Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna I: Teorema de Pitágoras

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión veremos el teorema de Pitágoras que relaciona la hipotenusa de un triangulo rectángulo con la longitud de sus catetos, esta propiedad permite definir una métrica en el espacio euclidiano, en particular, con esto podemos calcular la longitud de un segmento si conocemos un triángulo rectángulo que tenga como hipotenusa dicho segmento.

Geométricamente el teorema de Pitágoras nos habla sobre el área de cuadrados construidos sobre los lados de un triángulo rectángulo, así que necesitamos presentar un concepto nuevo.

Definición. Definimos el área de un rectángulo como el producto de dos de sus lados adyacentes. De esta manera el área de un cuadrado será su lado al cuadrado.

Figura 1

Como las diagonales de todo rectángulo lo dividen en dos triángulos rectángulos congruentes, de la definición se sigue que el área de un triángulo rectángulo es el semiproducto de sus catetos.  

Teorema de Pitágoras

Teorema 1, de Pitágoras. El área de un cuadrado de lado igual a la hipotenusa de un triángulo rectángulo es igual a la suma de las áreas de cuadrados de lados igual a los catetos del triángulo rectángulo.

Demostración. Consideremos un triángulo rectángulo de catetos $a$, $b$ e hipotenusa $c$.

Construimos un cuadrado $\square ABCD$ de lados $a + b$, y puntos $P \in AB$, $Q \in BC$, $R \in CD$ y $S \in AD$, tales que $AP = BQ = CR = DS = a$ y $BP = CQ = DR = AS = b$.

Figura 2

Como los ángulos en las esquinas son rectos entonces por criterio LAL
$\begin{equation} \triangle ASP \cong \triangle BPQ \cong \triangle CQR \cong \triangle DRS, \end{equation}$
en particular $PQ = QR = RS = SP$.

Por $(1)$, $\angle CQR$ y $\angle PQB$ son complementarios en consecuencia $\angle RQP = \dfrac{\pi}{2}$.

De manera análoga se ve que
$\angle SRQ = \angle QPS = \angle PSR = \angle RQP = \dfrac{\pi}{2}$.

Por lo tanto, $\square PQRS$ es un cuadrado de lado $c$.

Ahora construimos otro cuadrado $\square A’B’C’D’$ de lados $a + b$, y puntos $P’ \in A’B’$ y $Q’ \in B’C’$ tales que $A’P’ = B’Q’ = b$ y $B’P’ = C’Q’ = a$.

Trazamos una perpendicular a $A’B’$ por $P’$ que interseca a $C’D’$ en $R’$, y una perpendicular a $B’C’$ por $Q’$ que interseca a $A’D’$ en $S’$.

Figura 3

Como $A’B’ \parallel C’D’$ entonces $P’R’ \perp C’D’$, análogamente $Q’S’ \perp A’D’$ y entonces $P’R’ \perp Q’S’$.

Por lo tanto, $\square A’P’ES’$, $\square EQ’C’R’$, $\square P’B’Q’E$ y $\square S’ER’D’$ son rectángulos.

Como los lados opuestos de todo rectángulo son iguales, concluimos que $\square A’P’ES’$ y $\square EQ’C’R’$ son cuadrados de lados $b$ y $a$ respectivamente.

$B’E$ y $ED’$ dividen a $\square P’B’Q’E$ y $\square S’ER’D’$ en cuatro triángulos rectángulos congruentes entre si pues los rectángulos son congruentes.

Pero al mismo tiempo los triángulos en $\square A’B’C’D’$ son congruentes con los triángulos en $\square ABCD$, pues tienen los mismos lados $a$ y $b$, y todos son triángulos rectángulos.

Finalmente, como $\square ABCD$ y $\square A’B’C’D’$ son congruentes entonces sus áreas son iguales y podemos sustraer a cada uno el área de los cuatro triángulos resultando así que el área del cuadrado rosa es igual a la suma de las áreas de los cuadrados verde y naranja.

Por lo tanto, $c^2 = a^2 + b^2$.

$\blacksquare$

Reciproco del Teorema de Pitágoras

Teorema 2. Reciproco del teorema de Pitágoras. Si en un triángulo el cuadrado de uno de sus lados es igual a la suma de los cuadrados de los otros dos lados entonces el triángulo es rectángulo.

Demostración. Sea $\triangle ABC$ un triángulo tal que $AC^2 = AB^2 + BC^2$.

Construimos un punto $D$ del lado opuesto a $C$ respecto de $AB$ tal que $BD = BC$ y $BD \perp AB$.

Figura 4

Por construcción $\triangle ABD$ es rectángulo, por el teorema de Pitágoras, $AD^2 = AB^2 + BD^2$.

Como $BD = BC$ $\Rightarrow BD^2 = BC^2$, por lo tanto, $AD^2 = AB^2 + BC^2 = AC^2$.

Por hipótesis, $AC^2 = AB^2 + BC^2 \Rightarrow AD^2 = AC^2 \Rightarrow AD = AC$.

Por criterio LLL, $\triangle ABC \cong \triangle ADC$, en particular $\angle CBA = \angle ABC = \dfrac{\pi}{2}$.

$\blacksquare$

Caracterización de un ángulo interior

Sea $\triangle ABC$ entonces por los teoremas 1 y 2
$\angle B = \dfrac{\pi}{2} \Leftrightarrow AC^2 = AB^2 + BC^2$.

Ahora consideremos un triángulo $\triangle A’B’C’$ con $A’B’ = AB$ y $B’C’ = BC$ pero $\angle B’ > \dfrac{\pi}{2}$, entonces por la proposición 2 de la entrada desigualdad del triángulo y su reciproco, esto ocurre si y solo si $A’C’ > AC$
$\Leftrightarrow A’C’^2 > AC^2 = AB^2 + BC^2 = A’B’^2 + B’C’^2$

Por otra parte, si tenemos $\triangle A’’B’’C’’$ tal que $A’’B’’ = AB$ y $B’’C’’ = BC$ pero $\angle B’’ < \dfrac{\pi}{2}$, por el resultado antes mencionado, esto ocurre si y solo si $A’’C’’ < AC$
$\Leftrightarrow A’’C’’^2 < AC^2 = AB^2 + BC^2 = A’’B’’^2 + B’’C’’^2$

Resumiendo, tenemos lo siguiente para cualquier triángulo $\triangle ABC$, $\angle B$ es:

  • recto $\Leftrightarrow AC^2 = AB^2 + BC^2$,
  • obtuso $\Leftrightarrow AC^2 > AB^2 + BC^2$,
  • agudo $\Leftrightarrow AC^2 < AB^2 + BC^2$.

Ley del paralelogramo

Teorema 3, ley del paralelogramo. La suma de los cuadrados de los lados de un paralelogramo es igual a la suma de los cuadrados de sus diagonales.

Demostración. Sean $\square ABCD$ un paralelogramo, $E$ y $F$ los pies de las perpendiculares a $BC$ trazadas desde $A$ y $D$ respectivamente.

Figura 5

Recordemos que los lados opuestos de un paralelogramo son iguales, por lo que $AB = CD$ y $AD = BC$, además $\square AEFD$ es un rectángulo y todo rectángulo es paralelogramo, por lo tanto, $AE = DF$ y $EF = AD = BC$, $\Rightarrow BE = CF$.

Aplicando el teorema de Pitágoras a los triángulos $\triangle ABE$, $\triangle DBF$ y $\triangle AEC$ obtenemos:

$\begin{equation} AB^2 = AE^2 + BE^2. \end{equation}$

$DB^2 = DF^2 + BF^2$
$= AE^2 + (BC + CF)^2 = AB^2 – BE^2 + (BC + BE)^2$
$= AB^2 – BE^2 +BC^2 + 2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 + 2BC \times BE. \end{equation}$

$AC^2 = AE^2 + EC^2$
$= AE^2 + (BC – BE)^2 = AB^2 – BE^2 + BC^2 -2BC \times BE + BE^2$
$\begin{equation} = AB^2 + BC^2 -2BC \times BE. \end{equation}$

Sumamos $(3)$ y $(4)$ para obtener
$AC^2 + BD^2 = 2AB^2 + 2BC^2$.

$\blacksquare$

Teorema de Apolonio

Teorema 4, de Apolonio. En todo triangulo la suma de los cuadrados de dos lados es igual a dos veces el cuadrado de la mitad del tercer lado más dos veces el cuadrado de la mediana que biseca al tercer lado.

Demostración. Sean $\triangle ABC$ y $M$ el punto medio de $BC$. Por demostrar que $AB^2 + AC^2 = 2(BM^2 + AM^2)$.

Sea $D$ el pie de la perpendicular a $BC$ trazada desde $A$, aplicamos el teorema de Pitágoras a los triángulos $\triangle ADM$, $\triangle ADB$ y $\triangle ADC$.

Figura 6

$\begin{equation} AM^2 = AD^2 + DM^2. \end{equation}$

$AB^2 = AD^2 + BD^2$
$= AM^2 – DM^2 + (DM – BM)^2 = AM^2 – DM^2 + DM^2 – 2DM \times BM + BM^2$
$\begin{equation} = AM^2 + BM^2 – 2DM \times BM. \end{equation}$

$AC^2 = AD^2 + DC^2$
$= AM^2 – DM^2 + (DM + MC)^2 = AM^2 – DM^2 +DM^2 + 2DM \times MC + MC^2$
$\begin{equation} = AM^2 + 2DM \times MC + MC^2. \end{equation}$

Como $BM = MC$ sumando $(6)$ y $(7)$ obtenemos
$AB^2 + AC^2 = 2AM^2 + 2MC^2$.

$\blacksquare$

Caracterización de las alturas de un triángulo

Proposición. Sean $BC$ un segmento y $P$ un punto en el plano, considera $D$ el pie de la perpendicular a $BC$ trazada desde $P$, entonces $PB^2 – PC^2 = DB^2 – DC^2$.

Figura 7

Demostración. Los triángulos $\triangle PDB$ y $\triangle PDC$ son rectángulos, por el teorema de Pitágoras tenemos que $PB^2 = PD^2 + DB^2$ y $PC^2 = PD^2 + DC^2$.

Despejando $PD^2$ de ambas ecuaciones e igualando tenemos que $PB^2 – DB^2 = PC^2 – DC^2$
$\Rightarrow PB^2 – PC^2 = DB^2 – DC^2$.

$\blacksquare$

Teorema 5. Sea $\triangle ABC$ un triángulo entonces un punto $P$ está en la altura por $A$ si y solo si $PB^2 – PC^2 = AB^2 – AC^2$.

Demostración. Supongamos que $P$ es un punto en la altura desde $A$ entonces podemos considerar el triángulo $\triangle PBC$.

Figura 8

Por la proposición tenemos que los puntos $P$ y $A$ cumplen que $PB^2 – PC^2 = DB^2 – DC^2$ y $AB^2 – AC^2 = DB^2 – DC^2$ donde $D$ es el pie de la altura.

Por lo tanto $PB^2 – PC^2 = AB^2 – AC^2$.

$\blacksquare$

Ahora supongamos que $P$ es un punto en el plano tal que $PB^2 – PC^2 = AB^2 – AC^2$ por la proposición sabemos que $AB^2 – AC^2 = DB^2 – DC^2$, con $D$ el pie de la altura desde $A$.

Por transitividad se tiene que $PB^2 – PC^2 = DB^2 – DC^2$.

Sea $E$ el pie de la perpendicular a $BC$ trazada desde $P$, nuevamente por la proposición tenemos que $PB^2 – PC^2 = EB^2 – EC^2$ $\Rightarrow DB^2 – DC^2 = EB^2 – EC^2$

Figura 9

Supongamos que $D$ está en el segmento $BC$ y $E$ fuera del segmento y del lado de $B$ (figura 9), otros casos se muestran de manera similar, entonces $EB = ED – BD$ y $EC = ED + DC$.

$\Rightarrow DB^2 – DC^2 = (ED – BD)^2 – (ED + DC)^2$
$= ED^2 – 2ED \times BD + BD^2 – ED^2 – 2ED \times DC – DC^2$
$\Rightarrow 0 = ED \times BD + ED \times DC = ED(BD + DC)$

Como $BD + DC \neq 0 \Rightarrow ED = 0$
$\Rightarrow E = D$

De esto se concluye que $P$ está en la altura trazada desde $A$.

$\blacksquare$

Más adelante…

En la siguiente entada estudiaremos el teorema de Tales también conocido como teorema de la proporcionalidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Dado un segmento unitario construye un segmento de longitud $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ …
  2. Si $a$, $b$, $c$, $d$, y $e$ son las longitudes de cinco segmentos tales que con cualesquiera tres de ellos es posible construir un triángulo, muestra que al menos uno de los triángulos es acutángulo.
  3. Sea $P$ un punto en el interior de $\triangle ABC$, considera $D$, $E$ y $F$ las proyecciones de $P$ a los lados $BC$, $AC$ y $AB$ respectivamente, expresa $AE$ en términos de $AF$, $FB$, $BD$, $DC$ y $CE$.
  4. Muestra que en un triángulo con ángulos interiores iguales a $\dfrac{\pi}{2}$, $\dfrac{\pi}{3}$ y $\dfrac{\pi}{6}$, se tiene que el cateto opuesto al ángulo de $\dfrac{\pi}{6}$ es igual a la mitad de la hipotenusa y el cateto opuesto al ángulo de $\dfrac{\pi}{3}$ es igual a $\dfrac{\sqrt{3}}{2}$ veces la hipotenusa.
  5. Si dos de los lados de un triángulo miden $a$ y $b$ y el ángulo entre ellos mide $\dfrac{3\pi}{4}$ encuentra la longitud del segmento medio entre los lados dados.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 22-27, 43-44.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 11-14.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 39-41.
  • Wikipedia
  • Geometría interactiva
  • Geometry Help

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Moderna I: Permutaciones y Grupo Simétrico

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

La Unidad 2 empieza con algunas definiciones nuevas. Veremos un ejemplo específico de grupo, primero definiremos qué es una permutación y luego, el conjunto de todas las permutaciones, al que llamaremos grupo simétrico junto con la composición. Este grupo es importante porque más adelante descubriremos que los grupos se pueden visualizar como subgrupos de grupos de permutaciones.

Primeras definiciones

Definición. Una permutación de un conjunto $X$ es una función biyectiva de $X$ en $X$.

Notación. Denotaremos por $S_X$ al conjunto

\begin{align*}
S_X = \{\sigma: X \to X | \sigma \text{ es biyectiva}\}.
\end{align*}

Si $X = \{1,…,n\}$, $S_X$ se denota por $S_n$. Si tomamos $\alpha, \beta \in S_X$ la composición de $\alpha$ seguida de $\beta$ se denota por $\beta\alpha$.

Observación 1. $S_X$ con la composición es un grupo, se llama el Grupo Simétrico.

Observación 2. $|S_n| = n!$

Definición. Sea $\alpha \in S_n$, $i \in \{1,2,…,n\}$.

Decimos que $\alpha$ mueve a $i$ si $\alpha(i) \neq i$, y que $\alpha$ fija a $i$ si $\alpha(i) = i$. El soporte de $\alpha$ es

\begin{align*}
\text{sop }\alpha = \{i \in \{1,\dots, n\}: \alpha(i) \neq i\}.
\end{align*}

Ejemplo

Sea $\alpha \in S_{10}$, definida como

\begin{align*}
\alpha = \begin{pmatrix}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\
8 & 3 & 1 & 7 & 2 & 6 & 4 & 5 & 9 & 10 \end{pmatrix}.
\end{align*}

La matriz es una manera de representar una permutación, la fila de arriba son todos los elementos de $X= \{1,2,3,4,5,6,7,8,9,10\}$ y la fila de abajo está formada por las imágenes bajo $\alpha$ de cada elemento de la fila de arriba. Es decir, la matriz de $\alpha$ se puede leer como: «$\alpha$ manda al $1$ al $8$», «el $ 2 $ lo manda al $3$», etc. Entonces tenemos que, $\alpha$ mueve a $1,2,3,4,5,7,8$ y fija al $6,9,10$. Así

\begin{align*}
\text{sop } \alpha = \{1,2, 3, 4, 5, 7, 8\}.
\end{align*}

Definición de ciclo

Definición. Sea $\alpha \in S_n$, $r\in\z$, $r>1$. Decimos que $\alpha$ es un ciclo de longitud $r$ o un $r$-ciclo si existen $i_1, \dots, i_r \in \{1, \dots, n\}$ distintos tales que $\text{sop }\alpha = \{i_1, \dots, i_r\}$ y

\begin{align*}
\alpha(i_t) = \begin{cases}
i_{t+1} & \text{si } t \in \{1, \dots, r-1\} \\
i_1 & \text{si } t = r
\end{cases}
\end{align*}

Figura para ilustrar la definición de un ciclo.

Diremos que la permutación $\text{id}\in S_n$ es un ciclo de longitud $1$ o un $1$-ciclo. Los ciclos de longitud dos se llaman transposiciones.

Las transposiciones son muy importantes porque, como veremos más adelante, nos permitirán describir a las demás permutaciones.

Notación.

  • Un $r$-ciclo $\alpha$, tal que cada $i_j$ va a $i_{j+1}$ para cada $j \in \{1,…,r-1\}$ y $i_r$ regresa a $i_1$ se denota como $\alpha = (i_1\; i_2 \; \dots \; i_r)$.
  • Además, denotamos como $r = \text{long } \alpha$ a la longitud de $\alpha$.

Ejemplos

  1. $\alpha \in S_8$ con $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 3 & 5 & 8 & 2 & 7 & 6 \end{pmatrix}$.

\begin{align*}
\alpha &= (2 \; 4 \; 5 \; 8 \; 6) = (4 \; 5 \; 8 \; 6 \; 2) \\
& = (5 \; 8 \; 6 \; 2 \; 4) = (8 \; 6 \; 2 \; 4 \; 5) \\
& = (6 \; 2 \; 4 \; 5 \; 8).
\end{align*}

Representación de $\alpha$.

En este caso, $\alpha$ es un $5-$ciclo y $\text{long }\alpha = 5$.
Observemos que el ciclo se puede comenzar a escribir con cualquier elemento de su soporte, siempre y cuando se cumpla la regla de correspondencia establecida.

2. Ahora, consideremos $\beta \in S_8$ como

Representación de $\beta$.

\begin{align*}
\beta =\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 5 & 4 & 3 & 6 & 7 & 8\end{pmatrix},
\end{align*}
entonces podemos decir que $\beta = (3 \; 5)$, porque a los otros elementos los deja fijos.

Si componemos $\beta$ con el $\alpha$ del ejemplo anterior obtenemos:

\begin{align*}
\alpha\beta &= (2 \; 4 \; 5 \; 8 \; 6) (3 \; 5) = (2 \; 4 \; 5 \; 3 \; 8 \; 6).
\end{align*}

Para verificar qué ésta es efectivamente la composición de $\beta$ seguida de $\alpha$, tenemos que observar a dónde manda a cada elemento:

  • Comenzamos con el $2$ (esto es arbitrario, se puede comenzar con el número que sea), observamos que $\beta$ lo deja fijo, entonces nos fijamos a dónde lo manda $\alpha$, en este caso, el $2$ es mandado al $4$. Así, $\alpha\beta$ manda al $2$ en el $4$.
  • Repetimos el proceso con el $4$, $\beta$ lo deja fijo y $\alpha$ lo manda al $5$. Así, $\alpha\beta$ manda al $4$ en el $5$.
  • Ahora con el $5$, $\beta$ manda al $5$ en $3$, entonces ahora vemos a dónde manda $\alpha$ al $3$, en este caso lo deja fijo. Así, $\alpha\beta$ manda al $5$ en el $3$.
  • Entonces ahora tenemos que observar a dónde es mandado el $3$ después de la composición. Primero, $\beta$ manda el $3$ al $5$ y $\alpha$ manda el $5$ al $8$, por lo tanto $\alpha\beta$ manda el $3$ al $8$.
  • Así continuamos con todos los elementos que aparezcan en la composición hasta terminar.

    Ahora, veamos qué sucede con $\beta\alpha$. El proceso es análogo:
    \begin{align*}
    \beta\alpha &= (3 \; 5) (2 \; 4 \; 5 \; 8 \; 6) = (3 \; 5 \; 8 \; 6 \; 2 \; 4).
    \end{align*}
    Por lo tanto $\alpha\beta \neq \beta\alpha$.

3. En $S_5$. Podemos considerar la siguiente permutación: $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5)$. A esta permutación la podemos simplificar usando el mismo procedimiento que en el ejemplo 2.

Observamos a dónde lleva cada uno de sus elementos:

  • Comencemos con el 2, la primera parte de la permutación, lleva el 2 al 4 y, la segunda parte lleva el 4 al 1.
  • Ahora veamos a dónde va el 1. La primera parte lo deja fijo y la segunda lo lleva al 2. Entonces obtenemos una permutación $(1\;2)$. Pero todavía falta ver el resto de elementos.
  • Ahora, veamos qué sucede con el 3. La primera parte lo deja fijo y la segunda lo manda al 4.
  • La primera parte de nuestra permutación manda el 4 al 5 y, el 5 se queda fijo.
  • Por último, el 5 es mandado al 2 por la primera parte de la permutación y, la segunda parte manda al 2 en el 3. Por lo tanto, el 5 regresa al 3. Esto se puede escribir como:

\begin{align*}
(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5) = (1 \; 2) (3 \; 4 \; 5).
\end{align*}

Es decir:

Representación de $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5) = (1 \; 2) (3 \; 4 \; 5)$.

Este ejemplo nos permite intuir que en ocasiones las permutaciones se pueden simplificar.

Observación. Si $n \geq 3$, entonces $S_n$ no es abeliano.

Tarea moral

  1. Demostrar la observación 1: $S_X$ con la composición es un grupo, se llama el Grupo Simétrico.
  2. Sea $X$ un conjunto infinito, $H$ la colección de permutaciones de $S_X$ que mueven sólo un número finito de elementos y $K$ la colección de permutaciones que mueven a lo más $50$ elementos. ¿Son $H$ y $K$ subgrupos de $S_X$?
  3. Considera los siguientes elementos de $S_{10}$
    \begin{align*} \alpha &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
    10 & 4 & 3 & 2 & 9 & 7 & 5 & 1 & 6 & 8 \end{pmatrix} \\\\
    \beta &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
    10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}. \end{align*}
    Encuentra $\alpha \beta, \beta \alpha, \alpha^{-1}$ y $\beta^{-1}$.
  4. Sea $a \in S_n, $ con $n > 2$. Si $\alpha$ conmuta con toda permutación de $S_n$ ¿puedes decir quién debe ser $\alpha$?

Más adelante…

Por el momento continuaremos hablando de las permutaciones. El último ejemplo visto nos da la noción de permutaciones disjuntas, este tema es el que profundizaremos en la siguiente entrada, pero por el momento ¿puedes imaginarte de qué se trata?

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Propiedades del conjunto de soluciones a un sistema lineal de ecuaciones de primer orden

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio de los sistemas de ecuaciones diferenciales de primer orden $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ donde revisamos las principales definiciones y enunciamos el teorema de existencia y unicidad correspondiente a sistemas de primer orden y sus problemas de condición inicial. Es momento ahora de estudiar las principales propiedades que cumple el conjunto de soluciones a un sistema lineal de ecuaciones de primer orden, las cuales se comportan de una manera bastante similar al conjunto de soluciones a una ecuación de segundo orden lineal que revisamos en la unidad anterior.

Iniciaremos revisando al conjunto de soluciones al sistema lineal homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ el cual cumple el principio de superposición, es decir, si tenemos $n$ soluciones, digamos ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$, entonces cualquier combinación lineal de estas también lo será. Si recuerdas tus cursos de Álgebra Lineal, esta última propiedad nos dice que el conjunto de soluciones es cerrado bajo la suma y producto por escalar usuales definidos para matrices. Con estas operaciones, veremos que el conjunto de soluciones al sistema lineal homogéneo forma un espacio vectorial.

Posteriormente definiremos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, el cual es similar más no igual al Wronskiano que definimos para ecuaciones lineales de segundo orden. En la tarea moral demostrarás la relación que tienen estos dos Wronskianos.

Si hablamos del Wronskiano y del conjunto de soluciones como un espacio vectorial, debemos hablar también de dependencia e independencia lineal entre las soluciones al sistema. Además, demostraremos que si el Wronskiano no se anula entonces el subconjunto de soluciones es linealmente independiente. Además si lo último ocurre podremos expresar cualquier solución como una combinación lineal de las soluciones linealmente independientes. Con estos conceptos podremos definir a la matriz fundamental de soluciones del sistema, la cual revisaremos más a detalle en entradas posteriores.

Terminaremos revisando el caso no homogéneo $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}+ {\textbf{Q}}$$ demostrando que su solución general será la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

El espacio vectorial del conjunto de soluciones a un sistema lineal homogéneo

En el primer video probamos el principio de superposición de soluciones al sistema lineal homogéneo. Además, vemos que el conjunto de soluciones al sistema forma un espacio vectorial con la suma y producto por escalar usuales para matrices.

El Wronskiano de un subconjunto de soluciones e independencia lineal

Definimos el Wronskiano de un subconjunto de soluciones al sistema lineal homogéneo, así como los conceptos de dependencia e independencia lineal de soluciones. Probamos un importante teorema que relaciona estos dos conceptos y nos dice cómo se ve la solución general al sistema. Finalizamos definiendo la matriz fundamental de soluciones del sistema.

Solución general al sistema lineal no homogéneo

Finalizamos la entrada demostrando que la solución general al sistema lineal no homogéneo es la suma de la solución general al sistema homogéneo y una solución particular al sistema no homogéneo.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿El conjunto de soluciones a un sistema lineal no homogéneo forma un espacio vectorial con las operaciones usuales de matrices?
  • Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} t \\ 2 \\ 0 \end{pmatrix} ; \, \textbf{X}_{3}(t)=\begin{pmatrix} t^{2} \\ t \\ 0 \end{pmatrix}$$ son linealmente independientes en $\mathbb{R}.$
  • Sean ${\textbf{X}_{1}}(t), {\textbf{X}_{2}}(t),…,{\textbf{X}_{n}}(t)$ soluciones al sistema $$\dot{\textbf{X}}={\textbf{A}}{\textbf{X}}$$ en el intervalo $[a,b]$. Demuestra que $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t)=0 \, \, \forall t \in [a,b]$, ó $W[{\textbf{X}_{1}}, {\textbf{X}_{2}},…,{\textbf{X}_{n}}](t) \neq 0 \, \, \forall t \in [a,b]$.
  • Considera el sistema lineal $$\dot{\textbf{X}}=\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \textbf{X}.$$ Prueba que $$\textbf{X}_{1}(t)=\begin{pmatrix} e^{t} \\ -e^{t} \end{pmatrix} ; \, \textbf{X}_{2}(t)=\begin{pmatrix} e^{-t} \\ e^{-t} \end{pmatrix}$$ son soluciones al sistema. Además prueba que son linealmente independientes en $\mathbb{R}$ y por lo tanto forma una matriz fundamental de soluciones al sistema.
  • Considera la ecuación $$\ddot{y}+p(t)\dot{y}+q(t)y=0$$ y su sistema de ecuaciones correspondiente $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -q(t) & -p(t) \end{pmatrix} \textbf{X}.$$ Prueba que si $\textbf{X}_{1}(t)$, $\textbf{X}_{2}(t)$ son soluciones linealmente independientes al sistema de ecuaciones, y si $y_{1}(t)$, $y_{2}(t)$ forman un conjunto fundamental de soluciones a la ecuación de segundo orden, entonces se satisface la identidad $$W[y_{1}, y_{2}](t)=cW[\textbf{X}_{1}, \textbf{X}_{2}](t)$$ para alguna constante $c \neq 0$.

Más adelante

En la siguiente entrada comenzaremos a resolver algunos sistemas lineales bastante sencillos. El método que estudiaremos será el de eliminación de variables, el cual consiste en eliminar variables dependientes hasta quedarnos con una ecuación diferencial de orden superior. Resolviendo esta última ecuación podremos encontrar la solución general al sistema original. Este método funciona para sistemas lineales con coeficientes constantes.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Paralelogramos

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada presentamos a el primer tipo de cuadriláteros que estudiaremos, los paralelogramos, algunas de sus propiedades serán frecuentemente usadas durante el curso.

Definición 1. Un cuadrilátero es una figura geométrica que consiste en cuatro vértices y cuatro lados. Si los vértices de un cuadrilátero son $A$, $B$, $C$ y $D$ y los lados $AB$, $BC$, $CD$ y $AD$ entonces lo denotamos como $\square ABCD$.

Decimos que los lados de un cuadrilátero son adyacentes u opuestos de acuerdo a si tienen o no un vértice en común.

Similarmente diremos que los vértices de un cuadrilátero son adyacentes u opuestos si son extremos de un mismo lado o no. Los segmentos que unen vértices opuestos son las diagonales del cuadrilátero.

Un cuadrilátero es convexo si sus diagonales se intersecan en el interior del cuadrilátero.

Figura 1

Proposición 1. La suma de los ángulos internos de todo cuadrilátero convexo es $2\pi$.

Demostración. Sea $\square ABCD$ convexo, consideremos $BD$, entonces la suma de los ángulos internos del cuadrilátero será igual a la suma de los ángulos internos de los dos triángulos $\triangle ABD$ y $\triangle CBD$, esto es, $2\pi$.

$\blacksquare$

Algunas propiedades de paralelogramos

Definición 2. Un paralelogramo es un cuadrilátero convexo cuyos pares de lados opuestos son paralelos.

Teorema 1. En todo paralelogramo se cumple lo siguiente:

  • los lados opuestos y los ángulos opuestos son iguales,
  • los ángulos adyacentes son suplementarios,
  • cada diagonal divide al paralelogramo en dos triángulos congruentes,
  • las dos diagonales del paralelogramo lo dividen en dos parejas de triángulos congruentes,
  • las diagonales se intersecan en su punto medio.

Demostración. Sea $\square ABCD$ un paralelogramo.

Como la diagonal $BD$ es transversal a $AB$ y $DC$ y estos son paralelos, entonces $\angle DBA = \angle BDC$.

Similarmente $BD$ es transversal a $AD$ y a $BC$, por lo que $\angle ADB = \angle CBD$.

Figura 2

$\triangle ABD$ y $\triangle CDB$ tienen en común al lado $BD$ y por criterio ALA, $\triangle ABD \cong \triangle CDB$.

Es decir,
$AB = CD$, $AD = CB$ y $\angle A = \angle C$,
además $\angle D = \angle ADB + \angle BDC = \angle CBD + \angle DBA = \angle B$.

Así los lados y ángulos opuesto son iguales.

Veamos que los los ángulos adyacentes son suplementarios,
$\angle A + \angle B = \angle A + \angle CBD + \angle DBA $
$= \angle A + \angle ADB + \angle DBA = \pi$.

Similarmente,
$\angle A + \angle D = \angle C + \angle B = \angle C + \angle D = \pi$.

Por otro lado, si consideramos la diagonal $AD$, al igual que en el caso anterior, tendremos que $\angle BAC = \angle DCA$ y $\angle CAD = \angle ACB$.

Figura 3

Sea $E = AC \cap BD$, por criterio ALA, $\triangle EAB \cong \triangle ECB$ y $\triangle EAD \cong \triangle ECB$, por lo que $AE = CE$ y $BE = DE$.

$\blacksquare$

Rectángulo

Definición 3. Un rectángulo es un cuadrilátero con cuatro ángulos rectos.

Proposición 2. Todo rectángulo es paralelogramo.

Demostración. Como dos lados opuestos son perpendiculares a un tercer lado entonces son paralelos entre sí. Similarmente los otros dos lados opuestos son paralelos entre sí. Por lo tanto, un rectángulo es paralelogramo.

Figura 4

$\blacksquare$

Proposición 3. Un paralelogramo es rectángulo si y solo si sus diagonales tienen la misma longitud.

Demostración. Sea $\square ABCD$ paralelogramo y supongamos que $AC = BD$.

Por el teorema anterior, $AD = BC$, y los triángulos $\triangle ADC $ y $\triangle BCD$ comparten a $CD$ como lado en común, por criterio LLL, $\triangle ADC \cong \triangle BCD$, en particular $\angle C = \angle D$.

Figura 5

Pero por el teorema 1, $\angle A = \angle C$ y $\angle B = \angle D$.

Por tanto, $\angle A = \angle C = \angle D = \angle B$.

Por la proposición 1,
$4\angle A = \angle A + \angle C + \angle B + \angle D = 2 \pi$
$\Rightarrow \angle A = \angle C = \angle B = \angle D = \dfrac{\pi}{2}$.

Así, $\square ABCD$ es rectángulo.

$\blacksquare$

Ahora supongamos que $\square ABCD$ es rectángulo y probemos que $AC = BD$.

Figura 6

Por hipótesis $\angle D = \angle C$, como $\square ABCD$ es paralelogramo entonces $AD = BC$, además $CD$ es un lado en común de $\triangle ADC$ y $\triangle BCD$, por criterio LAL, $\triangle ADC \cong \triangle BCD$.

Por lo tanto, $AC = BD$.

$\blacksquare$

Rombo

Definición 4. Un rombo es un cuadrilátero con cuatro lados iguales.

Proposición 4. Todo rombo es paralelogramo.

Demostración. Sea $\square ABCD$ un rombo.

Por criterio LLL, $\triangle ABD \cong \triangle CDB$, en particular $\angle ADB = \angle CBD$, como $BD$ es transversal a $AD$ y a $BC$ y los ángulos alternos internos son iguales entonces $AD \parallel BC$.

Figura 7

De manera similar se ve que $AB \parallel CD$.

Concluimos que $\square ABCD$ es paralelogramo.

$\blacksquare$

Proposición 5. Un paralelogramo es un rombo si y solo si sus diagonales son perpendiculares.

Demostración. Sea $\square ABCD$ paralelogramo y supongamos que $AC \perp BD$, veamos que es rombo.

Figura 8

Sea $E = AC \cap BD$, por hipótesis $\angle DEA = \angle AEB$, como $\square ABCD$ es paralelogramo, por el teorema 1, $BE = DE$, además $AE$ es un lado en común de $\triangle AED$ y $\triangle AEB$, por criterio LAL, $\triangle AED \cong \triangle AEB$, en particular $AD = AB$.

Como $\square ABCD$ es paralelogramo los lados opuestos son iguales, por lo tanto, $CD = AB = AD = BC$.

Así, $\square ABCD$ es rombo.

$\blacksquare$

Ahora supongamos que $\square ABCD$ es rombo veamos que $AC \perp BD$.

Figura 9

Sea $E = AC \cap BD$, como $\square ABCD$ es paralelogramo, $BE = DE$, por criterio LLL, $\triangle ABE \cong \triangle ADE$, por lo que $\angle AEB = \angle DEA$.

Por ser opuestos por el vértice, $\angle AEB = \angle CED$ y $\angle DEA = \angle BEC$, por lo que $\angle CED = \angle AEB = \angle DEA = \angle BEC$, y como $\angle CED + \angle AEB + \angle DEA + \angle BEC = 2\pi$, entonces $\angle CED = \angle AEB = \angle DEA = \angle BEC =\dfrac{\pi}{2}$.

Por lo tanto, $AC \perp BD$.

$\blacksquare$

Segmento medio del triángulo

Proposición 6. Si un cuadrilátero convexo tiene un par de lados opuestos paralelos e iguales entre si entonces los restantes lados opuestos son paralelos e iguales entre sí.

Demostración. Sea $\square ABCD$ convexo tal que $AD = BC$ y $AD \parallel BC$.

Tracemos $BD$, como $AD \parallel BC$ entonces $\angle ADB = \angle CBD$, por criterio LAL, $\triangle ADB \cong \triangle CBD$, en particular $AB = CD$ y $\angle DBA = \angle BDC$.

Figura 10

Como $BD$ es transversal a $AB$ y a $CD$ y $\angle DBA = \angle BDC$, entonces $AB \parallel CD$.

En consecuencia, $\square ABCD$ es paralelogramo.

$\blacksquare$

Teorema 2. Del segmento medio del triángulo. El segmento que une puntos medios de dos lados de un triángulo es paralelo e igual a la mitad del lado restante.

Demostración. Sean $\triangle ABC$, $M$ y $N$ los puntos medios de $AB$ y $AC$ respectivamente.

Extendemos $MN$ hasta un punto $O$ del lado de $N$ tal que $MN = NO$.

Figura 11

Como $N$ es punto medio de $AC$ entonces $AN = CN$, por construcción $MN = NO$ y $\angle ANM = \angle CNO$ por ser opuestos por el vértice.

Por criterio LAL, $\triangle ANM \cong \triangle CNO$ por lo que $CO = AM = BM$ y $\angle NMA = \angle NOC$.

Como $MO$ es transversal a $AB$ y a $CO$ y los ángulos alternos internos $\angle NMA$, $\angle NOC$ son iguales entonces $AB \parallel CO$.

En el cuadrilátero $\square MBCO$ los lados opuestos $MB$ y $CO$ son paralelos e iguales, por la proposición 6, $MO \parallel BC$ y $MO = BC$ pero $MN = \dfrac{MO}{2}$.

Por lo tanto $MN = \dfrac{BC}{2}$ y $MN \parallel BC$.

$\blacksquare$

Problema de Thébault

Definición 5. Un cuadrado es un cuadrilátero con cuatro lados iguales y cuatro ángulos rectos. Decimos que la intersección de las diagonales de un cuadrado es el centro del cuadrado.

Teorema 3. Los centros de cuadrados construidos externamente sobre los lados de un paralelogramo son los vértices de un cuadrado y las diagonales del cuadrado y las del paralelogramo son concurrentes.

Demostración. Sea $\square ABCD$ paralelogramo y sean $\square ABB’’A’$, $\square BCC’’B’$, $\square CDD’’C’$ y $\square ADD’A’’$ cuadrados construidos sobre $AB$, $BC$, $CD$ y $DA$ respectivamente y $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ sus respectivos centros.

Como un cuadrado es un caso particular de un rectángulo y un rombo, sus diagonales son perpendiculares y tienen la misma longitud, y como es un paralelogramo las diagonales se bisecan.

De esto concluimos que las diagonales de un cuadrado lo dividen en cuatro triángulos rectángulos, isósceles y congruentes entre sí.

Por otro lado, como $\square ABCD$ es paralelogramo entonces $AD = BC$ y $AB = CD$.

$\Rightarrow$
$\begin{equation} \triangle AA’O_{1} \cong \triangle ABO_{1} \cong \triangle CDO_{3} \cong \triangle CC’O_{3}, \end{equation}$
$\begin{equation} \triangle AA’’O_{4} \cong \triangle ADO_{4} \cong \triangle BCO_{2} \cong \triangle CC’’O_{2}. \end{equation}$

Figura 12

Por ser $\square ABCD$ paralelogramo,
$\angle A = \angle C$, $\angle B = \angle D$, $\angle A + \angle B = \pi$.

Veamos que $\triangle AO_{1}O_{4}$ y $\triangle CO_{3}O_{2}$ son congruentes.

Por $(1)$, $AO_{1} = CO_{3}$, por $(2)$, $AO_{4} = CO_{2}$,
notemos que $\angle A’’AA’ = \pi – \angle A = \angle B = \angle D = \pi – \angle C = \angle C’’CC’$.

$\Rightarrow \angle O_{4}AO_{1} = \angle O_{4}AA’’ + \angle A’’AA’ + \angle A’AO_{1}$
$= \angle O_{2}CC’’ + \angle C’’CC’ + \angle C’CO_{3} = \angle O_{2}CO_{3}$

Por criterio LAL, $\triangle AO_{1}O_{4} \cong \triangle CO_{3}O_{2}$, por lo que $ O_{1}O_{4} = O_{2}O_{3}$.

De manera similar se muestra que $\triangle AO_{1}O_{4} \cong \triangle BO_{1}O_{2} \cong \triangle DO_{3}O_{4}$, y así,
$\begin{equation} O_{2}O_{3} = O_{1}O_{4} = O_{1}O_{2} = O_{3}O_{4}. \end{equation}$

Como $\triangle AO_{1}O_{4} \cong \triangle BO_{1}O_{2}$, entonces $\angle AO_{1}O_{4} = \angle BO_{1}O_{2}$.

$\Rightarrow \angle O_{2}O_{1}O_{4} = \angle BO_{1}O_{4} – \angle BO_{1}O_{2}$
$= \angle BO_{1}A + \angle AO_{1}O_{4} – \angle BO_{1}O_{2} = \angle BO_{1}A = \dfrac{\pi}{2}$.

De manera similar se ve que
$\begin{equation} \angle O_{1}O_{4}O_{3} = \angle O_{4}O_{3}O_{2} = \angle O_{3}O_{2}O_{1} = \angle AO_{1}O_{4} = \dfrac{\pi}{2}. \end{equation}$.

Como $\square O_{1}O_{2}O_{3}O_{4}$ tienen cuatro lados iguales por $(3)$, y cuatro ángulos rectos por $(4)$, entonces es un cuadrado.

Veamos que las cuatro diagonales son concurrentes, consideremos $O_{2}O_{4}$ diagonal del cuadrado y $BD$ diagonal del paralelogramo.

Sea $E = O_{2}O_{4} \cap BD$. En $\triangle EBO_{2}$ y $\triangle EDO_{4}$ tenemos que $\angle BEO_{2} = \angle DEO_{4}$ por ser opuestos por el vértice, $\angle O_{2}BE = \angle O_{2}BC + \angle CBD = \angle O_{4}DA + \angle ADB$.

Por lo tanto, $\angle EO_{2}B = \angle EO_{4}D$, además $BO_{2} = DO_{4}$.

Por criterio LAL, $\triangle EBO_{2} \cong \triangle EDO_{4}$, por lo que $BE = DE$ y $O_{2}E = O_{4}E$
$\Rightarrow O_{2}O_{4}$ y $BD$ se intersecan en su punto medio.

Como $\square ABCD$ y $\square O_{1}O_{2}O_{3}O_{4}$ son paralelogramos sus diagonales se intersecan en su punto medio y por lo anterior todas concurren en $E$.

$\blacksquare$

Más adelante…

En la siguiente entrada veremos un resultado muy importante de las matemáticas, el teorema de Pitágoras y algunas aplicaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que si un cuadrilátero convexo tiene alguna de las siguientes características entonces es un paralelogramo.
    $i)$los dos pares de lados opuestos son iguales,
    $ii)$los dos pares de ángulos opuestos son iguales,
    $iii)$los ángulos adyacentes son suplementarios,
    $iv)$las diagonales se bisecan.
  2.  Construye un cuadrado sobre un segmento dado.
  3. Si trazamos rectas paralelas a los lados de un paralelogramo por un punto de una de sus diagonales se forman 4 cuadriláteros, muestra que los dos cuadriláteros por donde no pasa la diagonal tienen la misma área.
Figura 13
  1. Demuestra que si una recta biseca a un lado de un triangulo y es paralela a otro de los lados del triangulo entonces biseca al lado restante.
  2. $i)$ Muestra que el punto medio de la hipotenusa de un triangulo rectángulo equidista a los tres vértices del triangulo.
    $ii)$ Recíprocamente prueba que si en un triangulo un punto en uno de sus lados equidista a los tres vértices entonces el triángulo es rectángulo.
  3. Prueba que si construimos triángulos equiláteros exteriormente sobre los lados de un paralelogramo, entonces los cuatro vértices construidos son los vértices de un paralelogramo, y muestra que las diagonales de los dos paralelogramos son concurrentes.
Figura 14

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones diferenciales homogéneas con coeficientes constantes

Por Omar González Franco

La esencia de las matemáticas no es hacer las cosas simples complicadas,
sino hacer las cosas complicadas simples.
– S. Gudder

Introducción

Continuando con nuestro desarrollo de métodos de resolución de ecuaciones diferenciales de orden superior, en particular de segundo orden, en esta entrada estudiaremos un método aplicado sólo a ecuaciones diferenciales lineales homogéneas de segundo orden con coeficientes constantes, es decir, de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = 0$$

Con $a, b$ y $c$ contantes.

Antes de comenzar motivemos el análisis que desarrollaremos a lo largo de la entrada considerando primero las ecuaciones diferenciales de primer orden.

Ecuaciones diferenciales lineales homogéneas de primer orden con coeficientes constantes

En la primera unidad estudiamos las ecuaciones diferenciales lineales homogéneas de la forma

$$a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = 0 \label{1} \tag{1}$$

Si $a_{1}(x) \neq 0$ podemos definir

$$P(x) = \dfrac{a_{0}(x)}{a_{1}(x)}$$

y reescribir la ecuación anterior en su forma canónica como

$$\dfrac{dy}{dx} + P(x) y = 0 \label{2} \tag{2}$$

Cuando estudiamos su método de resolución concluimos que la solución general de la ecuación (\ref{2}) es

$$y(x) = k e^{-\int{P(x) dx}} \label{3} \tag{3}$$

Consideremos ahora el caso en el que $a_{1}(x) = a \neq 0$ y $a_{0}(x) = b$ son números constantes, con esto la ecuación (\ref{1}) se puede escribir como

$$a \dfrac{dy}{dx} + b y = 0 \label{4} \tag{4}$$

Si definimos la constante $c = \dfrac{b}{a}$ podremos escribir la ecuación anterior en su forma canónica como

$$\dfrac{dy}{dx} + cy = 0 \label{5} \tag{5}$$

En la unidad anterior vimos que esta ecuación se puede resolver ya sea por variables separables o con ayuda de un factor integrante, sin embargo hay un método de resolución que sólo implica hacer un poco de álgebra.

Definiendo $k = -c$ la ecuación (\ref{5}) la podemos escribir de la siguiente manera.

$$\dfrac{dy}{dx} = ky \label{6} \tag{6}$$

La solución se puede intuir rápidamente, buscamos una función $y$, tal que su derivada sea igual a ella misma multiplicada por una constante, la función que satisface esto es

$$y(x) = e^{kx} \label{7} \tag{7}$$

Observamos que al derivarla recuperamos la ecuación (\ref{6}).

$$\dfrac{dy}{dx} = k e^{kx} = ky$$

Ahora que conocemos la solución, sustituyamos la función (\ref{7}) y su derivada en la ecuación (\ref{4}).

$$a k e^{kx} + b e^{kx} = 0$$

Factoricemos la función exponencial.

$$e^{kx} (ak + b) = 0$$

Como $e^{kx} \neq 0$, $\forall x \in \mathbb{R}$, entonces necesariamente

$$ak + b = 0 \label{8} \tag{8}$$

De donde

$$k = -\dfrac{b}{a}$$

Sustituyendo en la solución (\ref{7}), se tiene

$$y(x) = e^{-bx/a}$$

Por lo tanto, la solución general de la ecuación diferencial lineal homogénea de primer orden con coeficientes constantes (\ref{4}) es

$$y(x) = c_{1}e^{-bx/a} \label{9} \tag{9}$$

Ejemplo: Determinar la solución general de la ecuación diferencial

$$8 \dfrac{dy}{dx} + 16y = 0$$

Solución: Al ser una ecuación con coeficientes constantes, sabemos que la solución es de la forma (\ref{7}). Sustituimos $y$ y su derivada $\dfrac{dy}{dx}$ en la ecuación diferencial.

\begin{align*}
8ke^{kx} + 16e^{kx} &= 0 \\
e^{kx}(8k + 16) &= 0 \\
8k + 16 &= 0
\end{align*}

De la última relación despejamos a $k$, obteniendo

$$k = -\dfrac{16}{8} = -2$$

Una solución de la ecuación diferencial es

$$y(x) = e^{-2x}$$

Y por tanto su solución general en el intervalo $\delta = (-\infty, \infty)$ es

$$y(x) = c_{1} e^{-2x}$$

$\square$

Lo interesante es que esta idea de soluciones exponenciales se puede extender a ecuaciones diferenciales homogéneas de orden superior

$$a_{n} \dfrac{d^{n}y}{dx^{n}} + a_{n -1} \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1} \dfrac{dy}{dx} + a_{0} y = 0 \label{10} \tag{10}$$

donde los coeficientes $a_{i}$, $i = 0, 1, 2, …, n$, son constantes reales y $a_{n} \neq 0$.

Este análisis nos sirvió para motivar el siguiente método de resolución de ecuaciones diferenciales de segundo orden.

Ecuaciones diferenciales lineales homogéneas de segundo orden con coeficientes constantes

La ecuación diferencial que queremos resolver es de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = 0 \label{11} \tag{11}$$

Con $a, b$ y $c$ constantes. Igual que antes, lo que intentamos es encontrar una solución de la forma

$$y(x) = e^{kx}$$

La primera y segunda derivada están dadas de la siguiente forma, respectivamente.

$$\dfrac{dy}{dx} = k e^{kx} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = k^{2} e^{kx}$$

Sustituimos en la ecuación (\ref{11}).

\begin{align*}
a(k^{2} e^{kx}) + b(ke^{kx}) + c(e^{kx}) &= 0 \\
e^{kx} (ak^{2} + bk + c) &= 0
\end{align*}

Como $e^{kx} \neq 0, \forall x \in \mathbb{R}$, entonces necesariamente

$$ak^{2} + bk + c = 0 \label{12} \tag{12}$$

El problema se ha reducido a obtener las raíces de esta ecuación, dicha ecuación tiene un nombre particular.

La dos raíces de la ecuación auxiliar son

$$k_{1} = \dfrac{-b + \sqrt{b^{2} -4ac}}{2a} \hspace{1cm} y \hspace{1cm} k_{2} = \dfrac{-b -\sqrt{b^{2} -4ac}}{2a} \label{13} \tag{13}$$

El discriminante puede ser positivo, cero o negativo, en cada caso ocurre lo siguiente.

  • Si $\Delta > 0$, entonces $k_{1}$ y $k_{2}$ son reales y distintos.
  • Si $\Delta = 0$, entonces $k_{1}$ y $k_{2}$ son reales e iguales, y
  • Si $\Delta < 0$, entonces $k_{1}$ y $k_{2}$ son números conjugados complejos.

Estudiemos cada caso y veamos el tipo de solución que se obtiene en cada uno.

Caso 1: Discriminante positivo

La solución de la ecuación (\ref{11}) es de la forma

$$y = e^{kx}$$

Si el discriminante es positivo, entonces al resolver la ecuación auxiliar obtendremos dos raíces reales y distintas $k_{1}$ y $k_{2}$, de manera que se tendrán dos soluciones de la ecuación diferencial (\ref{11}), dichas soluciones son

$$y_{1}(x) = e^{k_{1} x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{k_{2} x}$$

Notemos lo siguiente.

\begin{align*}
W(y_{1}, y_{2}) &= \begin{vmatrix}
e^{k_{1} x} & e^{k_{2} x} \\
k_{1} e^{k_{1} x} & k_{2} e^{k_{2} x} \end{vmatrix} \\
&= k_{2} e^{k_{2} x} e^{k_{1} x} -k_{1} e^{k_{1} x} e^{k_{2} x} \\
&= (k_{2} -k_{1}) e^{(k_{1} + k_{2}) x} \neq 0
\end{align*}

Como el Wronskiano es distinto de cero $\forall x \in \mathbb{R}$, entonces ambas funciones son linealmente independientes en $\mathbb{R}$, por tanto forman un conjunto fundamental de soluciones y la solución general de la ecuación diferencial (\ref{11}), en el caso en el que el discriminante es positivo, es

$$y(x) = c_{1} e^{k_{1} x} + c_{2} e^{k_{2} x} \label{15} \tag{15}$$

Con

$$k_{1} = \dfrac{-b + \sqrt{b^{2} -4ac}}{2a} \hspace{1cm} y \hspace{1cm} k_{2} = \dfrac{-b -\sqrt{b^{2} -4ac}}{2a}$$

Caso 2: Discriminante igual a cero

En este caso como

$$\Delta = b^{2} -4ac = 0$$

entonces,

$$k_{1} = k_{2} = -\dfrac{b}{2a}$$

De esta manera sólo obtendremos una solución exponencial.

$$y_{1}(x) = e^{k_{1} x} = e^{k_{2} x} = e^{-bx/2a} \label{16} \tag{16}$$

Para obtener la segunda solución vamos a aplicar el método de reducción de orden visto en la entrada anterior, en donde obtuvimos que una segunda solución linealmente independiente es de la forma

$$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x) dx}}}{y_{1}^{2}(x)} dx} \label{17} \tag{17}$$

En este caso de coeficientes constantes si la ecuación (\ref{11}) la dividimos por la constante $a \neq 0$ obtenemos

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{b}{a} \dfrac{dy}{dx} + \dfrac{c}{a}y = 0$$

Si definimos las constantes

$$P = \dfrac{b}{a} \hspace{1cm} y \hspace{1cm} Q = \dfrac{c}{a}$$

la ecuación anterior se puede reescribir como

$$\dfrac{d^{2}y}{dx^{2}} + P \dfrac{dy}{dx} + Qy = 0 \label{18} \tag{18}$$

Sustituyamos $P(x) = P$ y $y_{1}(x)$ en la segunda solución (\ref{17}).

\begin{align*}
y_{2}(x) &= e^{-bx/2a} \int{\dfrac{e^{-\int{\frac{b}{a} dx}}}{\left( e^{-bx/2a} \right)^{2}} dx} \\
&= e^{-bx/2a} \int{\dfrac{e^{-bx/a}}{e^{-bx/a}} dx} \\
&= e^{-bx/2a} \int{dx} \\
&= x e^{-bx/2a}
\end{align*}

Con esto, la segunda solución de la ecuación diferencial (\ref{11}), para este segundo caso es

$$y_{2}(x) = xe^{k_{1}x} = xe^{k_{2}x} = x e^{-bx/2a} \label{19} \tag{19}$$

Usando (\ref{16}) y (\ref{19}), notamos que

\begin{align*}
W(y_{1}, y_{2}) &= \begin{vmatrix}
e^{k_{1} x} & xe^{k_{1} x} \\
k_{1} e^{k_{1} x} & e^{k_{1} x} + x k_{1} e^{k_{1} x} \end{vmatrix} \\
&= e^{k_{1} x}(e^{k_{1} x} + x k_{1} e^{k_{1} x}) -x e^{k_{1} x} (k_{1} e^{k_{1} x}) \\
&= e^{2k_{1} x} + x k_{1} e^{2k_{1} x} -x k_{1} e^{2k_{1} x} \\
&= e^{2k_{1} x} \neq 0
\end{align*}

Como el Wronskiano es distinto de cero $\forall x \in \mathbb{R}$, entonces ambas funciones son linealmente independientes en $\mathbb{R}$, por tanto forman un conjunto fundamental de soluciones y la solución general de la ecuación diferencial (\ref{11}), en el caso en el que el discriminante es cero, es

$$y(x) = c_{1}e^{k_{1}x} + c_{2} xe^{k_{1}x} \label{20} \tag{20}$$

Con $k_{1} = -\dfrac{b}{2a}$.

Revisemos el último caso.

Caso 3: Discriminante negativo

Sabemos que

$$k_{1} = \dfrac{-b + \sqrt{b^{2} -4ac}}{2a} \hspace{1cm} y \hspace{1cm} k_{2} = \dfrac{-b -\sqrt{b^{2} -4ac}}{2a}$$

Si el discriminante es menor a cero definimos

$$-w = b^{2} -4ac \label{21} \tag{21}$$

Con $w \in \mathbb{R}^{+}$, tal que

$$k_{1} = \dfrac{-b + \sqrt{-w}}{2a} = -\dfrac{b}{2a} + i\dfrac{\sqrt{w}}{2a} \label{22} \tag{22}$$

y

$$k_{2} = \dfrac{-b -\sqrt{-w}}{2a} = -\dfrac{b}{2a} -i\dfrac{\sqrt{w}}{2a} \label{23} \tag{23}$$

Donde $i^{2} = -1$, definimos

$$\alpha = -\dfrac{b}{2a} \hspace{1cm} y \hspace{1cm} \beta = \dfrac{\sqrt{w}}{2a} \label{24} \tag{24}$$

De esta forma las raíces de la ecuación auxiliar son los números complejos conjugados

$$k_{1} = \alpha + i\beta \hspace{1cm} y \hspace{1cm} k_{2} = \alpha -i\beta \label{25} \tag{25}$$

Donde $\alpha$ y $\beta$ son números reales positivos. Dado que ambas raíces son distintas, similar al caso 1, tendremos dos soluciones dadas por

$$y_{1}(x) = e^{(\alpha + i\beta) x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{(\alpha -i\beta) x} \label{26} \tag{26}$$

De tarea moral demuestra que

$$W(y_{1}, y_{2}) = -2i \beta e^{2 \alpha x} \neq 0 \label{27} \tag{27}$$

y por tanto $\{ y_{1}, y_{2} \}$ forma un conjunto fundamental de soluciones, es así que la solución general está dada por la combinación lineal

$$y(x) = c_{1}e^{(a + i\beta) x} + c_{2}e^{(a -i\beta) x} \label{28} \tag{28}$$

A pesar de que la función anterior es la solución de la ecuación diferencial (\ref{11}), es común trabajar con una solución que contenga funciones reales en lugar de exponenciales complejas. Con el propósito de hallar una expresión real para la solución $y(x)$, vamos a considerar la formula de Euler

$$e^{i\theta} = \cos \theta + i\sin \theta \label{29} \tag{29}$$

con $\theta \in \mathbb{R}$. De esta formula y considerando las propiedades

$$\cos (-\beta x) = \cos (\beta x) \hspace{1cm} y \hspace{1cm} \sin (-\beta x) = -\sin (\beta x) \label{30} \tag{30}$$

es que podemos escribir las siguientes expresiones.

$$e^{i\beta x} = \cos (\beta x) + i \sin (\beta x) \hspace{1cm} y \hspace{1cm} e^{-i\beta x} = \cos (\beta x) -i \sin (\beta x) \label{31} \tag{31}$$

De las ecuaciones anteriores observamos que se cumplen las siguientes relaciones.

$$e^{i\beta x} + e^{-i\beta x} = 2 \cos (\beta x) \hspace{1cm} y \hspace{1cm} e^{i\beta x} -e^{-i\beta x} = 2i \sin (\beta x) \label{32} \tag{32}$$

Estas ecuaciones nos servirán mas adelante ya que, dada la solución (\ref{28}), si ocurre que $c_{1} = c_{2} = 1$, entonces se obtiene la solución

\begin{align*}
y_{1}(x) &= e^{(a + i\beta )x} + e^{(a -i\beta )x} \\
&= e^{ax} (e^{i\beta x} + e^{-i\beta x}) \\
&= 2 e^{ax} \cos (\beta x)
\end{align*}

Y si ocurre que $c_{1} = 1$ y $c_{2} = -1$, entonces se obtiene la solución

\begin{align*}
y_{2}(x) &= e^{(a + i\beta )x} -e^{(a -i\beta )x} \\
&= e^{ax}(e^{i\beta x} -e^{-i\beta x}) \\
&= 2ie^{ax}\sin (\beta x)
\end{align*}

Con estos resultados vemos que las funciones

$$g(x) = e^{\alpha x} \cos(\beta x) \hspace{1cm} y \hspace{1cm} h(x) = e^{\alpha x} \sin(\beta x) \label{33} \tag{33}$$

son ahora funciones reales y además de ello son soluciones de la ecuación diferencial (\ref{11}).

En la primer entrada de esta segunda unidad demostramos que un múltiplo constante

$$y(x) = c y_{1}(x)$$

de una solución $y_{1}$ de una ecuación diferencial lineal homogénea es también una solución, usando este resultado es que podemos asegurar que las funciones $C_{1}g(x)$ y $C_{2}h(x)$ son también solución. De tarea moral muestra que

$$W(C_{1} e^{\alpha x} \cos (\beta x), C_{2} e^{\alpha x} \sin (\beta x)) = C_{1}C_{2} \beta e^{2 \alpha x} \neq 0 \label{34} \tag{34}$$

Es decir, el Wronskiano de las soluciones es distinto de cero. De esta manera podemos afirmar que ambas funciones forman un conjunto fundamental de soluciones en cierto intervalo $\delta$ y, por lo tanto, podemos concluir que la solución general real de la ecuación diferencial (\ref{11}) en el caso en el que el discriminante es negativo es

$$y(x) = C_{1} e^{ax} \cos (\beta x) + C_{2} e^{ax} \sin (\beta x) = e^{ax} (C_{1} \cos (\beta x) + C_{2}\sin (\beta x)) \label{35} \tag{35}$$

Ejemplos

Realicemos una serie de ejemplos en los que tengamos que identificar a que caso pertenecen las ecuaciones diferenciales y así poder obtener su solución.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\dfrac{d^{2}y}{dx^{2}} -4\dfrac{dy}{dx} -5y = 0; \hspace{1cm} y(1) = 0, \hspace{0.5cm} y^{\prime}(1) = 2$$

Solución: Consideremos la solución $y = e^{kx}$ y sus primeras dos derivadas

$$\dfrac{dy}{dx}= ke^{kx} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}}= k^{2}e^{kx}$$

Sustituimos en la ecuación diferencial.

$$k^{2} e^{kx} -4ke^{kx} -5e^{kx} = e^{kx}(k^{2} -4k -5) = 0$$

Como $e^{kx} \neq 0, \forall x \in \mathbb{R}$, entonces la ecuación auxiliar es

$$k^{2} -4k -5 = 0$$

Resolviendo para $k$, se tiene

$$k= \dfrac{4\pm \sqrt{16+20}}{2}= \dfrac{4\pm 6}{2}$$

De donde $k_{1} = 5$ y $k_{2} = -1$. Como ambas raíces son reales y distintas (y $\Delta = 36 > 0$), entonces la ecuación pertenece al caso 1 por lo que podemos afirmar que la solución es de la forma (\ref{15}).

$$y(x) = c_{1} e^{5x} + c_{2} e^{-x}$$

La derivada es

$$\dfrac{dy}{dx} = 5 c_{1} e^{5x} -c_{2}e^{-x}$$

Apliquemos las condiciones iniciales.

$$y(1) = c_{1}e^{5} + c_{2}e^{-1} = 0 \hspace{1cm} y \hspace{1cm} y^{\prime}(1) = 5 c_{1}e^{5} -c_{2}e^{-1} = 2$$

Resolviendo el sistema de ecuaciones obtendremos que

$$c_{1} = \dfrac{e^{-5}}{3} \hspace{1cm} y \hspace{1cm} c_{2} = -\dfrac{e^{1}}{3}$$

Por lo tanto, la solución particular del PVI es

$$y(x) = \dfrac{1}{3}e^{5(x -1)} -\dfrac{1}{3}e^{1 -x}$$

$\square$

Ejemplo: Resolver el siguiente problema con valores en la frontera.

$$\dfrac{d^{2}y}{dx^{2}} -10\dfrac{dy}{dx} + 25y = 0; \hspace{1cm} y(0) = 1, \hspace{0.5cm} y(1) = 0$$

Solución: Consideramos nuevamente la solución $y = e^{kx}$ y sus derivadas

$$\dfrac{dy}{dx}= ke^{kx} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}}= k^{2}e^{kx}$$

Sustituimos en la ecuación diferencial.

$$k^{2}e^{kx} -10ke^{kx} + 25e^{kx} = e^{kx}(k^{2} -10k + 25) = 0$$

Como $e^{kx} \neq 0, \forall x \in \mathbb{R}$, entonces la ecuación auxiliar es

$$k^{2} -10k +25 = 0$$

Resolviendo para $k$, se tiene

$$k = \dfrac{10 \pm \sqrt{100 -100}}{2} = \dfrac{10}{2} = 5$$

Notamos que $k_{1} = k_{2} = 5$, es decir, son raíces reales e iguales ($\Delta = 0$), por lo que estamos situados en el segundo caso y la solución está dada por la ecuación (\ref{20}).

$$y(x) = c_{1} e^{5x} + c_{2}x e^{5x}$$

Apliquemos las condiciones en la frontera.

$$y(0) = c_{1} = 1 \hspace{1cm} y \hspace{1cm} y(1) = c_{1}e^{5} + c_{2}e^{5} = 0$$

Obtenemos que $c_{1} = 1$ y $c_{2} = -1$. Por lo tanto, la solución particular del PVF es

$$y(x) = e^{5x} -x e^{5x}$$

Y además es única al no depender de ningún parámetro libre.

$\square$

Ejemplo: Obtener la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + 3y = 0$$

Solución: Considerando la solución $y= e^{kx}$, calculando su primera y segunda derivada y sustituyendo en la ecuación diferencial obtendremos que la ecuación auxiliar es

$$k^{2} + 2k + 3 = 0$$

Resolviendo para $k$, tenemos

$$k = \dfrac{-2 \pm \sqrt{4 -12}}{2} = \dfrac{-2 \pm \sqrt{-8}}{2} = \dfrac{-2 \pm 2i\sqrt{2}}{2} = -1 \pm i \sqrt{2}$$

Las raíces son

$$k_{1} = -1 + i \sqrt{2} \hspace{1cm} y \hspace{1cm} k_{2} = -1 -i \sqrt{2}$$

Así mismo, identificamos que $\alpha = -1$ y $\beta = \sqrt{2}$. Al tratarse de raíces complejas notamos que corresponde al caso 3 y su solución compleja esta dada, de acuerdo a la ecuación (\ref{28}), como

$$y(x) = c_{1} e^{(-1 + i \sqrt{2})x} + c_{2} e^{(-1 -i \sqrt{2})x}$$

Sin embargo, una solución real es mucho más práctica de forma que si consideramos la ecuación (\ref{35}) concluimos que la solución general real de la ecuación diferencial es

$$y(x) = e^{-x}(C_{1} \cos (\sqrt{2} x) + C_{2} \sin (\sqrt{2} x))$$

$\square$

Ejemplo: Obtener la solución general de la ecuación diferencial

$$2\dfrac{d^{2}y}{dx^{2}} + 2\dfrac{dy}{dx} + y = 0$$

Solución: Considerando la solución $y= e^{kx}$, calculando su primera y segunda derivada y sustituyendo en la ecuación es como obtendremos que la ecuación auxiliar es

$$2k^{2} + 2k + 1 = 0$$

Resolvamos para $k$.

$$k = \dfrac{-2 \pm \sqrt{4 -4}}{4} = -\dfrac{2}{4}$$

En este caso

$$k_{1} = k_{2} = -\dfrac{1}{2}$$

es decir, las raíces son reales e iguales, de manera que estamos en el caso dos y por lo tanto la solución general es

$$y(x) = c_{1}e^{-x/2} + c_{2}x e^{-x/2}$$

$\square$

Ejemplo: Obtener la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -6y = 0$$

Solución: Repitiendo el mismo paso de siempre obtenemos que la ecuación auxiliar es

$$k^{2} -k -6 = 0$$

Resolviendo para $k$, tenemos

$$k = \dfrac{1 \pm \sqrt{1 + 24}}{2} = \dfrac{1 \pm 5}{2}$$

Las raíces son $k_{1} = 3$ y $k_{2} = -2$. Al ser reales y distintas notamos que estamos en circunstancias del caso uno y por tanto la solución general es

$$y(x) = c_{1}e^{3x} + c_{2}e^{-2x}$$

$\square$

Uno más

Ejemplo: Obtener la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 8\dfrac{dy}{dx} + 16y = 0$$

Solución: La ecuación auxiliar en este caso es

$$k^{2} + 8k + 16= 0$$

Las raíces se obtienen de hacer

$$k = \dfrac{8 \pm \sqrt{64 -64}}{2} = \dfrac{8}{2} = 4$$

Las raíces son $k_{1} = k_{2} = 4$, al ser reales e iguales concluimos que la solución general es

$$y(x) = c_{1}e^{4x} + c_{2}x e^{4x}$$

$\square$

Revisemos dos ecuaciones con una forma particular.

Dos ecuaciones particulares

Las ecuaciones diferenciales

$$\dfrac{d^{2}y}{dx^{2}} + m^{2}y = 0 \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -m^{2}y = 0$$

Con $m \in \mathbb{R}$, son importantes en matemáticas aplicadas. Vamos a obtener la forma de la solución de cada una de ellas.

Comencemos con la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + m^{2}y = 0 \label{36} \tag{36}$$

Como es una ecuación con coeficientes constantes, entonces la solución es de la forma $y(x) = e^{kx}$, así la ecuación auxiliar en este caso es

$$k^{2} + m^{2} = 0$$

cuyas raíces son complejas y están dadas por

$$k_{1} = im \hspace{1cm} y \hspace{1cm} k_{2} = -im$$

De donde $\alpha = 0$ y $\beta = m$. Por lo tanto, de la ecuación (\ref{35}) concluimos que la solución de la ecuación (\ref{36}) es

$$y(x) = c_{1} \cos (mx) + c_{2}\sin (mx) \label{37} \tag{37}$$

Ejemplo: Obtener la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 9y = 0$$

Solución: La ecuación a resolver es de la forma (\ref{36}) con $m = 3$. La ecuación auxiliar en este caso es

$$k^{2} + 9 = 0$$

De donde $k_{1} = i3$ y $k_{2} = -i3$, es decir, $\alpha = 0, \beta = m = 3$. De acuerdo a la ecuación (\ref{37}), la solución general de la ecuación diferencial es

$$y(x) = c_{1} \cos (3x) + c_{2} \sin (3x)$$

$\square$

Para el caso de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -m^{2}y = 0 \label{38} \tag{38}$$

La ecuación auxiliar es

$$k^{2} -m^{2} = 0$$

cuyas raíces son

$$k_{1} = m \hspace{1cm} y \hspace{1cm} k_{2} = -m$$

En este caso las raíces son reales y distintas, entonces la ecuación pertenece al caso 1 y por tanto la solución general está dada por la ecuación (\ref{15}), esto es

$$y(x) = c_{1} e^{mx} + c_{2} e^{-mx} \label{39} \tag{39}$$

Lo interesante de la ecuación (\ref{38}) es que si en su solución (\ref{39}) se elige $c_{1} = c_{2} = \dfrac{1}{2}$, se tiene

$$y_{1}(x) = \dfrac{1}{2} \left( e^{mx} + e^{-mx} \right) = \cosh (mx) \label{40} \tag{40}$$

Y si se elige $c_{1} = \dfrac{1}{2}$ y $c_{2} = -\dfrac{1}{2}$, entonces

$$y_{2}(x) = \dfrac{1}{2} \left( e^{mx} -e^{-mx} \right) = \sinh (mx) \label{41} \tag{41}$$

Se puede comprobar que $W(y_{1}, y_{2}) \neq 0$, lo que prueba que ambas soluciones son linealmente independientes en algún intervalo $\delta$. Este análisis nos permite establecer una forma alterna de la solución de la ecuación (\ref{38}), dada por

$$y(x) = c_{1} \cosh (mx) + c_{2} \sinh (mx) \label{42} \tag{42}$$

Ejemplo: Resolver el problema con valores iniciales

$$\dfrac{d^{2}y}{dx^{2}} -3y = 0; \hspace{1cm} y(0) = 1, \hspace{0.5cm} y^{\prime}(0) = 5$$

Usando primero la forma de la solución dada en (\ref{39}) y posteriormente resolverlo de nuevo usando la forma de la solución dada en (\ref{42}).

Solución: La ecuación a resolver es de la forma (\ref{38}) con $m = \sqrt{3}$. Considerando la solución $y = e^{kx}$, obtenemos que la ecuación auxiliar es

$$k^{2} -3 = 0$$

De donde $k_{1} = m = \sqrt{3}$ y $k_{2} = -m = -\sqrt{3}$. Usando la ecuación (\ref{39}) concluimos que la solución de la ecuación diferencial es

$$y(x) = c_{1} e^{\sqrt{3} x} + c_{2} e^{-\sqrt{3} x}$$

La derivada de la solución es

$$\dfrac{dy}{dx} = \sqrt{3} c_{1} e^{\sqrt{3} x} -\sqrt{3} c_{2} e^{-\sqrt{3} x}$$

Apliquemos las condiciones iniciales, por un lado

$$y(0) = c_{1} + c_{2} = 1 \hspace{1cm} \Rightarrow \hspace{1cm} c_{2} = 1 -c_{1}$$

por otro lado,

$$y^{\prime}(0) = \sqrt{3} c_{1} -\sqrt{3} c_{2} = 5$$

Si sustituimos el valor de $c_{2}$, tenemos

\begin{align*}
\sqrt{3} c_{1} -\sqrt{3} (1 -c_{1}) &= 5 \\
{\sqrt{3}}(c_{1} -1 +c_{1}) &= 5 \\
2 c_{1} -1 &= \dfrac{5}{\sqrt{3}} \\
2c_{1} &= \dfrac{5}{\sqrt{3}} +1 \\
c_{1} &= \dfrac{5}{2\sqrt{3}} + \dfrac{1}{2}
\end{align*}

Sustituyendo en $c_{2}$, se tiene

$$c_{2} = 1 -\left( \dfrac{5}{2\sqrt{3}} -\dfrac{1}{2} \right) = \dfrac{1}{2} -\dfrac{5}{2\sqrt{3}}$$

Por lo tanto, la solución particular del PVI es

$$y(x) = \dfrac{1}{2} \left( 1 + \dfrac{5}{\sqrt{3}} \right) e^{\sqrt{3} x} + \dfrac{1}{2} \left(1 -\dfrac{5}{\sqrt{3}} \right) e^{-\sqrt{3} x}$$

Si por otro lado consideramos la forma de la solución (\ref{42}), obtenemos que

$$y(x) = c_{1} \cosh(\sqrt{3} x) + c_{2} \sinh(\sqrt{3} x)$$

y su derivada

$$\dfrac{dy}{dx} = \sqrt{3} c_{1} \sinh(\sqrt{3} x) + \sqrt{3} c_{2} \cosh(\sqrt{3} x)$$

Aplicando las condiciones iniciales, se tiene

$$y(0) = c_{1} = 1 \hspace{1cm} y \hspace{1cm} y^{\prime}(0) = {\sqrt{3}c_{2}} = 5$$

De donde $c_{1} = 1$ y $c_{2} = \dfrac{5}{\sqrt{3}}$. Por lo tanto, la solución alterna del PVI es

$$y(x) = \cosh (\sqrt{3} x) + \dfrac{5}{\sqrt{3}} \sinh(\sqrt{3} x)$$

¿Qué relación hay entre las constantes $c_{1}$ y $c_{2}$ obtenidas en cada caso?.

$\square$

Para concluir la entrada revisemos brevemente estos mismos resultados para el caso de las ecuaciones de orden superior a dos.

Ecuaciones de orden superior

Es posible aplicar éste método de resolución para el caso de las ecuaciones diferenciales lineales homogéneas de orden superior a dos con coeficientes constantes, sin embargo desarrollar esta teoría desde cero puede ser muy complejo. Ahora que hemos sido muy detallados en el desarrollo de este método para el caso de las ecuaciones de segundo orden, vamos sólo a enunciar los posibles resultados para las ecuaciones de orden superior.

Es importante recordar que estamos estudiando las ecuaciones homogéneas y lineales con coeficientes constantes por lo que una ecuación de orden $n > 2$ con estas características tiene la siguiente forma.

$$a_{n} \dfrac{d^{n}y}{dx^{n}} + a_{n -1} \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{2} \dfrac{d^{2}y}{dx^{2}} + a_{1} \dfrac{dy}{dx} + a_{0}y = 0 \label{43} \tag{43}$$

Donde $a_{i}, i = 0, 1, \cdots, n$ son constantes.

Igual que antes, se considera la solución $y(x) = e^{kx}$. Al sustituir esta función y las correspondientes derivadas en la ecuación (\ref{43}) obtendremos la siguiente ecuación auxiliar.

$$a_{n} k^{n} + a_{n -1} k^{n -1} + \cdots + a_{2} k^{2} + a_{1} k + a_{0} =0 \label{44} \tag{44}$$

Esta ecuación tendrá $n$ raíces, estas raíces, como sabemos, pueden ser reales o complejas, iguales o distintas. La solución general para caso está dada de la siguiente manera.

  • Si las raíces son reales y distintas, la solución estará dada por

$$y(x) = c_{1} e^{k_{1} x} + c_{2} e^{k_{2} x} + \cdots + c_{n} e^{k_{n}x} \label{45} \tag{45}$$

  • Si las raíces son reales e iguales, la solución estará dada por

$$y(x) = e^{kx}(c_{1} + c_{2}x + c_{3}x^{2} + \cdots + c_{n}x^{n -1}) \label{46} \tag{46}$$

En el caso de orden superior es posible tener raíces reales y de ellas que unas sean iguales y otras diferentes, en este caso se usan los dos puntos anteriores respectivamente.

Por ejemplo, supongamos que de una ecuación de sexto orden se obtienen seis raíces, tales que

$$k_{1} \neq k_{2} = k_{3} \neq k_{4} \hspace{1cm} y \hspace{1cm} k_{1} \neq k_{4} = k_{5} = k_{6}$$

Entonces la solución estaría dada por

$$y(x) = c_{1} e^{k_{1} x} + c_{2} e^{k_{2} x} + c_{3}x e^{k_{3} x} + c_{4} e^{k_{4} x} + c_{5}x e^{k_{5} x} + c_{6}x^{2} e^{k_{6} x}$$

Ya que, el par de raíces $k_{1} \neq k_{2}$ al ser diferentes genera la solución $c_{1} e^{k_{1} x} + c_{2} e^{k_{2} x}$, el par de raíces $k_{2} = k_{3}$ al ser iguales genera la solución $c_{2} e^{k_{2} x} + c_{3}x e^{k_{3} x}$, el par de raíces $k_{1} \neq k_{4}$ genera la solución $c_{1} e^{k_{1} x} + c_{4} e^{k_{4} x}$ y finalmente las raíces $k_{4} = k_{5} = k_{6}$ genera la solución $c_{4} e^{k_{4} x} + c_{5}x e^{k_{5} x} + c_{6}x^{2} e^{k_{6} x}$, esto de acuerdo a los dos puntos anteriores (\ref{45}) y (\ref{46}).

Finalmente,

  • Si las raíces son complejas, para cada par conjugado la solución es: $$y(x) = e^{\alpha x}(C_{1} \cos (\beta x) + C_{2} \sin (\beta x))$$ Si hay otro par igual, la función $$y(x) = e^{\alpha x}x (C_{1} \cos (\beta x) + C_{2} \sin (\beta x))$$ será solución y si hay otro par igual, la función $$y(x) = e^{\alpha x}x^{2} (C_{1} \cos (\beta x) + C_{2} \sin (\beta x))$$ será solución y así sucesivamente.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\dfrac{d^{3}y}{dx^{3}} -7 \dfrac{d^{2}y}{dx^{2}} + 4\dfrac{dy}{dx} + 12y = 0$$

Con $y(0) = 1$, $y^{\prime}(0) = 0$ y $y^{\prime \prime}(0) = 36$.

Solución: Proponiendo la solución $y = e^{kx}$ la ecuación auxiliar que se obtiene es

$$k^{3} -7k^{2} +4k +12 = 0$$

Factorizando esta ecuación, se obtiene

$$(k + 1)(k -2)(k -6) = 0$$

De donde $k_{1} = -1$, $k_{2} = 2$ y $k_{3} = 6$. Como las raíces son reales y diferentes, entonces la solución de la ecuación diferencial es de la forma (\ref{45}).

$$y(x) = c_{1} e^{-x} + c_{2} e^{2x} + c_{3} e^{6x}$$

Para aplicar las condiciones iniciales calculemos la primera y segunda derivada de la solución.

$$\dfrac{dy}{dx} = -c_{1} e^{-x} + 2c_{2} e^{2x} + 6c_{3} e^{6x} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = c_{1} e^{-x} + 4c_{2} e^{2x} + 36c_{3} e^{6x}$$

Apliquemos las condiciones iniciales.

$$y(0) = c_{1} e^{0} + c_{2} e^{0} + c_{3} e^{0} = c_{1} + c_{2} + c_{3} = 1$$

$$y^{\prime}(0) = -c_{1} e^{0} + 2c_{2} e^{0} + 6c_{3} e^{0} = -c_{1} + 2c_{2} + 6c_{3} = 0$$

$$y^{\prime \prime}(0) = c_{1} e^{0} + 4c_{2} e^{0} + 36c_{3} e^{0} = c_{1} + 4c_{2} + 36c_{3} = 36$$

El sistema que se obtiene es

\begin{align*}
c_{1} + c_{2} + c_{3} &= 1 \\
-c_{1} + 2c_{2} + 6c_{3} &= 0 \\
c_{1} + 4c_{2} + 36c_{3} &= 36 \\
\end{align*}

Resolviendo el sistema obtendremos que

$$c_{1} = \dfrac{16}{7}, \hspace{1cm} c_{2} = -\dfrac{5}{2} \hspace{1cm} y \hspace{1cm} c_{3} = \dfrac{17}{14}$$

Por lo tanto, la solución particular de la ecuación diferencial de orden 3 es

$$y(x) = \dfrac{16}{7} e^{-x} -\dfrac{5}{2} e^{2x} + \dfrac{17}{14} e^{6x}$$

$\square$

La dificultad de resolver ecuaciones de orden mayor a 2 realmente radica en que se vuelve más complicado encontrar las raíces de la ecuación auxiliar y resolver el sistema de ecuaciones que se genere en problemas con valores iniciales o con valores en la frontera. Un método para factorizar la ecuación auxiliar y obtener las raíces puede ser la división sintética, así como el método de Gauss – Jordan para obtener las soluciones de un sistema de ecuaciones lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de las siguientes ecuaciones diferenciales con coeficientes constantes.
  • $4 \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} = 0$
  • $3 \dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y = 0$
  • $\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 13y = 0$
  • $\dfrac{d^{2}y}{dx^{2}} -2 \sqrt{3} \dfrac{dy}{dx} + 3y = 0$
  • $\dfrac{d^{2}y}{dx^{2}} + 4 \dfrac{dy}{dx} -y = 0$
  • $\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 5y = 0$
  • $\dfrac{d^{2}y}{dx^{2}} -6 \dfrac{dy}{dx} + 13y = 0$
  • $\dfrac{d^{2}y}{dx^{2}} -\dfrac{4}{3} \dfrac{dy}{dx} + \dfrac{4}{9} y = 0$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\dfrac{d^{2}y}{dx^{2}} + y = 0; \hspace{1cm} y \left( \dfrac{\pi}{3} \right) = 0, \hspace{0.5cm} y^{\prime} \left( \dfrac{\pi}{3} \right) = 2$
  • $\dfrac{d^{3}y}{dx^{3}} + 2 \dfrac{d^{2}y}{dx^{2}} -5 \dfrac{dy}{dx} -6y = 0; \hspace{1cm} y(0) = y^{\prime}(0) = 0, \hspace{0.5cm} y^{\prime \prime} (0) = 1$
  1. Resolver los siguientes problemas con valores en la frontera.
  • $\dfrac{d^{2}y}{dx^{2}} + 4y = 0; \hspace{1cm} y(0) = 0, \hspace{0.5cm} y(\pi) = 0$
  • $\dfrac{d^{2}y}{dx^{2}} -2 \dfrac{dy}{dx} + 2y = 0; \hspace{1cm} y(0) = 1, \hspace{0.5cm} y(\pi) = 1$
  1. Resolver el siguiente problema con valores iniciales usando primero la forma de la solución dada en (\ref{39}) y posteriormente resolverlo de nuevo usando la forma de la solución dada en (\ref{42}).
  • $\dfrac{d^{2}y}{dx^{2}} -y = 0; \hspace{1cm} y(0) = 1, \hspace{0.5cm} y^{\prime}(1) = 0$

Más adelante…

Ahora sabemos resolver ecuaciones diferenciales lineales y homogéneas de orden superior con coeficientes constantes, en la siguiente entrada estudiaremos este mismo tipo de ecuaciones, pero en el caso no homogéneo.

Para resolver ecuaciones no homogéneas existen dos métodos, el primero de ellos se denomina coeficientes indeterminados, este método suele no ser tan complicado, sin embargo esta limitado a ciertas funciones $g(x)$. Un segundo método se conoce como variación de parámetros siendo una extensión del método visto en la unidad anterior y que sirve para cualquier función $g(x)$, es decir, es un método general. En la siguiente entrada comenzaremos presentando el primer método.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»