Álgebra Moderna I: Permutaciones disjuntas

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Repasemos un poco el último ejemplo de la entrada anterior. En $S_5$ teníamos la composición $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5)$ y fijándonos en qué ocurre con cada elemento, concluimos que esta composición es igual a $(1 \; 2)(3 \; 4 \; 5)$. Entonces obtuvimos dos composiciones distintas para escribir a esa permutación. En el dibujo, es más claro que en la primera los dos ciclos se están entrelazando entonces es más difícil entender qué es lo que hace la permutación. Pero cuando vemos la representación de $(1 \; 2)(3 \; 4 \; 5)$ es más fácil entender qué es lo que está haciendo nuestra permutación. Así, es más conveniente trabajar con la segunda notación.

La representación de $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5) = (1 \; 2)(3 \; 4 \; 5)$

A simple vista podemos observar que $(1 \; 2 \; 3 \; 4)$ y $(2 \; 4 \; 5)$ comparten el 2, pero $(1 \; 2)$ y $(3 \; 4 \; 5)$ no comparten ningún elemento. En este caso, se dice que $(1 \; 2)$ y $(3 \; 4 \; 5)$ son ciclos disjuntos. Más aún, ¿será que cualquier permutación se puede descomponer en ciclos disjuntos? la respuesta es que , esto lo demostraremos también en esta entrada.

Definición de permutaciones disjuntas

Antes de definir lo que significa que dos permutaciones sean disjuntas, nos gustaría recordar la última observación de la entrada anterior.
Observación. Si $n \geq 3$, entonces $S_n$ no es abeliano.
Esto nos sirve para establecer que, en general, trabajaremos con grupos no abelianos.

Ahora sí definamos lo que son permutaciones disjuntas.
Definición. Sean $\alpha, \beta \in S_n$. Decimos que $\alpha$ y $\beta$ son disjuntas o ajenas si sop$\,\alpha \,\cap $ sop$\,\beta = \emptyset$, es decir, dado $i\in \{1,2,\dots, n\}$ se tiene que

\begin{align*}
\alpha(i) \neq i &\Rightarrow \beta(i) = i .\\
\end{align*}

En consecuencia también ocurre que si $\beta(i) \neq i$, entonces $\alpha(i) = i.$

Observación. Si $\alpha$ y $\beta$ son disjuntas, pueden fijar a un mismo elemento pero no mover a un mismo elemento.

En particular, si tenemos dos ciclos de longitud mayor a uno, podemos obtener la siguiente equivalencia.
Observación. Sean $\alpha = (i_1 \dots i_r)$ y $\beta = (j_1 \dots j_t)$ con $r,t > 1$. Entonces $\alpha$ y $\beta$ son disjuntas si y sólo si $\{i_1, \dots, i_r\} \cap \{j_1, \dots, j_t\} = \emptyset$.

Ejemplos.

  • $(1 \; 2 \; 3 \; 4)$ y $(2 \; 4 \; 5)$ no son disjuntas.
  • $(1 \; 2)$ y $(3 \; 4 \; 5)$ son disjuntas.

Las permutaciones disjuntas conmutan

Lema. Sean $\alpha, \beta \in S_n$. Si $\alpha$ y $\beta$ son disjuntas, entonces conmutan.

P.D. $\alpha \beta = \beta \alpha$.
Sea $i \in \{1, \dots, n\}$.

Caso 1. Cuando $\alpha(i) = i$, $\beta(i) = i$. Ambas fijan al mismo elemento, esto es posible en permutaciones disjuntas. Entonces, al componer, no importará que permutación se aplique primero.
\begin{align*}
\alpha\beta(i) = \alpha(i) = i = \beta(i) = \beta\alpha(i).
\end{align*}

Caso 2. Cuando $\alpha(i) = i$, $\beta(i) \neq i$.
Si componemos, obtenemos $\beta\alpha(i) = \beta(i)$.
Como $\beta$ es inyectiva y $\beta(i) \neq i$, entonces $\beta(\beta(i)) \neq \beta(i)$. Así $\beta$ mueve a $\beta(i)$ y como $\alpha$ y $\beta$ son disjuntas $\alpha$ fija a $\beta(i)$. Entonces
\begin{align*}
\alpha\beta(i) = \alpha(\beta(i)) = \beta(i).
\end{align*}
Por lo tanto $\beta\alpha(i) = \alpha\beta(i)$.

Caso 3. Cuando $\alpha(i) \neq i$, $\beta(i) = i$.
Este es análogo al caso 2.

El caso $\alpha(i) \neq i$, $\beta(i) \neq i$ no se da pues $\alpha$ y $\beta$ son disjuntas.
Por lo tanto $\alpha\beta = \beta\alpha$.

$\blacksquare$

Toda permutación se puede descomponer en ciclos disjuntos

Comencemos como un ejemplo. Consideremos a la permutación $\alpha \in S_9$

\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 4 & 1 & 7 & 8 & 6 & 2 & 9 & 5
\end{pmatrix}.
\end{align*}

  • El 1 va al 3 y el 3 regresa al 1, entonces tenemos una transposición $(1 \; 3)$.
  • Luego, observemos que el 2 va al 4, el 4 al 7 y el 7 al 4. Así tenemos un $3-$ciclo, $(2 \; 4 \; 7)$.
  • De los números que no han aparecido hasta ahora, podemos tomar el 5, este va al 8, el 8 al 9 y el 9 regresa al 5. Entonces tenemos otro $3-$ciclo $(5 \; 8 \; 9)$.
  • Por último, el 6 queda fijo.

Esto se puede dibujar de la siguiente manera:

Representación gráfica de $\alpha$.

Pero también se puede escribir algebraicamente como:

\begin{align*}
\alpha = (1 \; 3)\,(2 \; 4 \; 7)\,(5 \; 8 \; 9)\,(6).
\end{align*}

Ahora veremos que cualquier permutación se puede descomponer en un producto de ciclos disjuntos.

Analicemos primero cómo se construyen los ciclos a partir de un número en su soporte.

Observación 1. Sean $t\in\mathbb{N}^+$, $\sigma\in S_n$ un $t$-ciclo e $i\in \text{sop } \sigma$. Entonces $$\sigma=(i\; \sigma(i) \;\sigma^2(i)\dots \sigma^{t-1}(i))$$ con $t=\text{mín}\{j\in \mathbb{N}^+| \sigma^{j}(i)=i\}.$

Demostración.

Sean $t\in\mathbb{N}^+$, $\sigma\in S_n$ un $t$-ciclo e $i\in \text{sop } \sigma$. Sabemos que $\sigma$ es de la forma $$\sigma=(i_0\; i_1 \cdots i_{t-1})$$ con $i_0, i_1, \dots , i_{t-1}$ distintos. Como $i\in \text{sop } \sigma=\{i_0, i_1, \dots , i_{t-1}\}$ podemos suponer sin pérdida de generalidad que $i=i_0$ por lo que $\sigma=(i\; i_1 \cdots i_{t-1})$. Entonces

\begin{align*}\sigma(i)&=i_1, \\\sigma^2(i)&=\sigma(\sigma(i))=\sigma(i_1)=i_2\end{align*} y en general $\sigma^j(i)=i_{j}$ para toda $1\leq j<t$ por lo que $$\sigma=(i\; \sigma(i) \;\sigma^2(i)\cdots \sigma^{t-1}(i))$$ con $i,\sigma(i) ,\sigma^2(i),\dots , \sigma^{t-1}(i)$ distintos. En particular $\sigma(i) ,\sigma^2(i),\dots , \sigma^{t-1}(i)$ son distintos de $i$ y además $\sigma^t(i)=\sigma(\sigma^{t-1}(i))=\sigma(i_{t-1})=i$ por lo que $t=\text{mín}\{j\in \mathbb{N}^+| \sigma^{j}(i)=i\}.$

Veamos ahora qué ocurre si la permutación no es necesariamente un ciclo. Probemos que cada número movido por la permutación da lugar a un ciclo.

Lema 1. Sea $\alpha\in S_n$, $i\in\{1,\dots , n\}$. Para cada $i\in\text{sop }\alpha$ existe $j\in\mathbb{N}^+$ tal que $\alpha ^{j}(i)=i$, más aún, si $t_i=\text{mín}\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}$ se tiene que $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos.

Demostración.
Sea $\alpha \in S_n$, $i\in\text{sop }\alpha$ . Consideremos
\begin{align*}
i , \alpha(i), \alpha^2(i), \dots
\end{align*}

Sabemos que esta lista tiene elementos repetidos ya que consiste de números en el conjunto finito $\{1,2,\dots,n\}$. Existen entonces $r,s\in\mathbb{N}$ distintos tales que $\alpha^r(i) = \alpha^s(i)$, sin pérdida de generalidad $s < r,$ por lo cual $ \alpha^{r-s}(i) = i$ con $ r-s\in\mathbb{N}^+$ como se quería demostrar.

Así, el conjunto $\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}$ es no vacío, y por el principio del buen orden tiene un elemento mínimo, digamos $t_i$. Veamos ahora que $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos. Supongamos que $\alpha^q(i) = \alpha^l(i)$ para algunos $0\leq q\leq l < t_i$, entonces $\alpha^{l-q}(i) = i$ con $ 0\leq l-q<t_i$ y por la elección de $t_i$ esto implica que $l-q=0$, es decir que $q=l$. Por lo tanto $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos.

$\blacksquare$

Gracias al lema anterior podemos considerar el ciclo $(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))$:

Definición. Sea $\alpha\in S_n$, $i\in\text{sop }\alpha$ . El ciclo definido por $\alpha$ y por $i$ es

$$\sigma_{\alpha,i}=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))\text{ con }t_i=\text{mín}\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}.$$

Notemos que si $i\in\text{sop }\alpha$, entonces $$\sigma_{\alpha,i}=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))= (\alpha (i)\cdots \alpha ^{t_i-1}(i)\;i)= (\alpha^2 (i)\cdots \alpha ^{t_i-1}(i)\;i\;\alpha(i))= \dots, \text{ etc.},$$ por lo que toda $k\in \{i, \alpha (i),\dots , \alpha ^{t_i-1}(i)\}$ define el mismo ciclo que $i$, es decir:

Observación 2. Si $i\in\text{sop }\alpha$, entonces para toda $k\in \{i, \alpha (i),\dots , \alpha ^{t_i-1}(i)\}$ se tiene que $\sigma_{\alpha,k}=\sigma_{\alpha,i}$ y $t_k=t_i.$

En consecuencia tenemos el siguiente resultado:

Lema 2. Sea $\alpha\in S_n$, $i,j\in\text{sop }\alpha$, y consideremos $\sigma_{\alpha,i},\sigma_{\alpha,j}$ como en la definición anterior. Si $\sigma_{\alpha,i}\neq \sigma_{\alpha,j},$ entonces $\sigma_{\alpha,i}$ y $\sigma_{\alpha,j}$ son disjuntos.

Demostración.

Sea $\alpha \in S_n$, $i,j\in\text{sop }\alpha$, $\sigma_{\alpha,i}\neq \sigma_{\alpha,j},$ como en la definición anterior. Probemos el lema por contrapuesta. Supongamos que $\sigma_{\alpha,i}$ y $ \sigma_{\alpha,j},$ no son disjuntos. Existe entonces $k$ movido por ambos ciclos, es decir $k\in\{i, \alpha (i),\cdots \alpha ^{t_i-1}(i)\}\cap\{j, \alpha (j),\cdots ,\alpha ^{t_j-1}(j)\}.$ Por la observación previa tenemos que $\sigma_{\alpha,k}=\sigma_{\alpha,i}$ y $\sigma_{\alpha,k}=\sigma_{\alpha,j}$, de donde concluimos que $\sigma_{\alpha,i}=\sigma_{\alpha,j}$.

$\blacksquare$

Ahora veremos que al considerar todos los ciclos distintos del tipo $\gamma_i$ y componerlos, obtenemos una descomposición de la permutación inicial en ciclos disjuntos:

Teorema. Toda permutación en $S_n$ es un ciclo o un producto de ciclos disjuntos

Demostración.

Sea $\alpha\in S_n$. Consideremos todos los ciclos $\sigma_{\alpha,i}$ con $j\in\text{sop }\alpha$ y eliminemos los ciclos repetidos, llamemos $\gamma_1,\gamma_2,\dots ,\gamma_r$ a los ciclos restantes. Afirmamos que $\alpha=\gamma_1\gamma_2\cdots \gamma_r$ es una descomposición de $\alpha$ en ciclos disjuntos. Por construcción $\gamma_1\gamma_2\cdots \gamma_r$ es un producto de ciclos, y por el lema 2, dado que $\gamma_1,\gamma_2,\dots ,\gamma_r$ son distintos, entonces son también disjuntos. Así, basta convencerse de que $\alpha=\gamma_1\gamma_2\cdots \gamma_r$ para terminar la demostración.

Sea $i\in\{1,2,\dots ,n\}$. Si $i\in\text{sop }\alpha$ tenemos que $\sigma_{\alpha,i}\in\{\sigma_{\alpha,j}\mid j\in\text{sop }\alpha\}=\{\gamma_1,\gamma_2,\dots ,\gamma_r\}$ y entonces $\sigma_{\alpha,i}=\gamma_j$ para alguna $1\leq j\leq r$. Así, $\gamma_j=\sigma_{\alpha,i}=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))$ y $$\gamma_1\gamma_2\cdots \gamma_r(i)=\gamma_j(i)=\alpha(i)$$ (donde la primera igualdad se debe a que $\gamma_1,\gamma_2,\dots ,\gamma_r$ son disjuntos). Si $i\notin\text{sop }\alpha$ tenemos que $i\notin\text{sop }\gamma_j$ para toda $j\in\{1,\dots ,r\}$ , por lo que $\gamma_1\gamma_2\cdots \gamma_r(i)=i=\alpha(i)$. Por lo tanto $\alpha=\gamma_1\gamma_2\cdots \gamma_r$ .

$\blacksquare$

Ejemplo.
Sea $\alpha \in S_{10}$ como sigue

\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 1 & 7 & 9 & 6 & 8 & 3 & 5 & 2 & 10
\end{pmatrix}.
\end{align*}

Veamos qué sucede con el $1 \in $ sop $\alpha$. Le aplicamos $\alpha$ varias veces para formar el primer ciclo.

\begin{align*}
1, \alpha(1) = 4, \alpha^2(1) = 9, \alpha^3(1) = 2, \alpha^4(1) = 1.
\end{align*}

Entonces, nombremos $\gamma_1$ a ese $4-$ciclo, $\gamma_1 = (1 \; 4 \; 9 \; 2)$.

Ahora, tomemos un elemento que no esté en $\gamma_1$, digamos $3$. De nuevo, aplicamos $\alpha$ varias veces para descubrir el ciclo al que pertenece.
\begin{align*}
3, \alpha(3) = 7, \alpha^2(3)=3.
\end{align*}

Tenemos así una transposición $\gamma_2=(3\; 7).$

Volvemos a tomar un número que no haya aparecido hasta ahora, digamos $5$. Aplicando $\alpha$ varias veces, podemos descubrir el ciclo,
\begin{align*}
5, \alpha(5) = 6, \alpha^2(5) = 8, \alpha^3(5) = 5,
\end{align*}

obteniendo el ciclo $\gamma_3=(5\;6\;8)$.

Así, nuestra permutación quedaría como
\begin{align*}
\alpha = (1 \; 4 \; 9 \; 2 ) (3 \; 7)( 5 \; 6 \; 8).
\end{align*}

$\blacksquare$

Tarea moral

  1. Demuestra la observación: Si $n \geq 3$, entonces $S_n$ no es abeliano.
  2. Encuentra dos permutaciones disjuntas $\alpha$ y $\beta$. Encuentra $\beta\alpha$ y $\alpha\beta$ ¿qué observas al comparar $\beta\alpha$? Intenta con otro ejemplo de dos permutaciones disjuntas $\alpha$ y $\beta$ y analiza lo que ocurre.
  3. Sean $\alpha$ y $\beta$ dos permutaciones que conmutan ¿podemos concluir entonces $\alpha$ y $\beta$ son disjuntas?
  4. Considera el siguiente elemento de $S_{11}$
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\\
    5 & 8 & 2 & 6 & 4 & 1 & 3 & 7 & 9 & 11 & 10
    \end{pmatrix}.
    \end{align*}
    Encuentra una factorización en ciclos disjuntos de $\alpha$, y de $\alpha^{-1}$.

Más adelante…

Ya conocemos qué son las permutaciones disjuntas y que cualquier permutación se puede ver como multiplicación de ciclos disjuntos. También, puede que hayas notado que comenzamos a escribir los $1-$ciclos de los elementos que se quedan fijos en las permutaciones. Esto nos encamina al tema principal de la siguiente entrada, la factorización completa, que no es más que la descomposición de una permutación en ciclos disjuntos incluyendo los $1-$ciclos.

Entradas relacionadas

Álgebra Superior I: Tipos de relaciones en conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

Hemos hablado ya de relaciones entre conjuntos, sobre imagen, dominio y composición. Ahora vamos a ver algunas relaciones especiales entre conjuntos, que son la inyectividad, la suprayectividad y relaciones de un conjunto en sí mismo.

Inyectividad de una relación

Las ideas de los dos tipos de relación que vamos a exponer son inyectividad y suprayactividad. La inyectividad es una idea que nos va a hablar de cómo podemos relacionar un elemento de la imagen de una relación con un elemento del dominio. En pocas palabras lo que nos dirá la inyectividad es: Una relación inyectiva es aquella en la que los distintos elementos del dominio van a elementos de la imagen distintos. Veamos esto con calma con un ejemplo.

Supongamos que a nosotros nos interesa recuperar los elementos del dominio con los de la imagen, es decir, quisiéramos ver para cada pareja $y$ de la imagen, de qué $x$ proviene. En el caso de que haya dos relaciones distintas $(x,y),(z,y)$ nos causaría conflicto, pues podríamos decir que $y$ «viene» de dos distintos elementos del dominio.

Una relación inyectiva es aquella en donde para cada elemento de la imagen, existe un único elemento del dominio que se relaciona con esta. Es decir, una relación inyectiva $R$ será aquella en donde para cada $y \in Im(R)$, solo existe un elemento $x \in Dom(R)$ tal que $(x,y) \in R$. Otra forma de verlo es con la siguiente definición:

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. Diremos que $R$ es inyectiva si $$\forall y \in Im(R) (\exists ! x \in X:(x,y) \in R)$$

Observa ahora que esto significa que si $R$ es una relación inyectiva y dos parejas $(x,y),(z,y)$ pertenecen a la relación $R$, entonces no les queda de otra que ser la misma pareja, esto implica que $x=z$.

Proposición. Sea $R$ una relación entre dos conjuntos $X$ y $Y$. Entonces son equivalentes:

  1. $R$ es una relación inyectiva.
  2. Si $(x,y) \in R$ y $(w,y) \in R$ entonces $x=w$.

Demostración.

$1) \Rightarrow 2)$. Consideremos $(x,y) \in R$ y $(w,y) \in R$. Lo que queremos demostrar es que $x=w$, para ello notemos que $R$ es inyectiva, lo que quiere decir que existe una única pareja $(x,y) \in R$. Esto quiere decir que $(x,y)=(w,y)$ y esto solo sucede si $y=y$ y $x=w$. Siendo la segunda igualdad la buscada.

$2) \Rightarrow 1)$. Ahora supongamos que si $(x’,y’) \in R$ y $(w’,y’) \in R$ entonces $x’=w’$. Y supongamos que $y$ es un elemento de la imagen de $R$. Demostremos ahora que existe un único elemento $x$ tal que $(x,y) \in R$. Para ello mostraremos que existe al menos un elemento $x$ tal que $(x,y)$ y cualquier otro elemento $w$ no cumple tal propiedad. Para demostrar lo primero, notemos que $y$ es un elemento del contradominio, lo que quiere decir que existe al menos un elemento $x \in X$ tal que $(x,y) \in R$. Y finalmente para demostrar que $x$ es único, supongamos existe un elemento $w \in X$ distinto a $x$ tal que $(w,y) \in R$. Pero por hipótesis, si pasa esto entonces $x=w$, lo cual es una contradicción pues hemos dicho que $x$ es distinto a $w$. De esta manera, $x$ sí es único.

$\square$

También es análogo pensar que si una relación $R$ es inyectiva, entonces para cada elemento de la imagen $y$, sucede que $Im^{-1}[\{y\}]$ tiene un único elemento, pues la definición nos dice que solo existe un elemento $x$ del dominio que se relaciona con $y$.

Ahora observa por ejemplo a los conjuntos de animales $X$ y el tipo de animales $Y$. Podríamos decir que en tipos de animales, tenemos aquellos que viven en la tierra (terrestres) y los que viven en el agua (acuáticos). Entonces una parte de la relación $R$ que relaciona el animal con el hábitat que tiene, se vería de la siguiente manera:

Ahora, si nos preguntamos, cuáles son los animales terrestres, deberíamos observar que al menos los animales terrestres son los perros, gatos, camellos, etc. Una relación que no es inyectiva, no nos regresa un único elemento, sino que un subconjunto del dominio de más de un elemento. Así que esta relación no es inyectiva.

Por otro lado, una relación que sí es inyectiva entre los conjuntos $X=\{a,b,c,d,e,f\}$ y $\mathbb{Z}$ es la relación $R$:

$$R=\{(a,y): y \in Z\} $$

Es inyectiva pues los elementos de esta relación se ven como: $R=\{\dots,(a,-1),(a,0),(a,1),(a,2),\dots\}$ Y si agarramos cualquier número en la imagen de la relación, solo vendrá de un elemento, el elemento $a$.

Otros ejemplos de relaciones inyectivas son:

$R = \{(x,y) \in \mathbb{Z}^2:x=y\}$
$R = \{(x,y) \in \mathbb{Z}^2:x=2y\}$
$R = \{(x,y) \in \mathbb{Z}^2:(0,y) \text{ si }y\text{ es par,}(1,y)\text{ en otro caso}\}$

Relaciones suprayectivas

Otro concepto que será interesante es el de la suprayactividad. Este en términos simples nos dice que una relación $R$ es suprayectiva entre dos conjuntos $X,Y$ si cada elemento de $Y$ se relaciona con algún elemento de $X$. Es así como la siguiente definición nos lo menciona:

Definción. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. Diremos que $R$ es suprayectiva si $Im[Y]=Y$.

Una forma alterna de verlo es como en la siguiente proposición nos lo demuestra, siendo que siempre podremos encontrar una pareja para cada elemento $y$ de $Y$:

Proposición. Una relación $R$ es suprayectiva si y solo si $\forall y\in Y(\exists x \in X:(x,y) \in Y)$

Demostración Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$

$\Rightarrow$] Por hipótesis, $R$ es suprayectiva. Para demostrar que $\forall y\in Y(\exists x \in X:(x,y) \in Y)$ consideraremos un elemento $y \in Y$ arbitrario y demostraremos que existe algún elemento $x \in X$ tal que $(x,y)$ sea un elemento de la relación.
Como hipótesis, sabemos que la imagen de $R$ es igual a $Y$, esto quiere decir que:$$Y=Im(R)=\{y \in Y: \exists x \in X \text{ tal que }(x,y)\in R\}.$$ De esta manera, $$y \in \{y \in Y: \exists x \in X \text{ tal que }(x,y)\in R\}.$$ De manera que $\exists x \in X \text{ tal que }(x,y)\in R$. Por lo tanto, $\forall y\in Y(\exists x \in X:(x,y) \in Y)$

$\Leftarrow$]. Ahora supongamos por hipótesis que para cada elemento $y \in Y$, existe un elemento $x \in X$ tal que $(x,y) \in R$. Ahora, demostremos que $R$ es suprayectiva, es decir $Im(R)=Y$. Para esto, tendremos que demostrar que $Y$ está contenido en $Im(R)$ y viceversa. Pero nota que $Im(R)$ siempre es un subconjunto de $Y$ (pues por definición, sus elementos son elementos de $Y$). Así que bastará demostrar que $Y \subset Im[R]$. Para ello, considera un elemento $y \in Y$. Por hipótesis, para aquel elemento, existirá $x \in X$ tal que $(x,y) \in R$. Pero esto significa que $y \in Im[Y]$. Así, $Y \subset Im[R]$.

$\square$

Un ejemplo de una función suprayectiva sobre los conjuntos $X = \{1,2,3\}, Y=\{0\}$ es la relación $R=\{(1,0),(3,0)\}$. Esto puesto que hay solo un elemento en el conjunto $Y$ y hay al menos una relación para cada elemento del conjunto $Y$. Esto quiere decir que «cubrimos» a todo el contradominio. Otros ejemplos de funciones suprayectivas son:
$R = \{(x,y) \in \mathbb{Z}^2:x=y\}$
$R = \{(x,y) \in \mathbb{Z} \times \{0,1,2,3,4\} : x =1 \land y \in \{0,1,2,3,4\}\}$
Si $R$ es una relación entre dos conjuntos, $X,Y$, la relación $R=X \times Y$ es suprayectiva.

Relaciones de un conjunto en sí mismo

Hemos estado hablando ya de un conjunto muy particular, $\mathbb{Z}^2$ que lo definimos como $\mathbb{Z} \times \mathbb{Z}$, es decir de relaciones en el conjunto de los números enteros en sí mismo. Este tipo de relaciones, como ya lo hemos mencionado, se les acostumbra a poner un subíndice $^2$ para indicar que estamos hablando del producto cartesiano de un conjunto sobre él mismo. Por ejemplo si $X$ es un conjunto, entonces $X^2=X \times X$. Vamos a concentrarnos ahora en algunas relaciones especiales de un conjunto en sí mismo.

La primera relación que veremos será la reflexividad, y esto se da cuando un elemento está relacionado consigo mismo. Por ejemplo, en $\mathbb{Z}^2$, la relación cuyos elementos son de la forma $(x,x)$ siempre será reflexiva, pues cada elemento $x$ está relacionado consigo mismo.

La segunda relación se llama la simetría, que nos indica que para cada pareja $(x,y)$ de la relación, sucederá que igual $(y,x)$ estará en la relación. Si te das cuenta, algo que nos dice esta relación es que el orden «no importa», pues da igual cuál elemento escribamos del lado izquierdo y del lado derecho, pues su homónimo simétrico estará igual en la relación.

La tercera es un concepto similar al segundo pero en su antónimo. Diremos que una relación es antisimétrica si para cada pareja que tengamos en la relación $(x,y) \in R$, no sucederá que $(y,x) \in R$ a menos que $x=y$. Piensa por ejemplo para esto, en la relación «ser menor o igual a un número» $\leq$. Sucede que $1 \leq 2$ pero no que $2 \leq 1$.

Finalmente, la cuarta propiedad es llamada la transitividad. Esto lo que nos indica es que la composición de la relación también es parte de la relación. En otras palabras, si $(x,y),(y,z) \in R$ entonces $(x,z) \in R$. Para pensar en un ejemplo, piensa en la igualdad entre números, si $1+1=2$ y $2=4-2$, entonces $1+1=4-2$.

Anotaremos este tipo de relaciones como una definición

Definición. Sea $R$ una relación de un conjunto $X$ en sí mismo. Diremos que:

  • $R$ es reflexiva si $\forall x \in X,(x,x) \in R$
  • $R$ es simétrica si $\forall x \in X \forall y \in X\big( (x,y) \in R \Rightarrow (y,x) \in R \big)$
  • $R$ es antisimétrica si $\forall x \in X \forall y \in X\big( ((x,y) \in R \land (y,x) \in R) \Rightarrow (x=y) \big)$
  • $R$ es transitiva si $\forall x \in X \forall y \in X \forall z \in Z \big( ((x,y) \in R \land (y,z) \in R ) \Rightarrow (x,z) \in R \big)$

Más adelante…

En la siguiente entrada entraremos a los ordenes parciales, los cuales son relaciones de un conjunto sobre sí mismo que cumplen algunas de las clases especiales de relaciones que hemos revisado en esta entrada. De hecho quizá ya tengas una idea intuitiva de qué es un orden, concepto que ampliaremos más en lo que sigue.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$.Demuestra que son equivalentes:
    1. $R$ es inyectiva
    2. $\forall y \forall x \big(((x,y)\in R \land (z,y) \in R) \Rightarrow x=z\big)$
    3. $\forall y \in Im(R) \big( Im^{-1}[\{y\}] \text{ tiene un solo elemento}\big)$
  2. Demuestra que las siguientes relaciones son inyectivas:
    • $R = \{(x,y) \in \mathbb{Z}^2:x=y\}$
    • $R = \{(x,y) \in \mathbb{Z}^2:x=2y\}$
    • $R = \{(x,y) \in \mathbb{Z}^2:(0,y) \text{ si }y\text{ es par,}(1,y)\text{ en otro caso}\}$
  3. Sea la relación $R$ sobre el conjunto $X$ de los seres humanos dada por: $$R=\{(x,y) \in X^2:x \text{ tiene el mismo cumpleaños que }y\}.$$ Demuestra que $R$ es una relación reflexiva, simétrica y transitiva.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Relaciones en conjuntos: dominio, codominio y composición

Por Guillermo Oswaldo Cota Martínez

Introducción

Habiendo hablado del producto cartesiano, ya tenemos los ingredientes para irnos acercando a la definición de función, pero antes de hablar de ellas, tenemos que hablar de relaciones y de algunos de sus conceptos. En esta entrada introduciremos el concepto de relación, dominio, codominio y composición entre relaciones.

Relaciones

Cuando estamos hablando de el producto cartesiano, estamos juntando las parejas posibles de elementos entre dos conjuntos. Pero quizá no nos interesen todas las parejas posibles, quizá a veces solo nos interesaría hablar de algún subconjunto de estas parejas. Por ejemplo, si tenemos los conjuntos de zapatos izquierdos y derechos denotados por $I,D$ entonces no siempre nos interesan todas las parejas posibles de zapatos, quizá solo nos interese combinar cada zapato izquierda con su par correspondiente. Para dar un ejemplo, imagina que hay tres zapatos $A,B,C$ y los conjuntos $I$ y $D$ contienen tres zapatos de cada uno de los zapatos que hay:

$I = \{I_A, I_B, I_C\} $

$D = \{D_A, D_B, D_C\} $

Si quisieramos unir cada zapato con su par, nos podemos fijar en su producto cartesiano $I \times D$, sin embargo hay elementos que sí nos van a interesar y otros que no. Por ejemplo, la pareja $(I_A,D_A)$ sí nos interesa, pues es el zapato izquierdo y derecho del zapato $A$. Por otro lado, la pareja $(I_A,D_C)$ no nos interesa, pues estamos juntando dos zapatos pero de modelos distintos. En particular, el subconjunto de $I \times D$ que describe a los tres zapatos es: $$R = \{(I_A,D_A),(I_B,D_B),(I_C,D_C)\}.$$ Este conjunto es una relación entre los conjuntos $I$ y $D$. Como podrás notar, $R \subset I \times D$, y para la definición de relación, basta con que el conjunto esté contenido en el producto cartesiano para que cumpla la definicón.

Definición. Sean $X$ y $Y$ dos conjuntos, una relación entre los conjuntos $X$ y $Y$ es un subconjunto $R$ del producto cartesiano $X \times Y$: $$R \subset X \times Y $$

Definición. Si $R$ es una relación de $X$ en $Y$, diremos que $x$ está relacionado con $y$ bajo la relación $R$ si la pareja $(x,y) \in X \times Y$ y $(x,y) \in R$.

Con esta última definición, podemos notar que el zapato izquierdo $A$ ($I_A$) está relacionado con el zapato derecho $A$ ($D_A$) bajo la relación $R$, pues la pareja $(I_A,D_A)$ pertenece a la relación $R$.

En nuestro ejemplo anterior, mostramos una relación entre $I$ y $D$. Otros ejemplos de relaciones entre $I$ y $D$ son los siguientes:

$\{(I_B,D_A),(I_C,D_B),(I_C,D_A)\},$
$\{(I_C,D_B)\}$
$\{(I_A,D_A),(I_C,D_B)\}$
$\emptyset$
$I \times D$

Dominio y codominio de relaciones

Vamos ahora a trabajar con el conjunto de los números enteros $\mathbb{Z}$. Y trabajaremos con el producto cartesiano $\mathbb{Z} \times \mathbb{Z}$. Llamemos a este producto cartesiano $\mathbb{Z}^2$ que es la forma en que comúnmente se le denota al producto cartesiano entre el mismo conjunto (en este caso $\mathbb{Z}$) en la literatura.

Ahora, consideremos la siguiente relación entre los conjuntos: $$R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $$

Y notemos que algunos ejemplos de elementos de esta relación son: $\{ (3,6),(0,0),(-3,-6),(3^{10},2*3^{10}) ,(-300,-600)\} \subset R$. Gráficamente, podemos ver la relación en la siguiente imagen:

Del lado izquierdo corresponden los elementos $x$ de las parejas $(x,y) \in R$ y del lado derecho los elementos $y$. Notemos que del lado izquierdo (los elementos $x$), no consideramos todos los elementos. Por ejemplo, los números $\{-5,-4,-2,-1,1,2,4,5\}$ no forman ninguna pareja, pues en la definición de nuestro conjunto, solo estamos considerando los múltiplos de $3$ del lado izquierdo de la relación. A estos números que sí forman parejas del lado izquierdo, les llamamos dominio.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. El dominio de la relación $R$ es $$Dom(R) = \{x \in X: \exists y \in Y \text{ tal que } (x,y) \in R\}$$

Notemos que siempre pasará que $Dom(R)\subset X$, otra definición que no hay que confundir con la de dominio es la de contradominio, al que nos referimos como el conjunto $Y$.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. El contradominio de $R$ es el conjunto $Y$.

En nuestro ejemplo anterior, $$Dom(R)=\{x \in X: x \text{ es múltiplo de 3}\}$$.

Esto es cierto, pues las parejas de la relación $R$ son aquellas parejas de la forma $(3n,6n)$, pues pedimos que del lado izquierdo estén los múltiplos de $3$ (todo múltiplo de $3$ puede escribirse como algún número entero $n$ multiplicado por $3$), y del lado izquierdo el doble del número que escribimos del otro lado (si del lado izquierdo está $3n$ entonces del derecho estará $2*3n=6n$). Así que el dominio son aquellos números que forman alguna pareja, es decir, los múltiplos de $3$.

Por otro lado, el contradominio es $\mathbb{Z}$. Ahora, podemos preguntarnos en un concepto análogo a la idea de los elementos $y$ para los cuales existe un elemento $x$ de forma que $(x,y)$ pertenezca a la relación, para eso, podemos observar que los únicos elementos de $Z$ que pertenecen a alguna pareja del lado derecho son $\{\dots,-12,-6,0,6,12,\dots\}$, es decir, los múltiplos de $6$, de manera que podríamos hablar de que este conjunto es la imagen de la relación $R$.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. La imagen de $R$ es: $$Im(R) = \{y \in Y: \exists x \in X \text{ tal que } (x,y) \in R\}$$

Imagen Directa e Imagen Inversa

Ahora, tomemos a los conjuntos $A=\{0,2,3,5,6,7,8,9\}$ y $B=\{-6,-1,2,3,4,6,7,12,21\}$ veamos que $A \times B \subset \mathbb{Z}^2$ pues ambos son subconjuntos de números enteros. El siguiente concepto que vamos a presentar, va a ser la imagen directa e inversa. Para esto, consideremos nuevamente nuestra relación $R$ de la sección anterior. Veamos que los elementos de $A$ que pertenecen al dominio de $R$ son $\{0,3,6,9\}$ esto pues $\{(0,0),(3,6),(6,12),(9,18)\} \subset R$. Definamos la imagen directa de $A$ como los elementos en la imagen de $R$ con la restricción de que únicamente consideremos elementos de $A$ del lado izquierdo.

Definición. Sean $X,Y$ dos conjuntos, $A \subset X$ y $R$ una relación de $X$ en $Y$. La imagen directa de $A$ es el conjunto: $$Im[A]=\{y \in Y: \exists x \in A \text{ tal que }(x,y) \in R\}$$

Compara esta definición con la definición de imagen, lo único que estamos cambiando es el conjunto al que pertencen las $x$.

De manera similar, tenemos un concepto similar para $B$, en donde restringiremos ahora el dominio. Para esto, nota que las parejas de $R$ que tienen su imagen en $B$ son $\{(-3,-6),(3,6),(6,12)\}$. Y el concepto de imagen inversa, serán aquellos elementos del dominio de $R$ los cuales están relacionados con algún elemento de $B$.

Definición. Sean $X,Y$ dos conjuntos, $B\subset Y$ y $R$ una relación de $X$ en $Y$. La imagen inversa de $B$ es el conjunto: $$Im^{-1}[B]=\{x \in X: \exists y \in B \text{ tal que }(x,y) \in R\}$$

De esta, manera:

$$Im[A]=\{0,6,12,18\},$$ $$ Im^{-1}[B]=\{-3,3,6\}.$$

A continuación, vamos a introducir una última definición de esta entrada, que da la idea intuitiva de juntar distintas relaciones.

Composición de funciones

Ahora, veremos la siguiente relación entre el conjunto de zapatos izquierdos $I$ y conjunto de zapatos derechos $D$:

$$R = \{(x,y) \in I \times D: x \text{ es del mismo color que }y\} $$

Y la relación entre zapatos derechos y el conjunto $P$ de pantalones:

$$ T = \{(x,y) \in D \times P:x \text{ es del mismo color que }y\} $$

Estas relaciones solo nos están juntando colores de prendas, la primera nos junta zapatos del mismo color y la tercera relaciones el color de los zapatos derechos con el del pantalón.

Así que por si ejemplol tuvieramos los colores rojo, amarillo y azul entre zapatos izquierdos, derechos y pantalones, entonces la primera relación tendría al zapato izquierdo rojo $I_R$, el zapato derecho rojo $D_R$ y el pantalón rojo $P_R$, de manera que $(I_R,D_R) \in R \land (D_R,P_R) \in T$. ¿Podemos establecer la conexión entre los zapatos izquierdos y los pantalones? Pues con esta pareja, resulta que de alguna manera el zapato $D_R$ une a los dos elementos mediante dos relaciones distintas. La primera relación tiene como contradominio el conjunto $D$ mientras que la segunda lo tiene como dominio.

De la misma manera, podemos conectar el zapato izquierdo azul $I_A$ con algún pantalón de la siguiente manera:

  1. Notamos que $I_A$ está relacionado con el zapato derecho azul $D_A$ mediante la relación $R$.
  2. Observamos que a su vez el zapato $D_A$ está relacionado con el pantalón azul $P_A$ mediante $T$.

De esta manera, podemos encontrar alguna conexión del zapato $I_A$ al pantalón $P_A$ viendo que hay una relación entre $I_A$ con $D_A$ y de $D_A$ con $P_A$. Así que podríamos definir una relación entre los zapatos izquierdos y los pantalones a través de las relaciones $R$ y $T$. Definamos esta relación como $R \circ T$ de la siguiente manera:

$$T \circ R = \{(x,y) \in I \times P: \exists z \in D \text{ tal que }\big( (x,z) \in R \land (z,y) \in T\big) \} $$

Lo que queremos decir con esta expresión, es que los elementos de la relación $T \circ R$ son los elementos $(x,y)$ de tal forma que existe una forma de conectar $(x,y)$ mediante un elemento $z$ de tal forma que $x$ está relacionado con $y$ mediante la relación $T \circ R$ si existe un elemento $z$ que los conecta, es decir, si existe $z$ en $Im(R) \cap Dom(T)$ de tal forma que $(x,z) \in R$ y $(z,y) \in T$.

Definición. Sean $X,Z,Y$ tres conjuntos, $R$ una relación de $X$ en $Z$ y $T$ una relación de $Z$ en $Y$. La relación composición de $R$ con $T$ es la relación:
$$T \circ R = \{ (x,y) \in X \times Y: \exists z \in Z\big( (x,z) \in R \land (z,y) \in T\big)$$

Veamos ahora un ejemplo de nuevo con los número enteros. Considera la relación que ya habíamos visto anteriormente, dada por: $$R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $$ Nota ahora, que como dijimos anteriormente, estos son las parejas de la forma $(3n,6n)$ de manera que otra forma de escribir el conjunto es $$R = \{(3n,6n): n \in \mathbb{Z} \} $$.

Ahora considera la siguiente relación $T$:$$T = \{(x,y) \in \mathbb{Z}^2: x = y+1\}$$

Algunos elementos de esta relación son: $\{(3,2),(7,6),(1,0),(-9,-10)\}$. Gráficamente se ve de la siguiente manera:

Y si te das cuenta, únicamente son los números de la forma $(n+1,n)$. Por lo que podríamos escribir esta relación como $$T = \{(n+1,n): n \in \mathbb{Z} \} $$.

Ahora veamos cómo se ve la composición $T \circ R$. Para ello, tomemos un elemento de la relación $R$. Por ejemplo, $(3,6) \in R$. Ahora notemos que de igual forma, $(6,5)$ pertenece a la relación $T$. De manera que $(3,5) \in T \circ R$. En general, un elemento de la relación $R$ se escribe como $(3n,6n)$, y un elemento de la relación $T$, como dijimos al principio del párrafo, es de la forma $(n+1,n)$ o lo que es lo mismo, $(n,n-1)$. Y enseguida nota que si tomamos un número entero $n$, entonces $(3n,6n) \in R$ y $(6n,6n-1) \in T$. De esta manera, podemos escribir a la composición de $R$ con $T$ como el conjunto: $$ T \circ R = \{(3n,6n-1): n \in \mathbb{Z}\}$$

Más adelante…

En la siguiente entrada seguiremos hablando de las relaciones entre conjuntos y veremos algunos tipos de relaciones especiales que tendrán algunas propiedades interesantes. También hablaremos un poco más de relaciones de un conjunto en sí mismo, este tipo de relaciones ya las hemos visto, sin embargo, veremos más propiedades que pueden cumplir estas. Esto nos servirá para hablar después de órdenes entre conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $$R=\{(x,y) \in \mathbb{Z}^2: x+y=0\}$$ y la relación$$T=\{(x,y) \in \mathbb{Z}^2: x-y=0\}.$$Encuentra:
    • $Dom(R)$
    • $Im(R)$
    • Escribe todos los elementos de $T \circ R$
    • Encuentra $Im[\{1,2,3,4,5\}]$ sobre la relación $R$
    • Encuentra $Im^{-1}[\{-1,-2,-3,-4,-5\}]$ sobre la relación $T$
  2. Demuestra que si $R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $, entonces $$R = \{(3n,6n): n \in \mathbb{Z} \} $$
  3. La recta $\mathcal{L}$ con pendiente $m$ e intersección $b$ con el eje $y$ en los números enteros es el conjunto: $$\mathcal{L}=\{(x,y) \in \mathbb{Z}^2: mx+b=y\} $$ Encuentra $\mathcal{L_1}\cap \mathcal{L_2}$ donde $\mathcal{L_1}$ es la recta con $m=1,b=0$ y $\mathcal{L_2}$ es la recta con $m=-1,b=2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Geometría Moderna I: Teorema de Pitágoras

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión veremos el teorema de Pitágoras que relaciona la hipotenusa de un triangulo rectángulo con la longitud de sus catetos, esta propiedad permite definir una métrica en el espacio euclidiano, en particular, con esto podemos calcular la longitud de un segmento si conocemos un triángulo rectángulo que tenga como hipotenusa dicho segmento.

Geométricamente el teorema de Pitágoras nos habla sobre el área de cuadrados construidos sobre los lados de un triángulo rectángulo, así que necesitamos presentar un concepto nuevo.

Definición. Definimos el área de un rectángulo como el producto de dos de sus lados adyacentes. De esta manera el área de un cuadrado será su lado al cuadrado.

Figura 1

Como las diagonales de todo rectángulo lo dividen en dos triángulos rectángulos congruentes, de la definición se sigue que el área de un triángulo rectángulo es el semiproducto de sus catetos.  

Teorema de Pitágoras

Teorema 1, de Pitágoras. El área de un cuadrado de lado igual a la hipotenusa de un triángulo rectángulo es igual a la suma de las áreas de cuadrados de lados igual a los catetos del triángulo rectángulo.

Demostración. Consideremos un triángulo rectángulo de catetos $a$, $b$ e hipotenusa $c$.

Construimos un cuadrado $\square ABCD$ de lados $a + b$, y puntos $P \in AB$, $Q \in BC$, $R \in CD$ y $S \in AD$, tales que $AP = BQ = CR = DS = a$ y $BP = CQ = DR = AS = b$.

Figura 2

Como los ángulos en las esquinas son rectos entonces por criterio LAL
$\begin{equation} \triangle ASP \cong \triangle BPQ \cong \triangle CQR \cong \triangle DRS, \end{equation}$
en particular $PQ = QR = RS = SP$.

Por $(1)$, $\angle CQR$ y $\angle PQB$ son complementarios en consecuencia $\angle RQP = \dfrac{\pi}{2}$.

De manera análoga se ve que
$\angle SRQ = \angle QPS = \angle PSR = \angle RQP = \dfrac{\pi}{2}$.

Por lo tanto, $\square PQRS$ es un cuadrado de lado $c$.

Ahora construimos otro cuadrado $\square A’B’C’D’$ de lados $a + b$, y puntos $P’ \in A’B’$ y $Q’ \in B’C’$ tales que $A’P’ = B’Q’ = b$ y $B’P’ = C’Q’ = a$.

Trazamos una perpendicular a $A’B’$ por $P’$ que interseca a $C’D’$ en $R’$, y una perpendicular a $B’C’$ por $Q’$ que interseca a $A’D’$ en $S’$.

Figura 3

Como $A’B’ \parallel C’D’$ entonces $P’R’ \perp C’D’$, análogamente $Q’S’ \perp A’D’$ y entonces $P’R’ \perp Q’S’$.

Por lo tanto, $\square A’P’ES’$, $\square EQ’C’R’$, $\square P’B’Q’E$ y $\square S’ER’D’$ son rectángulos.

Como los lados opuestos de todo rectángulo son iguales, concluimos que $\square A’P’ES’$ y $\square EQ’C’R’$ son cuadrados de lados $b$ y $a$ respectivamente.

$B’E$ y $ED’$ dividen a $\square P’B’Q’E$ y $\square S’ER’D’$ en cuatro triángulos rectángulos congruentes entre si pues los rectángulos son congruentes.

Pero al mismo tiempo los triángulos en $\square A’B’C’D’$ son congruentes con los triángulos en $\square ABCD$, pues tienen los mismos lados $a$ y $b$, y todos son triángulos rectángulos.

Finalmente, como $\square ABCD$ y $\square A’B’C’D’$ son congruentes entonces sus áreas son iguales y podemos sustraer a cada uno el área de los cuatro triángulos resultando así que el área del cuadrado rosa es igual a la suma de las áreas de los cuadrados verde y naranja.

Por lo tanto, $c^2 = a^2 + b^2$.

$\blacksquare$

Reciproco del Teorema de Pitágoras

Teorema 2. Reciproco del teorema de Pitágoras. Si en un triángulo el cuadrado de uno de sus lados es igual a la suma de los cuadrados de los otros dos lados entonces el triángulo es rectángulo.

Demostración. Sea $\triangle ABC$ un triángulo tal que $AC^2 = AB^2 + BC^2$.

Construimos un punto $D$ del lado opuesto a $C$ respecto de $AB$ tal que $BD = BC$ y $BD \perp AB$.

Figura 4

Por construcción $\triangle ABD$ es rectángulo, por el teorema de Pitágoras, $AD^2 = AB^2 + BD^2$.

Como $BD = BC$ $\Rightarrow BD^2 = BC^2$, por lo tanto, $AD^2 = AB^2 + BC^2 = AC^2$.

Por hipótesis, $AC^2 = AB^2 + BC^2 \Rightarrow AD^2 = AC^2 \Rightarrow AD = AC$.

Por criterio LLL, $\triangle ABC \cong \triangle ADC$, en particular $\angle CBA = \angle ABC = \dfrac{\pi}{2}$.

$\blacksquare$

Caracterización de un ángulo interior

Sea $\triangle ABC$ entonces por los teoremas 1 y 2
$\angle B = \dfrac{\pi}{2} \Leftrightarrow AC^2 = AB^2 + BC^2$.

Ahora consideremos un triángulo $\triangle A’B’C’$ con $A’B’ = AB$ y $B’C’ = BC$ pero $\angle B’ > \dfrac{\pi}{2}$, entonces por la proposición 2 de la entrada desigualdad del triángulo y su reciproco, esto ocurre si y solo si $A’C’ > AC$
$\Leftrightarrow A’C’^2 > AC^2 = AB^2 + BC^2 = A’B’^2 + B’C’^2$

Por otra parte, si tenemos $\triangle A’’B’’C’’$ tal que $A’’B’’ = AB$ y $B’’C’’ = BC$ pero $\angle B’’ < \dfrac{\pi}{2}$, por el resultado antes mencionado, esto ocurre si y solo si $A’’C’’ < AC$
$\Leftrightarrow A’’C’’^2 < AC^2 = AB^2 + BC^2 = A’’B’’^2 + B’’C’’^2$

Resumiendo, tenemos lo siguiente para cualquier triángulo $\triangle ABC$, $\angle B$ es:

  • recto $\Leftrightarrow AC^2 = AB^2 + BC^2$,
  • obtuso $\Leftrightarrow AC^2 > AB^2 + BC^2$,
  • agudo $\Leftrightarrow AC^2 < AB^2 + BC^2$.

Ley del paralelogramo

Teorema 3, ley del paralelogramo. La suma de los cuadrados de los lados de un paralelogramo es igual a la suma de los cuadrados de sus diagonales.

Demostración. Sean $\square ABCD$ un paralelogramo, $E$ y $F$ los pies de las perpendiculares a $BC$ trazadas desde $A$ y $D$ respectivamente.

Figura 5

Recordemos que los lados opuestos de un paralelogramo son iguales, por lo que $AB = CD$ y $AD = BC$, además $\square AEFD$ es un rectángulo y todo rectángulo es paralelogramo, por lo tanto, $AE = DF$ y $EF = AD = BC$, $\Rightarrow BE = CF$.

Aplicando el teorema de Pitágoras a los triángulos $\triangle ABE$, $\triangle DBF$ y $\triangle AEC$ obtenemos:

$\begin{equation} AB^2 = AE^2 + BE^2. \end{equation}$

$DB^2 = DF^2 + BF^2$
$= AE^2 + (BC + CF)^2 = AB^2 – BE^2 + (BC + BE)^2$
$= AB^2 – BE^2 +BC^2 + 2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 + 2BC \times BE. \end{equation}$

$AC^2 = AE^2 + EC^2$
$= AE^2 + (BC – BE)^2 = AB^2 – BE^2 + BC^2 -2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 -2BC \times BE. \end{equation}$

Sumamos $(3)$ y $(4)$ para obtener
$AC^2 + BD^2 = 2AB^2 + 2BC^2$.

$\blacksquare$

Teorema de Apolonio

Teorema 4, de Apolonio. En todo triangulo la suma de los cuadrados de dos lados es igual a dos veces el cuadrado de la mitad del tercer lado más dos veces el cuadrado de la mediana que biseca al tercer lado.

Demostración. Sean $\triangle ABC$ y $M$ el punto medio de $BC$. Por demostrar que $AB^2 + AC^2 = 2(BM^2 + AM^2)$.

Sea $D$ el pie de la perpendicular a $BC$ trazada desde $A$, aplicamos el teorema de Pitágoras a los triángulos $\triangle ADM$, $\triangle ADB$ y $\triangle ADC$.

Figura 6

$\begin{equation} AM^2 = AD^2 + DM^2. \end{equation}$

$AB^2 = AD^2 + BD^2$
$= AM^2 – DM^2 + (DM – BM)^2 = AM^2 – DM^2 + DM^2 – 2DM \times BM + BM^2$
$\begin{equation} = AM^2 + BM^2 – 2DM \times BM. \end{equation}$

$AC^2 = AD^2 + DC^2$
$= AM^2 – DM^2 + (DM + MC)^2 = AM^2 – DM^2 +DM^2 + 2DM \times MC + MC^2$
$\begin{equation} = AM^2 + 2DM \times MC + MC^2. \end{equation}$

Como $BM = MC$ sumando $(6)$ y $(7)$ obtenemos
$AB^2 + AC^2 = 2AM^2 + 2MC^2$.

$\blacksquare$

Caracterización de las alturas de un triángulo

Proposición. Sean $BC$ un segmento y $P$ un punto en el plano, considera $D$ el pie de la perpendicular a $BC$ trazada desde $P$, entonces $PB^2 – PC^2 = DB^2 – DC^2$.

Figura 7

Demostración. Los triángulos $\triangle PDB$ y $\triangle PDC$ son rectángulos, por el teorema de Pitágoras tenemos que $PB^2 = PD^2 + DB^2$ y $PC^2 = PD^2 + DC^2$.

Despejando $PD^2$ de ambas ecuaciones e igualando tenemos que $PB^2 – DB^2 = PC^2 – DC^2$
$\Rightarrow PB^2 – PC^2 = DB^2 – DC^2$.

$\blacksquare$

Teorema 5. Sea $\triangle ABC$ un triángulo entonces un punto $P$ está en la altura por $A$ si y solo si $PB^2 – PC^2 = AB^2 – AC^2$.

Demostración. Supongamos que $P$ es un punto en la altura desde $A$ entonces podemos considerar el triángulo $\triangle PBC$.

Figura 8

Por la proposición tenemos que los puntos $P$ y $A$ cumplen que $PB^2 – PC^2 = DB^2 – DC^2$ y $AB^2 – AC^2 = DB^2 – DC^2$ donde $D$ es el pie de la altura.

Por lo tanto $PB^2 – PC^2 = AB^2 – AC^2$.

$\blacksquare$

Ahora supongamos que $P$ es un punto en el plano tal que $PB^2 – PC^2 = AB^2 – AC^2$ por la proposición sabemos que $AB^2 – AC^2 = DB^2 – DC^2$, con $D$ el pie de la altura desde $A$.

Por transitividad se tiene que $PB^2 – PC^2 = DB^2 – DC^2$.

Sea $E$ el pie de la perpendicular a $BC$ trazada desde $P$, nuevamente por la proposición tenemos que $PB^2 – PC^2 = EB^2 – EC^2$ $\Rightarrow DB^2 – DC^2 = EB^2 – EC^2$

Figura 9

Supongamos que $D$ está en el segmento $BC$ y $E$ fuera del segmento y del lado de $B$ (figura 9), otros casos se muestran de manera similar, entonces $EB = ED – BD$ y $EC = ED + DC$.

$\Rightarrow DB^2 – DC^2 = (ED – BD)^2 – (ED + DC)^2$
$= ED^2 – 2ED \times BD + BD^2 – ED^2 – 2ED \times DC – DC^2$
$\Rightarrow 0 = ED \times BD + ED \times DC = ED(BD + DC)$

Como $BD + DC \neq 0 \Rightarrow ED = 0$
$\Rightarrow E = D$

De esto se concluye que $P$ está en la altura trazada desde $A$.

$\blacksquare$

Más adelante…

En la siguiente entada estudiaremos el teorema de Tales también conocido como teorema de la proporcionalidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Dado un segmento unitario construye un segmento de longitud $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ …
  2. Si $a$, $b$, $c$, $d$, y $e$ son las longitudes de cinco segmentos tales que con cualesquiera tres de ellos es posible construir un triángulo, muestra que al menos uno de los triángulos es acutángulo.
  3. Sea $P$ un punto en el interior de $\triangle ABC$, considera $D$, $E$ y $F$ las proyecciones de $P$ a los lados $BC$, $AC$ y $AB$ respectivamente, expresa $AE$ en términos de $AF$, $FB$, $BD$, $DC$ y $CE$.
  4. Muestra que en un triángulo con ángulos interiores iguales a $\dfrac{\pi}{2}$, $\dfrac{\pi}{3}$ y $\dfrac{\pi}{6}$, se tiene que el cateto opuesto al ángulo de $\dfrac{\pi}{6}$ es igual a la mitad de la hipotenusa y el cateto opuesto al ángulo de $\dfrac{\pi}{3}$ es igual a $\dfrac{\sqrt{3}}{2}$ veces la hipotenusa.
  5. Si dos de los lados de un triángulo miden $a$ y $b$ y el ángulo entre ellos mide $\dfrac{3\pi}{4}$ encuentra la longitud del segmento medio entre los lados dados.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 22-27, 43-44.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 11-14.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 39-41.
  • Wikipedia
  • Geometría interactiva
  • Geometry Help

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Método de eliminación de variables

Por Eduardo Vera Rosales

Introducción

En la entrada anterior revisamos las principales propiedades que satisface el conjunto de soluciones a un sistema lineal de ecuaciones de primer orden de la forma $$\dot{\textbf{X}}=\textbf{A}\textbf{X}+\textbf{Q}.$$ En particular vimos que el conjunto de soluciones al sistema homogéneo forma un espacio vectorial con la suma y producto por escalar usuales de matrices. Gracias a esta propiedad logramos encontrar la solución general a dichos sistemas, tanto homogéneos como no homogéneos.

Con esto en mente, podemos comenzar a resolver algunos sistemas lineales. Los más sencillos son los sistemas con coeficientes constantes, es decir, sistemas donde la matriz $\textbf{A}$ es una matriz conformada por constantes. En esta entrada revisaremos el método más sencillo disponible para resolver dichos sistemas, que será el de eliminación de variables.

El método de eliminación de variables consiste, como su nombre lo indica, en tratar de eliminar las variables dependientes $x_{i}(t)$ hasta quedarnos únicamente con una de ellas dentro de una ecuación diferencial de orden superior con coeficientes constantes. Para eliminar las variables utilizaremos la linealidad del sistema, por lo que podremos realizar operaciones elementales entre las ecuaciones del sistema, es decir, podremos sumar ecuaciones y multiplicar por escalares.

Una vez que llegamos a la ecuación diferencial de orden superior con coeficientes constantes, debemos resolverla para encontrar la función $x_{i}(t)$ con la que nos quedamos. Con esta función conocida, podremos ir encontrando las demás funciones que resuelven el problema. Además, como $x_{i}(t)$ es solución general a la ecuación diferencial de orden superior, entonces todas las soluciones involucrarán constantes arbitrarias $c_{1}, c_{2},…,c_{n}$. Por lo tanto, $$\textbf{X}=\begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \notag \\ x_{n}(t) \end{pmatrix}$$ será la solución general al sistema.

Antes de comenzar debemos advertir que, dado que el método depende de la resolución de una ecuación diferencial de orden superior, no es conveniente utilizarlo para resolver sistemas de más de tres ecuaciones diferenciales.

Método de eliminación de variables

En el primer video resolvemos de forma general el sistema lineal de dos ecuaciones diferenciales con coeficientes constantes por el método de eliminación de variables. Luego, en el segundo video utilizamos el método desarrollado en el primer video para resolver un par de ejemplos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Resuelve los siguientes sistemas de ecuaciones:

  • $\begin{alignedat}{4} \dot{x} &= 7x+3y \\ \dot{y} &= 2x-y \end{alignedat}$
  • $\begin{alignedat}{4} \dot{x} &= x-5y \\ \dot{y} &= y \end{alignedat}$

Resuelve los siguientes problemas de condición inicial:

  • $\begin{alignedat}{4} \dot{x} &= 2x+10y \\ \dot{y} &= -x-y \end{alignedat} \, \, \, \, ; \, \, \, \, \begin{alignedat}{4} x(0) &= 0 \\ y(0) &= 1 \end{alignedat}.$
  • $\begin{alignedat}{4} \dot{x} &= 3x-4y+e^{t} \\ \dot{y} &= x-y-e^{t} \end{alignedat} \, \, \, \, ; \, \, \, \, \begin{alignedat}{4} x(0) &= 1 \\ y(0) &= -1 \end{alignedat}.$

Resuelve el siguiente sistema de tres ecuaciones:

  • $\begin{alignedat}{4} \dot{x} &= 2x+y+z \\ \dot{y} &= x-y-z \\ \dot{z} &= 3x+y-2z \end{alignedat}$

Recuerda que aunque no resolvimos ecuaciones diferenciales de tercer orden, los métodos que desarrollamos para ecuaciones de segundo orden se pueden extender a ecuaciones de orden superior.

Más adelante

Ya hemos resuelto algunos sistemas lineales con coeficientes constantes, aunque su solución dependió de nuestros conocimientos acerca de las ecuaciones de orden superior con coeficientes constantes. Necesitamos nuevas herramientas para poder resolver los mismos sistemas sin tener que resolver una ecuación de orden superior.

En la próxima entrada hablaremos de la exponencial de una matriz, veremos cómo definir este nuevo término y por supuesto estudiaremos sus principales propiedades. La exponencial de una matriz estará fuertemente relacionada con la forma como resolveremos más adelante los sistemas lineales con coeficientes constantes.

¡Hasta la próxima entrada!

Notas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»