Geometría Analítica I: Las ideas de Euclides y Descartes

Por Elsa Fernanda Torres Feria

Introducción

En la primer parte del curso desarrollaremos los formalismos de conceptos geométricos de los cuales ya tenemos alguna noción como puntos, rectas, el espacio vectorial $\mathbb{R}^2$, ángulos, distancias, entre otras. Es probable que ya tengas muchas de estas nociones previas, y que hayas trabajado con ellas incluso desde el punto de vista analítico. Sin embargo, es importante ir siguiendo las ideas poco a poco pues, además de aprender a hacer las operaciones necesarias, también hay que desarrollar la intuición matemática y geométrica detrás de las cuentas. Así mismo, será importante darse cuenta del orden en el que vamos construyendo los objetos, pues en muchas ocasiones no sólo calcularemos sino que demostraremos y para ello es fundamental basarse únicamente en cosas que ya se hayan probado antes.

En esta entrada en particular, hablaremos de dos formas en las que se ha formalizado a la geometría: mediante una construcción sintética propuesta por los griegos, y mediante una construcción analítica desarrollada por Descartes. La presentación que hacemos de estos temas es más moderna que como fueron planteados originalmente.

Geometría griega

Antes de que la geometría fuera formalizada, en sus inicios era mucho más una herramienta. Estaba conformada por reglas comúnmente usadas para cosas de la vida cotidiana como medir terrenos, construir casas y ciudades, y navegar.

La formalización de este conocimiento se dio por primera vez en Elementos, un texto escrito en el siglo III a.C. por Euclides de Alejandría; durante este proceso, Euclides se percató de que todo razonamiento riguroso debe tener bases previamente establecidas que bien pueden haberse demostrado con anterioridad o que son válidas sin necesidad de demostración. Esta última opción hace referencia a principios básicos que están dados y son incontrovertibles, de tal manera que se puede construir sobre ellos el resto de la teoría.

Para formalizar una teoría, necesitamos objetos y principios básicos. En el caso de la geometría euclideana, los objetos son las nociones intuitivas que tenemos: puntos, rectas, planos, ángulos, etc. Los principios básicos, que se asumen como ciertos desde el inicio se les conoce como los cinco postulados de Euclides:

  1. Por cualesquiera dos puntos, se puede trazar el segmento de recta que los une.
  2. Dado un punto y una distancia, se puede trazar el círculo con centro en el punto y cuyo radio es la distancia.
  3. Un segmento de recta se puede extender en ambas direcciones indefinidamente.
  4. Todos los ángulos rectos son iguales.
  5. Dadas dos rectas y una tercera que las corta, si los ángulos internos de algún lado suman menos de dos ángulos rectos (180°), entonces las dos rectas se cortan y lo hacen de ese lado.

Este último postulado resulta tener dos versiones que son equivalentes y que enunciamos a continuación:

5.a. Dada una línea recta y un punto fuera de ella, existe una única recta que pasa por el punto y que es paralela a la línea.

5.b. Los ángulos interiores de un triángulo suman dos ángulos rectos.

El quinto postulado resultó ser muy controvertido y en el transcurso de la historia muchos geómetras intentaron mostrar que se desprendía de las definiciones y de los primeros cuatro. Pero esto resultó no ser cierto. Se descubrió que al tomar distintas negaciones del quinto postulado se podían obtener distintas geometrías, tan válidas y tan ricas como la geometría euclideana misma. Esto no lo trataremos en este curso, pero si te interesa conocer más, puedes investigar acerca de la geometría proyectiva o hiperbólica.

Del plano euclideano al plano cartesiano y viceversa

Continuando con la formalización de la geometría, el siguiente paso en este camino lo dio Descartes en su publicación Géométrie al introducir el álgebra en la solución de problemas de índole geométrica. Este camino inicia al buscar la forma de representar puntos en el plano por parejas de números. Para esto partimos del plano euclidiano que está bien definido por los cinco axiomas descritos por Euclides. Pensaremos que este plano consiste de puntos y que se extiende indefinidamente. Pensaremos también que en este plano los objetos que se mencionan en los postulados tienen sentido (punto, distancia, etc.). Llamaremos a este plano $\mathbb{E}^2$, donde el exponente en este caso hace referencia a la dimensión.

Notemos ahora que los puntos de una recta $l_1$ contenida en el plano ($l_1 \in \mathbb{E}^2$) representan a los números reales ($\mathbb{R}$) y que se vale lo contrario también (los reales pueden ser representados por una recta dentro de $\mathbb{E}^2$). Para ello, escogemos un punto $ O \in l_1$ al que denotaremos como origen y le asignaremos el valor real cero. Para que sea tangible la representación de los reales con esta recta, designamos que del lado derecho de $O$ se tienen los números positivos de acuerdo con su distancia al origen y del lado izquierdo los negativos. Así, a cada número real $x$ se le asocia un punto $P \in l_1$ (y a cada punto en $l_1$ le corresponde un número real).

El siguiente paso consiste en construir otra recta, digamos $l_2$, que también pase por $O$ y algún otro punto $Q$ (nótese que $l_1$ y $l_2$ fueron construidas utilizando los postulados 1 y 3 de Euclides). Orientemos a $l_2$ de la misma manera que a $l_1$ para que sus puntos representen a los números reales. Entonces, se tiene la correspondencia biunívoca entre puntos en $ \mathbb{E}^2$ y parejas de números reales gracias al postulado 5.a:

  • De punto en el plano a pareja de números: Existe una única recta $l_1’$ que pasa por $P$ y es paralela a $l_1$; análogamente existe una única recta $l_2’$ que pasa por $P$ y es paralela a $l_2$. Las intersecciones de las rectas $l_1 \cap l_2’$ y $l_2 \cap l_1’$ determinan los puntos $p_1 \in l_1$ y $q_1 \in l_2$ que definen dos números reales $x$ y $y$; esto es, una pareja ordenada $(x,y)$.
  • De pareja de números a punto en el plano: Para esta correspondencia se hace la construcción inversa, dada una pareja de números $(x,y)$, consideremos a $p_1 \in l_1$ como el punto sobre $l_1$ que se encuentra a distancia $x$ del origen y a $q_1 \in l_2$ como el punto a distancia $y$ de $O$. Sea $l_1’$ la recta que pasa por $q_1$ paralela a $l_1$ y sea $l_2’$ la recta que pasa por $p_1$ paralela a $l_2$; la intersección $l_1′ \cap l_2’$ es el punto $A$ que corresponde a la pareja $(x,y)$.

En el siguiente interactivo puedes jugar con la segunda parte de la construcción. Da clic para que se active y luego mueve los deslizadores para cambiar los valores de $X$ y $Y$. Al elegirlos, se realizará la construcción del punto $A$ de manera automática.

Así, hemos definido un sistema de coordenadas al elegir un punto $O$ (que corresponde al origen), una línea que conecta a este con un punto $P$ y otra línea que conecta a $O$ con un punto $Q$ (puntos distintos entre ellos) y al establecer las convenciones de signo.

La construcción que hicimos es muy general, y para nuestros propósitos será mejor centrarnos en el caso en el que las rectas $l_1$ y $l_2$ son ortogonales (forman un ángulo de 90°). Tradicionalmente, $l_1$ es conocida como el eje x y suele ser una línea horizontal cuya dirección positiva está hacia la derecha; $l_2$ (vertical y con dirección positiva hacia arriba) es conocida como el eje y. Este caso particular es conocido como los ejes cartesianos canónicos.

Plano cartesiano en 2 dimensiones.

Si resumimos lo que hemos desarrollado hasta ahora tenemos que, al fijar los ejes coordenados, a cada pareja de números $(x,y)$ le corresponde un punto $\textbf{a} \in \mathbb{E}^2$; además, esta relación también se vale en el otro sentido, por lo que podemos escribir que $\textbf{a}=(x,y)$. A este punto (o par de coordenadas) se le puede asignar una flecha (recta con dirección conocido como vector) que parte del origen y termina en el punto.

En el siguiente interactivo, puedes mover el punto $C$ para ver cómo cambia la flecha que une al origen con $C$.

Para concluir esta entrada, notemos que el procedimiento realizado lo podemos repetir para $n$ líneas; si bien en esta entrada construimos un sistema coordenado con $l_1$ y $l_2$, podemos agregar una $l_3$ que pase por el origen y que sea perpendicular a las otras dos líneas para llevar el plano al espacio (tri-dimensional).

Plano cartesiano en 3 dimensiones.

Más adelante…

En esta entrada construimos el puente entre el espacio descrito por Euclides y el álgebra que implementó Descartes obteniendo entonces el plano cartesiano en dos dimensiones. Esto servirá como base durante todo el curso y en especial para la siguiente entrada en la cual se hablará del espacio vectorial $\mathbb{R}^2$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Demuestra (no muy formalmente) la equivalencia entre el postulado 5, 5.a y 5.b. Sugerencia: Hazlo meramente con dibujos, intenta llegar de la representación de un postulado al otro de manera gráfica.
  • Ubica en el plano cartesiano de dos dimensiones los siguientes puntos:
    • $(2,3)$, $(7,1)$, $(5,10)$
    • $(-1,-5)$, $(-6,-2)$, $(-5,-8)$
    • $(-2,7)$, $(-5,4)$, $(-2,7)$
    • $(4,-3)$, $(2,-1)$, $(4,-5)$
      ¿Notas algún patrón entre los vectores de cada renglón relacionado a dónde quedan con respecto al eje $x$ y al eje $y$?
  • A partir del ejercicio anterior, identifica los cuadrantes (regiones del plano cartesiano divididas por los ejes) en los que las parejas de números tienen signos determinados: $(+,+)$, $(-,-)$, $(-,+)$, $(+,-)$.
  • ¿Cómo son los puntos $(x,y)$ en el plano cartesiano que cumplen que $x=1$? ¿Aquellos que cumplen $y=2$? ¿Y si $y<3$? ¿Y si $1\leq x < 5$?
  • Describe cómo sería la construcción del plano cartesiano de tres dimensiones siguiendo el procedimiento visto en esta entrada.

Geometría Analítica I: Introducción al curso

Por Leonardo Ignacio Martínez Sandoval

Introducción

Bienvenido al curso de Geometría Analítica I. A través de esta serie de entradas cubriremos el temario oficial del programa de la materia tal y como se requiere en la Facultad de Ciencias de la UNAM. Esto incluye desarrollar no sólo habilidades para ejecutar procedimientos («hacer cuentitas»), sino también aquellas que nos permitan deducir los resultados que obtendremos a través de razonamientos lógicos («demostrar»).

Pre-requisitos del curso

En la mayoría de las entradas seguiremos un flujo matemático, en el cual escribiremos definiciones, proposiciones, ejemplos, teoremas y otro tipo de enunciados matemáticos. Siempre que digamos que algo sucede, es importante argumentar o justificar por qué es esto, es decir, que demos una demostración. Las demostraciones nos ayudarán a justificar que ciertos procedimientos (para encontrar distancias, ángulos, etc.) son válidos.

Para entender un poco más al respecto, te recomendamos leer las siguientes dos entradas, o incluso llevar a la par un curso de Álgebra Superior I:

Además de estos pre-requisitos de pensamiento lógico, también es importante que recuerdes algunos de los conceptos fundamentales de geometría (punto, línea, segmento, triángulo, distancia, etc.). Si bien todo lo construiremos «desde cero», el recordar estos conceptos te ayudará mucho en la intuición de por qué ciertas cosas las definimos como lo haremos, y por qué ciertos enunciados que planteamos «deben ser ciertos».

Finalmente, también supondremos que sabes manejar a buen nivel las operaciones y propiedades en $\mathbb{R}$, los números reales. Por ejemplo, que la suma es conmutativa ($a+b=b+a$), que se distribuye con el producto ($a(b+c)=ab+ac$), etc. Si bien en otros cursos se definen a los reales con toda formalidad, para este curso sólo será importante que sepas hacer estas operaciones.

La idea fundamental

La geometría se trata de figuras, de ver, de medir. El álgebra se trata de sumar, de operar, de comparar. La idea clave que subyace a la geometría analítica, como la veremos en este curso, es la siguiente:

La geometría y el álgebra son complementarias e inseparables, ninguna con más importancia sobre la otra. Podemos entender al álgebra a partir de la geometría, y viceversa.

Un ejemplo muy sencillo que se ve desde la educación básica es que la suma de reales se corresponde con «pegar segmentos». Si en la recta real tenemos un segmento de longitud $a$ y le pegamos un segmento de longitud $b$, entonces el segmento que se obtiene tiene longitud $a+b$. Si bien es obvio, cuando estemos estableciendo los fundamentos tendremos que preguntarnos, ¿por qué pasa? ¿qué es pegar segmentos?

Nuestro objetivo será entender a profundidad muchas de estas equivalencias.

Interactivos

En este curso procuraremos incluir interactivos para que explores las ideas que vayamos introduciendo. Si bien un interactivo no reemplaza a una demostración, lo cierto es que sí ayuda muchísimo a ver más casos en los cuales una proposición o teorema se cumple. Nuestros interactivos están hechos en GeoGebra y necesitarás tener activado JavaScript en tu navegador.

En el siguiente interactivo puedes mover los puntos $A$, $B$ y $C$. Observa como la suma de dos segmentos siempre es igual al tercero. ¿Qué pasa si $B$ «se pasa de $C$»? ¿Cuál segmento es la suma de los otros dos?

Te recomendamos fuertemente que dediques por lo menos un rato a jugar con los interactivos: intenta ver qué se puede mover, qué no, qué cosas piensas que suceden siempre y para cuales crees que haya ejemplos que fallen.

Más adelante…

En esta entrada platicamos de cómo son las notas del curso en general. Platicamos de pre-requisitos y de la idea fundamental que subyace al curso. A partir de la siguiente entrada comenzaremos con el tratamiento teórico de la materia. Hablaremos de dos visiones de geometría: la sintética y la analítica. Veremos un primer resultado que nos dice que, en realidad, ambas están muy relacionadas entre sí.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe en una hoja de papel o en un documento digital qué significan para ti los siguientes términos: punto, línea, círculo, plano, semiplano, elipse, intersección, alineado, longitud, ángulo, dirección, vector. ¿En cuáles de estas palabras tuviste que usar las otras? ¿En cuáles no? Más adelante formalizaremos cada una de estas.
  2. Explora el inicio del siguiente libro digital: Euclides de Byrne.
  3. Si aprendes a manejar GeoGebra por tu cuenta, podrás hacer interactivos tú mismo. Si te interesa esto, revisa el siguiente curso de GeoGebra.
  4. ¿Cómo le harías para a cada punto del plano asociarle una pareja de números reales? ¿Cómo le harías para a cada pareja de números reales asociarle un punto en el plano?
  5. Si la suma de números corresponde a pegar segmentos, ¿a qué corresponde la multiplicación de números?

Entradas relacionadas

Álgebra Lineal II: Aplicar polinomios a transformaciones lineales y matrices

Por Julio Sampietro

Introducción

Varios de los resultados fundamentales de Álgebra Lineal se obtienen al combinar las idea de transformaciones lineales con la de polinomios. El objetivo de esta entrada es introducir el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad. Si bien esta idea es simple, más adelante veremos aplicaciones importantes y con un gran alcance. Uno de los resultados cruciales que surge de esta idea es el conocido teorema de Cayley-Hamilton.

Primeras construcciones

Sea $V$ un espacio vectorial sobre un campo $F$, y sea $T:V\to V$ una transformación lineal. Definimos a la transformación $T^n:V\to V$ para cualquier $n\in \mathbb{N}$ inductivamente a través de

\begin{align*}
T^0=\operatorname{Id}, \hspace{5mm} T^{i+1}= T\circ T^{i},
\end{align*}

donde, recordamos, $\operatorname{Id}$ es la transformación identidad. Intuitivamente, $T^n$ es la «$n$-ésima composición» de $T$. Por ejemplo, $T^3(v)$ no es más que $T(T(T(v)))$ y $T^0(v)$ es simplemente «no usar $T$ para nada», es decir, $\operatorname{Id}(v)=v$. Al componer iteradamente $T$, sigue siendo una transformación lineal de $V$ a $V$, así que $T^n$ es transformación lineal de $V$ a $V$ para todo entero $n\geq 0$.

Ya que hablamos de «potencias» de una transformación lineal, podemos rápidamente hacer sentido de un «polinomio evaluado en una transformación lineal». Si $$P(X)=a_0+a_1X+a_2X^2+\dots + a_n X^n\in F[X]$$ es un polinomio, definimos $P(T):V\to V$ como

\begin{align*}
P(T):= a_0 T^{0}+ a_1 T^1+ a_2 T^2+\dots +a_n T^n.
\end{align*}

Como las transformaciones lineales de $V$ a $V$ son cerradas bajo combinaciones lineales, entonces $P(T)$ también es una transformación lineal de $V$ a $V$.

Ejemplo. Tomemos a la transformación $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=(2x-2y,x+y)$. Tomemos al polinomio $P(x)=x^3-2x+4$. ¿Quién es la transformación $P(T)$? Calculemos primero las «potencias» de $T$:

\begin{align*}
T^0(x,y)&=(x,y)\\
T^1(x,y)&=T(x,y)\\
&=(2x-2y,x+y)\\
T^2(x,y)&=T(T(x,y))\\
&=T(2x-2y,x+y)\\
&=(2(2x-2y)-2(x+y),(2x-2y)+(x+y))\\
&=(2x-6y,3x-y)\\
T^3(x,y)&=T(2x-6y,3x-y)\\
&=(-2x-10y,5x-7y).
\end{align*}

Ahora sí, ya podemos saber qué hace $P(T)$. Tenemos:

\begin{align*}
P(T)(x,y)&=(T^3-2T+4\text{Id})(x,y)\\
&=(-2x-10y,5x-7y)-2(2x-2y,x+y)+4(x,y)\\
&=(-2x-6y,3x-5y).
\end{align*}

$\triangle$

Sumas y productos de polinomios

Las operaciones suma y producto de polinomios se traducen, respectivamente, a suma y composición de las evaluaciones en transformaciones lineales. Esta es una linda propiedad que podemos hacer precisa gracias a la siguiente proposición.

Proposición. Si $P_1, P_2\in F[X]$ son dos polinomios y $T:V\to V$ es una transformación lineal, entonces

  1. $ (P_1+P_2)(T)=P_1(T)+P_2(T)$,
  2. $(P_1P_2)(T)=P_1(T)\circ P_2(T)$.

Te invitamos a demostrar esta proposición. Advertimos que, sin embargo, no se cumplen identidades como $$P(T_1+T_2)=P(T_1)+P(T_2)$$ o bien $$P(T_1\circ T_2)=P(T_1)\circ P(T_2).$$ Un contraejemplo para la primera identidad podría ser tomar$P(X)=X^2$ y $T_1=T_2=\operatorname{Id}$. En este caso

\begin{align*}
P(T_1+T_2)&=(T_1+T_2)^2\\&= 4\operatorname{Id}\\&\neq 2\operatorname{Id}\\&=P(T_1)+P(T_2).
\end{align*}

Dejamos como ejercicio el verificar que la segunda identidad tampoco es cierta en general. Fijando $T$, podemos juntar a todas las transformaciones de la forma $P(T)$ para algún $P$ en la siguiente estructura.

Definición. La $F$-álgebra generada por la transformación $T$ es el conjunto

\begin{align*}
F[T]=\lbrace P(T)\mid P\in F[X]\rbrace.
\end{align*}

Una consecuencia de la proposición anterior (es más, ¡una mera traducción!) es la siguiente.

Proposición. Para cualesquiera $x,y\in F[T]$ y $c\in F$ se cumple que $x+cy\in F[T]$ y $x\circ y\in F[T].$ Es decir, $F[T]$ es un subespacio del espacio de todas las transformaciones lineales de $V$ en $V$ que además es estable bajo composición.

También puedes verificar que $F[T]$ es el subespacio más chico (en el sentido de contención) del espacio de transformaciones lineales en $V$ que contiene a $T$, a $\operatorname{Id}$ y que es cerrado bajo composiciones.

Lo mismo pero con matrices

Desde Álgebra Lineal I sabemos que una transformación lineal se corresponde de manera biunívoca (fijando una base) con una matriz. Nuestra discusión previa se puede adaptar a este vocabulario, y eso es lo que haremos ahora.

Si $A\in M_n(F)$ es una matriz cuadrada de orden $n$ con coeficientes en $F$, podemos entender a $A^n$ simplemente como el $n$-ésimo producto de $A$ consigo misma. Luego si $$P(X)=a_0+a_1X+a_2 X^2+\dots +a_n X^n\in F[X]$$ es un polinomio, definimos

\begin{align*}
P(A):= a_0 I_n +a_1 A+ a_2 A^2+\dots+ a_n A^n.
\end{align*}

Se cumple que $(PQ)(A)=P(A)\cdot Q(A)$ para cualesquiera polinomios $P,Q$ y cualquier matriz $A$. Similarmente el álgebra generada por $A$ se define como

\begin{align*}
F[A]=\lbrace P(A)\mid P\in F[X]\rbrace,
\end{align*}

y es un subespacio de $M_n(F)$ que es cerrado bajo producto de matrices.

Ejemplo. Consideremos la matriz $A=\begin{pmatrix}2&-2\\1&1\end{pmatrix}$. Consideremos el polinomio $P(x)=x^3-2x+4$. ¿Quién es la matriz $P(A)$? Usando la definición, primero nos enfocaremos en encontrar las potencias de $A$. Puedes verificar por tu cuenta que:

\begin{align*}
A^0&=\begin{pmatrix}1&0\\0&1\end{pmatrix}\\
A^1&=\begin{pmatrix}2&-2\\1&1\end{pmatrix}\\
A^2&=\begin{pmatrix}2&-6\\3&-1\end{pmatrix}\\
A^3&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix}
\end{align*}

De esta manera,

\begin{align*}
P(A)&=A^3-2A+4I_2\\
&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix} – 2 \begin{pmatrix}2&-2\\1&1\end{pmatrix} + 4 \begin{pmatrix}1&0\\0&1\end{pmatrix}\\
&=\begin{pmatrix}-2&-6 \\ 3 & -5 \end{pmatrix}.
\end{align*}

$\triangle$

Este ejemplo se parece mucho al ejemplo que hicimos cuando evaluamos un polinomio en una transformación $T$. Esto no es casualidad, y se puede resumir en la siguiente observación.

Observación. Si $A$ es la matriz asociada a $T$ en alguna base, entonces $P(A)$ es la matriz asociada a $P(T)$ en dicha base.

Unos problemas para calentar

A continuación veremos algunos unos cuantos problemas resueltos para que te familiarices con los conceptos que acabamos de ver de manera un poco más teórica.

Problema 1.

  1. Si $A,B\in M_n(F)$ son matrices con $B$ invertible, demuestra que para cualquier $P\in F[X]$ se cumple
    \begin{align*}
    P(BAB^{-1})=BP(A)B^{-1}.
    \end{align*}
  2. Demuestra que si $A,B\in M_n(F)$ son similares, entonces $P(A)$ y $P(B)$ son similares para cualquier $P\in F[X]$.

Solución.

  1. Primero supongamos que $P(X)=X^k$ para alguna $k\geq 1$. Necesitamos demostrar que $\left(BAB^{-1}\right)^{k}= BA^{k}B^{-1}$, y esto lo podemos verificar sencillamente pues
    \begin{align*}
    (BAB^{-1})\cdot (BAB^{-1})\cdots (BAB^{-1})&= BA(B^{-1} B) A \cdots (B^{-1}B)AB^{-1}\\
    &= BA^{k}B^{-1},
    \end{align*}
    donde usamos que $BB^{-1}=I_n$. Más generalmente, si $P(X)=a_0+a_1 X+a_2X^2+\dots +a_n X^n$ entonces
    \begin{align*}
    P(BAB^{-1})&= \sum_{i=0}^{n} a_i (BAB^{-1})^{i}\\
    &= \sum_{i=0}^{n}a_i BA^{i}B^{-1}\\
    &= B\left(\sum_{i=0}^{n} a_i A^{i}\right)B^{-1}\\
    &= BP(A)B^{-1}
    \end{align*}
    que es lo que queríamos demostrar.
  2. Como $A$ y $B$ son similares, existe $C$ invertible tal que $A=CBC^{-1}$. Por el inciso anterior tenemos
    \begin{align*}
    P(A)=P(CBC^{-1})=CP(B)C^{-1}.
    \end{align*}
    Así, $P(A)$ y $P(B)$ son similares.

$\square$

Problema 2. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix}
\end{align*}

así como el polinomio $P(X)=X^2+2X-1$. Calcula $P(A)$.

Solución. Es cuestión de hacer los cálculos. Vemos que

\begin{align*}
A^2= \begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix}
\end{align*}

y así

\begin{align*}
P(A)&=A^2+2A-I_3\\&=\begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix} + 2\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix}
-3 & 2 & -3\\
-4 & -3 & 20\\
0 & 0 & 23
\end{pmatrix}.
\end{align*}

$\triangle$

Problema 3. Si $A$ es simétrica, demuestra que $P(A)$ es simétrica para cualquier polinomio $P$.

Solución. La demostración se basa en los siguientes hechos:

  1. Si $A=(a_{ij})$ y $B=(b_{ij})$ son matrices simétricas y $c\in F$ es un escalar, entonces $A+cB$ es simétrica, puesto que
    \begin{align*}
    (A+cB)_{ij}= a_{ij}+cb_{ij}= a_{ji}+cb_{ji}= (A+cB)_{ji}.
    \end{align*}
  2. Si $A,B$ son simétricas, su producto es una matriz simétrica. De nuevo, basta con hacer el cálculo
    \begin{align*}
    (AB)_{ij}=\sum_{k=1}^{n} a_{ik}b_{kj}=\sum_{k=1}^{n} b_{jk}a_{ki}= (AB)_{ji} .
    \end{align*}
  3. Usando el inciso anterior, se sigue que si $A$ es simétrica, entonces $A^{k}$ es simétrica para toda $k\geq 1$. Además, $I_n$ es simétrica y por el primer punto tenemos que toda combinación lineal de matrices simétricas es simétrica. En particular $P(A)$ es simétrica.

$\square$

Problema 4. Sea $V$ el espacio vectorial de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ infinitamente diferenciables. Sea $T:V\to V$ dada por $T:f\mapsto f’$. ¿Puedes encontrar un polinomio $P\in \mathbb{R}(X)$ distinto de cero tal que $P(T)=0$?

Solución. No es posible encontrar dicho polinomio. Suponiendo que sí, tendríamos que $P(T)$ es una ecuación diferencial polinomial de orden $n$, es decir, a cada función la evaluamos en una combinación

\begin{align*}
a_0f+a_1f’+a_2f»+\dots + a_n f^{n}
\end{align*}

donde $f^n$ es la $n$-ésima derivada. Si $P(T)$ es idénticamente cero, tenemos que toda función suave $f$ satisface esta ecuación. En particular tenemos que la constante $g(x)=1$ la satisface. Así $g’=g»=\dots=g^{n}=0$ y entonces

\begin{align*}
P(T)(g)= a_0 g+a_1g+\dots +a_ng^{n}=a_0=0.
\end{align*}

Concluimos que $a_0=0$. Luego, si consideramos a la función identidad $h(x)=x$ entonces también se tiene que cumplir la ecuación (recordamos que ya eliminamos el término $a_0$). Así

\begin{align*}
P(T)(h)= a_1h’+a_2h»+\dots +a_nh^{n}= a_1=0,
\end{align*}

donde usamos que $h'(x)=1$ y todas las derivadas de orden superior son cero. Continuando con este proceso (evaluando en $x^2,x^3,\ldots$) llegamos a que todos los coeficientes $a_i$ son cero. Esto quiere decir que el polinomio era nulo en primer lugar.

$\triangle$

Más adelante…

En entradas subsecuentes estudiaremos polinomios de matrices con propiedades especiales, como por ejemplo el polinomio mínimo, que se distinguen por sus deseables propiedades algebraicas. Este es el primer paso hacia el teorema de Cayley-Hamilton.

Tarea moral

Aquí hay unos ejercicios para que practiques lo visto en esta entrada.

  1. Compara el ejemplo que se dio de evaluar un polinomio en una transformación $T$ con el de evaluar un polinomio en una matriz $A$. ¿Por qué se parecen tanto?
  2. Considera $V$ el espacio vectorial de funciones $C^\infty$ en el intervalo $[0,2\pi]$ y $D:V\to V$ a la transformación que manda una función a su derivada, es decir $D(f)=f’$. Encuentra un polinomio $P$ tal que $P(D)(\sin(x)+\cos(x))$ sea la función cero.
  3. Demuestra que si $A$ es una matriz diagonal, $P(A)$ también es diagonal.
  4. Si
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2\\
    0 &-1\end{pmatrix}
    \end{align*}
    y $P(X)=X^3-X^2+X-1$, calcula $P(A)$.
  5. Generaliza el último problema de la entrada como sigue: Si $V$ es un espacio vectorial y $T:V\to V$ es tal que existen elementos $v_i$ con $i\in \mathbb{N}$ que cumplen $T^{i}(v_i)\neq 0$ y $T^{j}(v_i)=0$ para $j>i$, entonces no existe $P$ no nulo tal que $P(T)$ sea cero.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Introducción al curso

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta serie de entradas continuaremos platicando acerca de álgebra lineal. Son una continuación a las entradas de Álgebra Lineal I que también se encuentran disponibles en el blog. En el transcurso de ellas, cubriremos los temas que establece el temario de la materia Álgebra Lineal II de la Licenciatura en Matemáticas de la UNAM.

Primero comenzaremos dando un pequeño repaso de lo que se ha visto en Álgebra Lineal I y después daremos un pequeño panorama de lo que se cubrirá en este curso.

Algunos recordatorios de Álgebra Lineal I

En el primer curso de álgebra lineal se establecieron muchos fundamentos del área, relacionados con espacios vectoriales, transformaciones lineales, matrices y más. A continuación damos un breve recordatorio de cada unidad temática. Usaremos letras cursivas para mencionar términos que ya deberías conocer. Si algunos de ellos no los recuerdas. Usaremos letras negritas para hacer énfasis en resultados fundamentales del primer curso, que es muy importante que recuerdes qué dicen y cómo se usan. Todo esto lo puedes encontrar en las notas anteriores.

En la primer parte de ese curso, recordamos las definiciones básicas de vector, matriz y transformación lineal, pero únicamente nos enfocamos en un espacio vectorial muy sencillo: $F^n$, que consiste de todos los vectores con $n$ entradas en un campo $F$. Se definieron operaciones de suma y producto escalar en este espacio. También hablamos de cómo multiplicar matrices. Esto fue suficiente para plantear la idea de resolver sistemas de ecuaciones lineales. Primero estudiamos los sistemas de ecuaciones lineales homogéneos, pues de acuerdo al principio de superposición, esto es suficiente. Luego, vimos el algoritmo de reducción gaussiana, que nos permite llevar cualquier matriz a su forma escalonada reducida. Esto resulta fundamental para calcular todo tipo de cosas en álgebra lineal: resolver sistemas de ecuaciones, invertir matrices, encontrar determinantes, encontrar espacios generados, etc.

En la segunda parte introdujimos el concepto de espacio vectorial en general. Hablamos de $F^n$, pero también del espacio de matrices $M_{m,n}(F)$, del espacio de polinomios $F[x]$, de los espacios de polinomios de grado a lo más $n$, $F_n[x]$, y de algunos otros como los de funciones con ciertas propiedades (continuas, diferenciables, limitadas a un intervalo, acotadas, etc.) A partir de las nociones de combinación lineal, independencia lineal y generadores, desarrollamos la teoría de dimensión. Un resultado crucial en dimensión finita es el lema de Steinitz. Tras hablar de un espacio vectorial, comenzamos a hablar de «funciones bonitas» entre ellos. Las primeras que tratamos fueron las transformaciones lineales. Un resultado crucial es que, en dimensión finita y tras elegir una base cada transformación lineal corresponde a una matriz y viceversa. Como bases distintas dan matrices distintas, fue necesario discutir qué sucede al cambiar de base, por lo que se introdujeron matrices de cambio de base. Otro resultado crucial es el teorema rango-nulidad.

La tercera parte fue mucho más geométrica. En ella hablamos de las formas lineales y de las formas bilineales. A partir de las formas lineales construimos a los espacios duales y desarrollamos la teoría de dualidad. Definimos el concepto de hiperplano. Una de las principales aplicaciones de la teoría de dualidad fue mostrar que en dimensión finita todo subespacio es intersección de hiperplanos. En el caso de formas bilineales, nos enfocamos mucho más en aquellas que van a $\mathbb{R}$. A partir de ellas definimos formas cuadráticas. Estudiamos el caso muy especial de espacios euclideanos, que son, a grandes rasgos espacios vectoriales reales con una forma bilineal «bonita». En este tipo de espacios se puede hablar de normas, distancias y ángulos. Los resultados cruciales fueron la desigualdad de Cauchy-Schwarz y la existencia de bases ortonormales. Para encontrarlas, hablamos del proceso de Gram-Schmidt.

Finalmente, vino la unidad 4 en la que se desarrolló de manera formal el concepto de determinante, tanto para vectores, como para matrices y transformaciones lineales. Para ello fue importante hablar de formas $n$-lineales (que en cierta forma generalizan a las bilineales) con propiedades especiales, como ser alternantes. Se vieron muchas propiedades de los determinantes para entenderlos a profundidad de manera teórica y práctica, en particular la expansión de Laplace. Se vio cómo los determinantes pueden ayudar a resolver sistemas de ecuaciones mediante las fórmulas de Cramer. También, con toda la teoría desarrollada hasta aquí pudimos finalmente entender con mucha profundidad los sistemas de ecuaciones lineales mediante el teorema de Rouché-Capelli. Para cerrar el curso, vimos muy por encima las ideas de eigenvalores, eigenvectores y polinomio característico. Esto nos llevó a la idea de diagonalización. Juntando toda la teoría del curso, llegamos a la cereza del pastel: el teorema espectral para matrices simétricas reales.

La idea general del segundo curso

El teorema espectral para matrices simétricas reales es un resultado precioso: bajo ciertas condiciones nos permite «llevar» una transformación (o matriz) a una «forma sencilla». Nos debe de dar la intuición de que toda la teoría que se desarrolló anteriormente la podemos utilizar para demostrar muchos otros resultados lindos de ese estilo. En Álgebra Lineal II haremos precisamente esto.

En la primer parte del curso profundizaremos en la teoría de eigenespacios, que nos permitirán entender mucho mejor cómo son los eigenvectores. Para hacer eso, será importante introducir un nuevo polinomio: el polinomio mínimo. Mostraremos muchas más propiedades de eigenvectores, eigenvalores, polinomios mínimos y característicos. Usaremos estas ideas para profundizar en las nociones de diagonalización y triangulización y enunciaremos teoremas que nos permitirán saber cuándo una matriz (o transformación) se puede llevar mediante un cambio de base a una forma más sencilla. En esta primer parte también demostraremos el bello teorema de Cayley-Hamilton, que afirma que cualquier matriz se anula en su polinomio característico.

Después de esto, en la segunda parte del curso trabajaremos para entender mejor a las formas bilineales que introdujimos en el primer curso. Ya no sólo nos limitaremos a aquellas que caen a los reales, sino que hablaremos también de aquellas que caen al campo $\mathbb{C}$ de los números complejos. Uno podría pensar que el tratamiento es análogo, pero esto dista mucho de la realidad: se requiere pensar en nuevas definiciones que involucren a los conjugados de las entradas de las matrices.

Tras establecer las propiedades principales que nos interesan en espacios vectoriales sobre $\mathbb{R}$ y $\mathbb{C}$, retomaremos la idea de demostrar teoremas de diagonalización. Ahora tendremos el teorema espectral para matrices reales y el teorema espectral para matrices complejas. Además de garantizarnos una diagonalización, estos teoremas nos garantizan que esa diagonalización es de una forma muy especial. Veremos las consecuencias teóricas que esto tiene.

Finalmente, en la última unidad temática, veremos que aunque las matrices no sean diagonalizables, en realidad no todo está perdido. Hablaremos de la forma canónica de Jordan, que es algo así como una versión débil de diagonalizar. Terminaremos el curso aprovechando todo lo visto hasta ahora para ver que cualquier matriz, sin importar sobre qué campo esté, siempre podrá ser llevada a esta forma tras un cambio de base.

Más adelante…

En la siguiente entrada ya comenzaremos con el contenido teórico del curso. Lo primero que haremos es formalizar qué quiere decir «aplicar un polinomio a una transformación lineal» y qué qué quiere decir aplicarlo a una matriz.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Recuerda el algoritmo de reducción gaussiana y úsalo para determinar si la matriz $\begin{pmatrix} 1 & 5 & 0 \\ 0 & 1 & 2 \\ 5 & 3 & -1\end{pmatrix}$ es invertible y, en caso de que sí, encontrar su inversa. Hazlo a mano y comprueba tu respuesta con alguna calculadora de forma escalonada reducida en línea.
  2. Encuentra una base ortogonal para el espacio de polinomios $\mathbb{R}_4[x]$ de grado a lo más $4$ con producto bilineal $\langle p, q \rangle = \sum_{j=0}^4 p(j)q(j)$. Encuentra la forma matricial de la transformación «derivar» en esta base y da su determinante.
  3. Escribe al subespacio de matrices antisimétricas en $M_3(\mathbb{R})$ como intersección de hiperplanos. ¿Qué dimensión tiene?
  4. Encuentra un sistema de $4$ ecuaciones lineales en $5$ variables cuyo espacio de soluciones tenga dimensión $2$. Después, resuélvelo usando los siguientes dos métodos: reducción gaussiana y fórmulas de Cramer.
  5. Explica qué nos garantiza el teorema espectral visto en el curso anterior para las matrices $A=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 3 & 1 & 4 \end{pmatrix}$ y $B=\begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & -4 \\ 0 & 0 & 2 \end{pmatrix}$. Encuentra el polinomio característico de cada una de estas matrices. Esboza (sin hacerlo) cómo encontrarías los valores y vectores propios de $A$ y $B$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Conectores: negaciones, conjunciones y disyunciones

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada de introducción a este curso ya acordamos que una proposición matemática (o simplemente proposición) es un enunciado que puede ser verdadero o falso (pero no ambos), y que habla de objetos matemáticos.

Ahora hablaremos de algunas reglas que nos permiten comenzar con una o más proposiciones y combinarlas para obtener otras proposiciones. Hablaremos de la negación, de la conjunción y de la disyunción. De manera informal, la primera antepone un «no es cierto que» a cualquier proposición, y le cambia su veracidad. La segunda y tercera combinan dos proposiciones en una sola. De manera informal, ponen «y» y «o» entre las oraciones, respectivamente.

A estas reglas se les conoce como conectores o conectivos. Discutiremos cada uno de ellos de manera intuitiva y después definiremos qué quieren decir de manera formal.

Conectores lógicos

De tu experiencia previa, ya sabes que hay formas en las que podemos combinar, por ejemplo, a números enteros para obtener nuevos números. Si tomamos el número $2$ y el número $3$ y les aplicamos la operación «suma», entonces debemos entreponer un signo $+$ entre ellos para obtener la expresión $2+3$. Esta expresión es de nuevo un número entero: el $5$. Así como hacemos operaciones entre números, también podemos hacer operaciones entre proposiciones.

Un conector lógico (o simplemente conector) es una regla que permite tomar una o más proposiciones, «operarlas» y de ahí construir una nueva proposición «resultado». Como lo que más nos importa de las proposiciones es si son verdaderas o falsas, entonces lo más importante de cada conector que demos es decir cómo se determina la veracidad de la proposición que obtuvimos como resultado. En estas entradas hablaremos a detalle de los siguientes conectores:

  • Negaciones: Usan el símbolo $\neg$. Toman una proposición $P$ y la convierten en la proposición $\neg P$ cuyo valor de verdad es opuesto al de $P$.
  • Conjunciones: Usan el símbolo $\land$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\land Q$, que para ser verdadera necesita que tanto $P$ como $Q$ sean verdaderas.
  • Disyunciones: Usan el símbolo $\lor$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\lor Q$, que para ser verdadera necesita que alguna de $P$ o $Q$ lo sean (o ambas).
  • Implicaciones: Usan el símbolo $\Rightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\Rightarrow Q$, que para ser verdadera se necesita o bien que $P$ sea falsa (y $Q$ puede ser lo que sea), o bien que tanto $P$ como $Q$ sean verdaderas.
  • Dobles implicaciones: Usan el símbolo $\Leftrightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P \Leftrightarrow Q$, que para ser verdadera necesita que $P\Rightarrow Q$ sea verdadera y que $Q\Rightarrow P$ sea verdadera.

Ahora profundizaremos en las primeras tres y las últimas dos las dejaremos para más adelante.

Negaciones

Lo que hacen las negaciones a nivel de texto es anteponer un «no es cierto que» a una proposición. Por ejemplo si comenzamos con la proposición $$A=\text{«El cielo es azul.»}$$ entonces su negación es $$\neg A=\text{«No es cierto que el cielo es azul.»}$$ Observa que si pensamos a $A$ como una proposición verdadera, entonces la proposición $\neg A$ es falsa.

Hay que tener cuidado. El efecto que hacen las negaciones simplemente es anteponer «no es cierto que» a una proposición. Puede ser tentador intentar poner un «no» en alguna parte de la oración de manera arbitraria, pero esto puede llevar a problemas. Por ejemplo, la negación de la oración $$B=\text{«El número $2$ es par y múltiplo de $3$.»}$$ es simplemente $$\text{«No es cierto que el número $2$ es par y múltiplo de $3$.»}$$ Si hacemos la negación con poco cuidado, podríamos llegar a $$\text{«El número $2$ no es par ni múltiplo de $3$.»}$$ que no funciona, pues no tiene el valor opuesto de verdad: la oración original es falsa, y esta también.

Más adelante hablaremos con cuidado del conector «y» que usamos en el ejemplo anterior. Veremos cómo se pueden negar de manera correcta a las proposiciones que lo usan.

Tabla de verdad de negaciones

De manera formal, dada una proposición $P$ definimos a la negación de $P$, que denotamos por $\neg P$ como la proposición que tiene valor opuesto de verdad al de $P$. De esta forma, por definición, se tiene que $\neg P$ es la proposición con la siguiente tabla de verdad:

$P$$\neg P$
$0$ $1$
$1$$0$ 

Ya que al aplicar una negación obtenemos una nueva proposición, entonces ahora podemos volverle a aplicar negación a la nueva proposición obtenida. Así, si comenzamos con $$P=\text{«El cielo es azul.»}$$ y lo negamos, obtenemos $$\neg P = \text{«No es cierto que el cielo es azul.»}$$ y luego podemos negar de nuevo para obtener $$\neg(\neg P) = \text{«No es cierto que no es cierto que el cielo es azul.»}$$

Como la negación cambia el valor de verdadero a falso y viceversa, entonces $P$ y $\neg(\neg P)$ tienen el mismo valor de verdad. Esto lo podemos verificar en la siguiente tabla de verdad, llenando primero la segunda columna y luego la tercera a partir de la segunda.

$P$$\neg P$$\neg(\neg P)$
$0$$1$ $0$
$1$$0$$1$ 

Observa que las columnas de $P$ y de $\neg(\neg P)$ tienen exactamente los mismos valores. Diremos entonces que $P=\neg(\neg P)$. Observa cómo se parece mucho a la igualdad $-(-x)=x$ en los números reales. En la siguiente entrada hablaremos con más formalidad de cuándo podemos decir que dos proposiciones $P$ y $Q$ son iguales.

Conjunciones

Lo que hacen las conjunciones a nivel de texto es anteponer un «y» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $20$ es impar.»}$$ y $$Q=\text{«El número $9$ es un número cuadrado.»}$$ entonces la conjunción de ambas es $$P\land Q=\text{«El número $20$ es impar y el número $9$ es cuadrado.»}$$ Para que esta nueva proposición sea verdadera, debe suceder que cada una de las proposiciones que la conforman deben serlo. En este caso en específico, esto no ocurre. La proposición $Q$ es verdadera, pero la proposición $P$ es falsa. De este modo, la conjunción es falsa.

Veamos algunos ejemplos más. Tomemos las siguientes proposiciones:

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todas las blorg son rojas.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Para determinar la veracidad de cada una de estas, tendríamos que ponernos de acuerdo en la definición de varios términos como «felinos», «blorg», «es mayor que», «cuadrado», «luna», etc. Pero por practicidad, daremos por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La conjunción de $A$ con $B$ es $$A\land B = \text{«Los gatos son felinos y todas las blorg son rojas.»}$$ Como cada una de las proposiciones que conforman la conjunción es verdadera, entonces la conjunción lo es.

La conjunción de $B$ con $E$ es $$B\land E = \text{«Todas las blorg son rojas y la luna es azul».}$$ Por muy cierto que sea que todas las blorg sean rojas, la conjunción no es verdadera pues $E$ es falsa.

Una vez que formamos una conjunción, esta es ahora una nueva proposición. Por lo tanto, se vuelve candidata a aplicarle negaciones y conjunciones. De esta forma, tiene sentido pensar en la proposición $\neg(A\land B)$, en donde los paréntesis implican que primero se hace esa operación. A nivel textual también usaremos los paréntesis para no confundirnos, de modo que escribiremos: \begin{align*}\neg(A\land B) &= \text{«No es cierto que (los gatos son felinos y todas}\\ &\text{las blorg son rojas).»}\end{align*}

También tiene sentido pensar en la proposición $(\neg C) \land E$. O bien en la proposición $A\land( (\neg C) \land E)$. Puedes practicar pasar estas oraciones a texto con paréntesis.

Tabla de verdad de conjunciones

Para formalizar la discusión anterior, definimos a la conjunción de dos proposiciones $P$ y $Q$ como la proposición $P\land Q$ que es verdadera únicamente cuando tanto $P$ como $Q$ son verdaderas. Así, por definición, su tabla de verdad es la siguiente:

$P$$Q$$P\land Q$
$0$$0$$0$ 
$0$$1$$0$ 
$1$$0$$0$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural. Para responderla, podemos hacer la tabla de verdad considerando tanto a las columnas $P\land Q$ como $Q\land P$ y llenándolas por separado.

$P$$Q$$P\land Q$$Q \land P$
$0$$0$ $0$$0$ 
$0$$1$$0$ $0$ 
$1$$0$$0$  $0$
$1$$1$$1$ $1$ 

Observa que las columnas correspondientes a $P\land Q$ y $Q\land P$ son iguales, de modo que podemos concluir que $P\land Q=Q\land P$. Hay otras preguntas muy naturales: ¿qué pasa si hacemos la conjunción de más de dos proposiciones? ¿son iguales $(P\land Q) \land R$ y $P\land(Q \land R)$? ¿qué pasa si combinamos a la negación con la conjunción? Esto lo veremos más adelante.

Disyunciones

Lo que hacen las disyunciones a nivel de texto es anteponer un «o» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $10$ es impar.»}$$ y $$Q=\text{«El número $7$ es un número primo.»}$$ entonces la conjunción de ambas es $$P\lor Q=\text{«El número $10$ es impar o el número $7$ es primo.»}$$ Para que esta nueva proposición sea verdadera, es suficiente con que una de las proposiciones que la conforman lo sea. En este caso en específico, esto sí ocurre. La proposición $Q$ es verdadera, de modo que aunque la proposición $P$ sea falsa, la disyunción resulta ser verdadera.

Retomemos las proposiciones de la sección anterior para ver más ejemplos.

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todas las blorg son rojas.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Recuerda que estamos dando por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La disyunción de $A$ con $B$ es $$A\lor B = \text{«Los gatos son felinos o todas las blorg son rojas.»}$$ Como $A$ es verdadera, esto basta para decir que $A\lor B$ es verdadera. Como $B$ también es verdadera, también esto bastaba para decir que $A\lor B$ es verdadera. No hay ningún problema con que tanto $A$ como $B$ sean verdaderas.

La conjunción de $D$ con $E$ es $$C\lor E = \text{«Un cuadrado tiene ángulos de $60^\circ$ o la luna es azul».}$$ Aquí tanto $D$ como $E$ son falsas, de modo que la disyunción también lo es.

Las disyunciones también crean proposiciones nuevas, a las que se les pueden aplicar negaciones, conjunciones y disyunciones. El uso del paréntesis se vuelve crucial. Observa que usando las proposiciones ejemplo de arriba, tenemos que

  • $(D\land C) \lor A $ es verdadera
  • $D\land (C \lor A)$ es falsa

Tabla de verdad de disyunciones

Para formalizar la discusión anterior, definimos a la disyunción de dos proposiciones $P$ y $Q$ como la proposición $P\lor Q$ que es verdadera cuando por lo menos una de las proosiciones $P$ y $Q$ lo es. Así, por definición, su tabla de verdad es la siguiente:

$P$$Q$$P\lor Q$
$0$$0$$0$ 
$0$$1$$1$ 
$1$$0$$1$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural, y ya puedes responderla por tu cuenta. Intenta hacer esto haciendo una tabla de vedad que incluya tanto a las columnas $P\lor Q$ como $Q\lor P$.

En la sección anterior vimos la importancia de poner paréntesis en las expresiones. Esta importancia también podemos verificarla mediante la siguiente tabla de verdad, en donde consideramos tres proposiciones $P$, $Q$ y $R$ y estudiamos qué sucede con $(P\land Q) \lor R$ y con $P \land (Q \lor R)$. Como hay $2$ posibilidades para cada uno de $P$, $Q$, $R$, debemos tener $2\cdot 2 \cdot 2 = 8$ filas.

Llenamos primero las primeras dos columnas usando lo que sabemos de $P\land Q$ y $Q\lor R$.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ 
$0$$0$$1$$0$ $1$ 
$0$$1$$0$$0$ $1$
$0$$1$$1$$0$ $1$ 
$1$$0$$0$$0$$0$
$1$$0$$1$$0$$1$
$1$$1$$0$$1$$1$
$1$$1$$1$$1$$1$

Y ahora sí podemos llenar las últimas dos porque ya sabemos cómo es el valor de verdad de cada una de las proposiciones que las conforman.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ $0$$0$
$0$$0$$1$$0$ $1$ $1$$0$
$0$$1$$0$$0$ $1$$1$$0$
$0$$1$$1$$0$ $1$ $1$$0$
$1$$0$$0$$0$$0$$0$$0$
$1$$0$$1$$0$$1$$1$$1$
$1$$1$$0$$1$$1$$1$$1$
$1$$1$$1$$1$$1$$1$$1$

Observa que las columnas correspondientes a $(P\land Q) \lor R$ y $P \land (Q \lor R)$ no son iguales, pues difieren en algunos renglones, por ejemplo, en el segundo renglón. De este modo, podemos concluir que hay ocasiones en las que $(P\land Q) \lor R$ y $P \land (Q \lor R)$ no son iguales, así que el orden de las operaciones suele ser importante.

Más adelante…

En esta entrada hablamos de la negación, la conjunción y la disyunción. Vimos cómo justificar algunas de sus propiedades mediante tablas de verdad, como $A\land B=B\land A$. En la siguiente entrada usaremos esta técnica y otras más para probar otras propiedades interesantes de estos conectores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe en texto y usando paréntesis la proposición $(A\land B) \lor (\neg D)$, usando $A$, $B$ y $D$ como las proposiciones ejemplo que dimos.
  2. Mediante una tabla de verdad, justifica la igualdad $P\lor Q = Q \lor P$.
  3. Mediante una tabla de verdad, justifica la igualdad $(P\lor Q) \lor R = P \lor (Q \lor R)$.
  4. Haz una tabla de verdad para verificar que las proposiciones $\neg(P \land Q)$ y $(\neg P) \land (\neg Q)$ no son iguales. Es decir, debes de hacer todos los casos y ver que las columnas difieren en uno o más renglones.
  5. Haz una tabla de verdad para verificar que las proposiciones $(P\land Q) \land (R \land S)$ y $(((P\land Q) \land R) \land S)$ son iguales. Va a ser una tabla grande, de $16$ renglones.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»