprovecha esta entrada de transición entre unidades para repasar las construcciones de $\mathbb{N}$ y de $\mathbb{Z}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»