Archivo de la etiqueta: cuadrilátero convexo

Geometría Moderna I: Paralelogramos

Introducción

En esta entrada presentamos a el primer tipo de cuadriláteros que estudiaremos, los paralelogramos, algunas de sus propiedades serán frecuentemente usadas durante el curso.

Definición 1. Un cuadrilátero es una figura geométrica que consiste en cuatro vértices y cuatro lados. Si los vértices de un cuadrilátero son $A$, $B$, $C$ y $D$ y los lados $AB$, $BC$, $CD$ y $AD$ entonces lo denotamos como $\square ABCD$.

Decimos que los lados de un cuadrilátero son adyacentes u opuestos de acuerdo a si tienen o no un vértice en común.

Similarmente diremos que los vértices de un cuadrilátero son adyacentes u opuestos si son extremos de un mismo lado o no. Los segmentos que unen vértices opuestos son las diagonales del cuadrilátero.

Un cuadrilátero es convexo si sus diagonales se intersecan en el interior del cuadrilátero.

Figura 1

Proposición 1. La suma de los ángulos internos de todo cuadrilátero convexo es $2\pi$.

Demostración. Sea $\square ABCD$ convexo, consideremos $BD$, entonces la suma de los ángulos internos del cuadrilátero será igual a la suma de los ángulos internos de los dos triángulos $\triangle ABD$ y $\triangle CBD$, esto es, $2\pi$.

$\blacksquare$

Algunas propiedades de paralelogramos

Definición 2. Un paralelogramo es un cuadrilátero convexo cuyos pares de lados opuestos son paralelos.

Teorema 1. En todo paralelogramo se cumple lo siguiente:

  • los lados opuestos y los ángulos opuestos son iguales,
  • los ángulos adyacentes son suplementarios,
  • cada diagonal divide al paralelogramo en dos triángulos congruentes,
  • las dos diagonales del paralelogramo lo dividen en dos parejas de triángulos congruentes,
  • las diagonales se intersecan en su punto medio.

Demostración. Sea $\square ABCD$ un paralelogramo.

Como la diagonal $BD$ es transversal a $AB$ y $DC$ y estos son paralelos, entonces $\angle DBA = \angle BDC$.

Similarmente $BD$ es transversal a $AD$ y a $BC$, por lo que $\angle ADB = \angle CBD$.

Figura 2

$\triangle ABD$ y $\triangle CDB$ tienen en común al lado $BD$ y por criterio ALA, $\triangle ABD \cong \triangle CDB$.

Es decir,
$AB = CD$, $AD = CB$ y $\angle A = \angle C$,
además $\angle D = \angle ADB + \angle BDC = \angle CBD + \angle DBA = \angle B$.

Así los lados y ángulos opuesto son iguales.

Veamos que los los ángulos adyacentes son suplementarios,
$\angle A + \angle B = \angle A + \angle CBD + \angle DBA $
$= \angle A + \angle ADB + \angle DBA = \pi$.

Similarmente,
$\angle A + \angle D = \angle C + \angle B = \angle C + \angle D = \pi$.

Por otro lado, si consideramos la diagonal $AD$, al igual que en el caso anterior, tendremos que $\angle BAC = \angle DCA$ y $\angle CAD = \angle ACB$.

Figura 3

Sea $E = AC \cap BD$, por criterio ALA, $\triangle EAB \cong \triangle ECB$ y $\triangle EAD \cong \triangle ECB$, por lo que $AE = CE$ y $BE = DE$.

$\blacksquare$

Rectángulo

Definición 3. Un rectángulo es un cuadrilátero con cuatro ángulos rectos.

Proposición 2. Todo rectángulo es paralelogramo.

Demostración. Como dos lados opuestos son perpendiculares a un tercer lado entonces son paralelos entre sí. Similarmente los otros dos lados opuestos son paralelos entre sí. Por lo tanto, un rectángulo es paralelogramo.

Figura 4

$\blacksquare$

Proposición 3. Un paralelogramo es rectángulo si y solo si sus diagonales tienen la misma longitud.

Demostración. Sea $\square ABCD$ paralelogramo y supongamos que $AC = BD$.

Por el teorema anterior, $AD = BC$, y los triángulos $\triangle ADC $ y $\triangle BCD$ comparten a $CD$ como lado en común, por criterio LLL, $\triangle ADC \cong \triangle BCD$, en particular $\angle C = \angle D$.

Figura 5

Pero por el teorema 1, $\angle A = \angle C$ y $\angle B = \angle D$.

Por tanto, $\angle A = \angle C = \angle D = \angle B$.

Por la proposición 1,
$4\angle A = \angle A + \angle C + \angle B + \angle D = 2 \pi$
$\Rightarrow \angle A = \angle C = \angle B = \angle D = \dfrac{\pi}{2}$.

Así, $\square ABCD$ es rectángulo.

$\blacksquare$

Ahora supongamos que $\square ABCD$ es rectángulo y probemos que $AC = BD$.

Figura 6

Por hipótesis $\angle D = \angle C$, como $\square ABCD$ es paralelogramo entonces $AD = BC$, además $CD$ es un lado en común de $\triangle ADC$ y $\triangle BCD$, por criterio LAL, $\triangle ADC \cong \triangle BCD$.

Por lo tanto, $AC = BD$.

$\blacksquare$

Rombo

Definición 4. Un rombo es un cuadrilátero con cuatro lados iguales.

Proposición 4. Todo rombo es paralelogramo.

Demostración. Sea $\square ABCD$ un rombo.

Por criterio LLL, $\triangle ABD \cong \triangle CDB$, en particular $\angle ADB = \angle CBD$, como $BD$ es transversal a $AD$ y a $BC$ y los ángulos alternos internos son iguales entonces $AD \parallel BC$.

Figura 7

De manera similar se ve que $AB \parallel CD$.

Concluimos que $\square ABCD$ es paralelogramo.

$\blacksquare$

Proposición 5. Un paralelogramo es un rombo si y solo si sus diagonales son perpendiculares.

Demostración. Sea $\square ABCD$ paralelogramo y supongamos que $AC \perp BD$, veamos que es rombo.

Figura 8

Sea $E = AC \cap BD$, por hipótesis $\angle DEA = \angle AEB$, como $\square ABCD$ es paralelogramo, por el teorema 1, $BE = DE$, además $AE$ es un lado en común de $\triangle AED$ y $\triangle AEB$, por criterio LAL, $\triangle AED \cong \triangle AEB$, en particular $AD = AB$.

Como $\square ABCD$ es paralelogramo los lados opuestos son iguales, por lo tanto, $CD = AB = AD = BC$.

Así, $\square ABCD$ es rombo.

$\blacksquare$

Ahora supongamos que $\square ABCD$ es rombo veamos que $AC \perp BD$.

Figura 9

Sea $E = AC \cap BD$, como $\square ABCD$ es paralelogramo, $BE = DE$, por criterio LLL, $\triangle ABE \cong \triangle ADE$, por lo que $\angle AEB = \angle DEA$.

Por ser opuestos por el vértice, $\angle AEB = \angle CED$ y $\angle DEA = \angle BEC$, por lo que $\angle CED = \angle AEB = \angle DEA = \angle BEC$, y como $\angle CED + \angle AEB + \angle DEA + \angle BEC = 2\pi$, entonces $\angle CED = \angle AEB = \angle DEA = \angle BEC =\dfrac{\pi}{2}$.

Por lo tanto, $AC \perp BD$.

$\blacksquare$

Segmento medio del triángulo

Proposición 6. Si un cuadrilátero convexo tiene un par de lados opuestos paralelos e iguales entre si entonces los restantes lados opuestos son paralelos e iguales entre sí.

Demostración. Sea $\square ABCD$ convexo tal que $AD = BC$ y $AD \parallel BC$.

Tracemos $BD$, como $AD \parallel BC$ entonces $\angle ADB = \angle CBD$, por criterio LAL, $\triangle ADB \cong \triangle CBD$, en particular $AB = CD$ y $\angle DBA = \angle BDC$.

Figura 10

Como $BD$ es transversal a $AB$ y a $CD$ y $\angle DBA = \angle BDC$, entonces $AB \parallel CD$.

En consecuencia, $\square ABCD$ es paralelogramo.

$\blacksquare$

Teorema 2. Del segmento medio del triángulo. El segmento que une puntos medios de dos lados de un triángulo es paralelo e igual a la mitad del lado restante.

Demostración. Sean $\triangle ABC$, $M$ y $N$ los puntos medios de $AB$ y $AC$ respectivamente.

Extendemos $MN$ hasta un punto $O$ del lado de $N$ tal que $MN = NO$.

Figura 11

Como $N$ es punto medio de $AC$ entonces $AN = CN$, por construcción $MN = NO$ y $\angle ANM = \angle CNO$ por ser opuestos por el vértice.

Por criterio LAL, $\triangle ANM \cong \triangle CNO$ por lo que $CO = AM = BM$ y $\angle NMA = \angle NOC$.

Como $MO$ es transversal a $AB$ y a $CO$ y los ángulos alternos internos $\angle NMA$, $\angle NOC$ son iguales entonces $AB \parallel CO$.

En el cuadrilátero $\square MBCO$ los lados opuestos $MB$ y $CO$ son paralelos e iguales, por la proposición 6, $MO \parallel BC$ y $MO = BC$ pero $MN = \dfrac{MO}{2}$.

Por lo tanto $MN = \dfrac{BC}{2}$ y $MN \parallel BC$.

$\blacksquare$

Problema de Thébault

Definición 5. Un cuadrado es un cuadrilátero con cuatro lados iguales y cuatro ángulos rectos. Decimos que la intersección de las diagonales de un cuadrado es el centro del cuadrado.

Teorema 3. Los centros de cuadrados construidos externamente sobre los lados de un paralelogramo son los vértices de un cuadrado y las diagonales del cuadrado y las del paralelogramo son concurrentes.

Demostración. Sea $\square ABCD$ paralelogramo y sean $\square ABB’’A’$, $\square BCC’’B’$, $\square CDD’’C’$ y $\square ADD’A’’$ cuadrados construidos sobre $AB$, $BC$, $CD$ y $DA$ respectivamente y $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ sus respectivos centros.

Como un cuadrado es un caso particular de un rectángulo y un rombo, sus diagonales son perpendiculares y tienen la misma longitud, y como es un paralelogramo las diagonales se bisecan.

De esto concluimos que las diagonales de un cuadrado lo dividen en cuatro triángulos rectángulos, isósceles y congruentes entre sí.

Por otro lado, como $\square ABCD$ es paralelogramo entonces $AD = BC$ y $AB = CD$.

$\Rightarrow$
$\begin{equation} \triangle AA’O_{1} \cong \triangle ABO_{1} \cong \triangle CDO_{3} \cong \triangle CC’O_{3}, \end{equation}$
$\begin{equation} \triangle AA’’O_{4} \cong \triangle ADO_{4} \cong \triangle BCO_{2} \cong \triangle CC’’O_{2}. \end{equation}$

Figura 12

Por ser $\square ABCD$ paralelogramo,
$\angle A = \angle C$, $\angle B = \angle D$, $\angle A + \angle B = \pi$.

Veamos que $\triangle AO_{1}O_{4}$ y $\triangle CO_{3}O_{2}$ son congruentes.

Por $(1)$, $AO_{1} = CO_{3}$, por $(2)$, $AO_{4} = CO_{2}$,
notemos que $\angle A’’AA’ = \pi – \angle A = \angle B = \angle D = \pi – \angle C = \angle C’’CC’$.

$\Rightarrow \angle O_{4}AO_{1} = \angle O_{4}AA’’ + \angle A’’AA’ + \angle A’AO_{1}$
$= \angle O_{2}CC’’ + \angle C’’CC’ + \angle C’CO_{3} = \angle O_{2}CO_{3}$

Por criterio LAL, $\triangle AO_{1}O_{4} \cong \triangle CO_{3}O_{2}$, por lo que $ O_{1}O_{4} = O_{2}O_{3}$.

De manera similar se muestra que $\triangle AO_{1}O_{4} \cong \triangle BO_{1}O_{2} \cong \triangle DO_{3}O_{4}$, y así,
$\begin{equation} O_{2}O_{3} = O_{1}O_{4} = O_{1}O_{2} = O_{3}O_{4}. \end{equation}$

Como $\triangle AO_{1}O_{4} \cong \triangle BO_{1}O_{2}$, entonces $\angle AO_{1}O_{4} = \angle BO_{1}O_{2}$.

$\Rightarrow \angle O_{2}O_{1}O_{4} = \angle BO_{1}O_{4} – \angle BO_{1}O_{2}$
$= \angle BO_{1}A + \angle AO_{1}O_{4} – \angle BO_{1}O_{2} = \angle BO_{1}A = \dfrac{\pi}{2}$.

De manera similar se ve que
$\begin{equation} \angle O_{1}O_{4}O_{3} = \angle O_{4}O_{3}O_{2} = \angle O_{3}O_{2}O_{1} = \angle AO_{1}O_{4} = \dfrac{\pi}{2}. \end{equation}$.

Como $\square O_{1}O_{2}O_{3}O_{4}$ tienen cuatro lados iguales por $(3)$, y cuatro ángulos rectos por $(4)$, entonces es un cuadrado.

Veamos que las cuatro diagonales son concurrentes, consideremos $O_{2}O_{4}$ diagonal del cuadrado y $BD$ diagonal del paralelogramo.

Sea $E = O_{2}O_{4} \cap BD$. En $\triangle EBO_{2}$ y $\triangle EDO_{4}$ tenemos que $\angle BEO_{2} = \angle DEO_{4}$ por ser opuestos por el vértice, $\angle O_{2}BE = \angle O_{2}BC + \angle CBD = \angle O_{4}DA + \angle ADB$.

Por lo tanto, $\angle EO_{2}B = \angle EO_{4}D$, además $BO_{2} = DO_{4}$.

Por criterio LAL, $\triangle EBO_{2} \cong \triangle EDO_{4}$, por lo que $BE = DE$ y $O_{2}E = O_{4}E$
$\Rightarrow O_{2}O_{4}$ y $BD$ se intersecan en su punto medio.

Como $\square ABCD$ y $\square O_{1}O_{2}O_{3}O_{4}$ son paralelogramos sus diagonales se intersecan en su punto medio y por lo anterior todas concurren en $E$.

$\blacksquare$

Tarea moral

  1. Muestra que si un cuadrilátero convexo tiene alguna de las siguientes características entonces es un paralelogramo.
    $i)$los dos pares de lados opuestos son iguales,
    $ii)$los dos pares de ángulos opuestos son iguales,
    $iii)$los ángulos adyacentes son suplementarios,
    $iv)$las diagonales se bisecan.
  2.  Construye un cuadrado sobre un segmento dado.
  3. Si trazamos rectas paralelas a los lados de un paralelogramo por un punto de una de sus diagonales se forman 4 cuadriláteros, muestra que los dos cuadriláteros por donde no pasa la diagonal tienen la misma área.
Figura 13
  1. Demuestra que si una recta biseca a un lado de un triangulo y es paralela a otro de los lados del triangulo entonces biseca al lado restante.
  2. $i)$ Muestra que el punto medio de la hipotenusa de un triangulo rectángulo equidista a los tres vértices del triangulo.
    $ii)$ Recíprocamente prueba que si en un triangulo un punto en uno de sus lados equidista a los tres vértices entonces el triángulo es rectángulo.
  3. Prueba que si construimos triángulos equiláteros exteriormente sobre los lados de un paralelogramo, entonces los cuatro vértices construidos son los vértices de un paralelogramo, y muestra que las diagonales de los dos paralelogramos son concurrentes.
Figura 14

Más adelante…

En la siguiente entrada veremos un resultado muy importante de las matemáticas, el teorema de Pitágoras y algunas aplicaciones.

Entradas relacionadas

Fuentes

Geometría Moderna I: Teoremas de Varignon y Van Aubel

Introducción

Con esta entrada damos inicio a la cuarta unidad que tratará sobre cuadriláteros. Comenzaremos hablando sobre el paralelogramo de Varignon y el teorema de Van Aubel.

Área del cuadrilátero

A partir de la ubicación de las diagonales de un cuadrilátero podemos establecer una clasificación de estos.

Un cuadrilátero es convexo si sus dos diagonales se encuentran dentro de él, es cóncavo si tiene una diagonal dentro y otra fuera de él, y es cruzado si las dos diagonales se ubican fuera del cuadrilátero.

El teorema de Varignon nos habla sobre el área de un cuadrilátero en general y ya que no es tan intuitivo definir el área de un cuadrilátero cruzado es necesario introducir el concepto de área orientada.

Consideraremos el área de un triángulo como positiva si recorremos sus vértices en el sentido opuesto a las manecillas del reloj y como negativa en caso contrario.

De esta manera tenemos que para un triángulo $\triangle ABC$,
$(\triangle ABC) = (\triangle BCA) = (\triangle CAB) $
$= – (\triangle CBA) = – (\triangle ACB) = – (\triangle BAC)$.

Figura 1

Definición 1. Definimos el área de un cuadrilátero $\square ABCD$ como la suma de las áreas de los triángulos que se forman al considerar una de sus diagonales, esto es,
$(\square ABCD) = (\triangle ABC) + (\triangle CDA)$.

Notemos que como resultado de esta definición el área del cuadrilátero cruzado resulta ser la diferencia de las áreas de los triángulos que se forman al considerar la intersección cruzada de los lados.

Paralelogramo de Varignon

Teorema 1, de Varignon.
$i)$ Los puntos medios de los lados de un cuadrilátero convexo son los vértices de un paralelogramo, conocido como paralelogramo de Varignon, cuyo perímetro es la suma de las diagonales del cuadrilátero,
$ii)$ el área del paralelogramo de Varignon es la mitad del área del cuadrilátero.

Demostración. Sean $\square ABCD$ un cuadrilátero convexo y $M_{ab}$, $M_{bc}$, $M_{cd}$ y $M_{da}$ los puntos medios de $AB$, $BC$, $CD$ y $DA$ respetivamente.

Figura 2

Notemos que $M_{ab}M_{bc}$ y $M_{cd}M_{da}$ son segmentos medios de $\triangle ABC$ y $\triangle DAC$ por lo que $M_{ab}M_{bc} \parallel CA \parallel M_{cd}M_{da}$ y $2M_{ab}M_{bc} = CA = 2M_{cd}M_{da}$.

De manera análoga podemos ver que $M_{ab}M_{da} \parallel DB \parallel M_{bc}M_{cd}$ y $2M_{ab}M_{da} = BD = 2M_{bc}M_{cd}$.

Por lo tanto los lados opuestos de $\square M_{ab}M_{bc}M_{cd}M_{da}$ son paralelos y $M_{ab}M_{bc} + M_{bc}M_{cd} + M_{cd}M_{da} + M_{da}M_{ab} = \dfrac{CA + BD + CA +BD}{2} = CA + BD$.

Para calcular el área de  $\square M_{ab}M_{bc}M_{cd}M_{da}$ primero notemos que $\triangle AM_{ab}M_{da}$ y $\triangle ABD$ son semejantes pues $M_{ab}M_{da} \parallel BD$.

También sabemos que $M_{ab}M_{da} = \dfrac{BD}{2}$, por lo que las alturas desde $A$, $h$ y $h’$ de $\triangle AM_{ab}M_{da}$ y $\triangle ABD$ respectivamente, también cumplirán que $h = \dfrac{h’}{2}$.

Por lo tanto,
$(\triangle AM_{ab}M_{da}) = \dfrac{M_{ab}M_{da} \times h}{2}$
$= \dfrac{\frac{1}{2}DBD \times \frac{1}{2}h’}{2} = \dfrac{1}{4} \dfrac{BD \times h’}{2} $
$= \dfrac{1}{4} (\triangle ABD)$.

De manera similar podemos encontrar las áreas de $\triangle BM_{bc}M_{ab}$, $\triangle CM_{cd}M_{bc}$ y $\triangle DM_{da}M_{cd}$.

En consecuencia,
$(\square M_{ab}M_{bc}M_{cd}M_{da}) = (\square ABCD) – (\triangle AM_{ab}M_{da}) – (\triangle BM_{bc}M_{ab}) – (\triangle CM_{cd}M_{bc}) – (\triangle DM_{da}M_{cd})$
$= (\square ABCD) – \dfrac{1}{4} ((\triangle ABD) + (\triangle BCD) + (\triangle CDB) + (\triangle DAC))$
$= (\square ABCD) – \dfrac{2}{4}(\square ABCD) $
$ = \dfrac{(\square ABCD)}{2}$.

$\blacksquare$

Corolario. Sea $\square ABCD$ un cuadrilátero convexo, entonces su cuadrilátero de Varignon
$i)$ es un rombo si y solo si $AC = BD$,
$ii)$ es un rectángulo si y solo si $AC \perp BD$,
$iii)$ es un cuadrado si y solo si $AC = BD$ y $AC \perp BD$.

Demostración. Sean $E$, $F$, $G$, $H$, los puntos medios de $BC$, $CD$, $DA$, $AB$, respectivamente como $EF$ y $FG$ son segmentos medios de $\triangle DBC$ y $\triangle ADC$, entonces, $2EF = BD$, $EF \parallel BD$ y $2FG = AC$, $FG \parallel AC$.

Figura 3

$i)$ $\square EFGH$ es un rombo, entonces por definición $EF = FG \Leftrightarrow AC = BD$.

$ii)$ $\square EFGH$ es un rectángulo, entonces por definición $EF \perp FG \Leftrightarrow AC \perp BD$.

$iii)$ Es consecuencia de $i)$ y $ii)$.

$\blacksquare$

Centroide de un cuadrilátero

Definición 2. Los segmentos que unen los puntos medios de los lados opuestos de un cuadrilátero se llaman bimedianas.

Al segmento que une los puntos medios de las diagonales de un cuadrilátero se le conoce como recta de Newton.

Teorema 2. Las bimedianas de un cuadrilátero convexo y su recta de Newton son concurrentes y se bisecan entre sí, el punto de concurrencia es el centroide del cuadrilátero.

Demostración. Sea $\square ABCD$ un cuadrilátero convexo y $M_{ab}$, $M_{bc}$, $M_{cd}$, $M_{da}$, $M$, $N$, los puntos medios de $AB$, $BC$, $CD$, $DA$, $AC$, $BD$, respectivamente.

$M_{ab}M_{cd}$ y $M_{bc}M_{da}$ son las diagonales del paralelogramo de Varignon, por lo tanto, se intersecan en $J$ su punto medio.

Figura 4

Por otra parte, $M_{ab}M$ es un segmento medio de $\triangle ABC$, por lo que $M_{ab}M \parallel BC$; $NM_{cd}$ es un segmento medio de $\triangle DBC$, por lo tanto, $NM_{cd} \parallel BC$, y así $NM_{cd} \parallel M_{ab}M$.

Igualmente vemos que $M_{ab}N \parallel MM{cd}$.

Por lo tanto, $\square M_{ab}NM_{cd}M$ es un paralelogramo, en consecuencia las diagonales $M_{ab}M_{cd}$ y $NM$ se intersecan en $J$ su punto medio.

En conclusión, $J$ es el punto medio de $M_{ab}M_{cd}$, $M_{bc}M_{da}$ y $NM$.

$\blacksquare$

Construcción de un cuadrilátero

Problema. Construye un cuadrilátero $\square ABCD$ conociendo $AB$, $BC$, $CD$, $DA$ y $M_{ab}M_{cd}$ donde $M_{ab}$ y $M_{cd}$ son los puntos medios de $AB$ y $CD$ respectivamente.

Solución. Primero construimos el paralelogramo $\square M_{ab}NM_{cd}M$, donde $M$ y $N$ son los puntos medios de las diagonales $AC$ y $BD$, de la siguiente manera.

De la demostración del teorema 2 sabemos que $M_{ab}M = NM_{cd} = \dfrac{BC}{2}$ y $M_{ab}N = MM_{cd} = \dfrac{AD}{2}$ (figura 4).

También sabemos que la diagonal de un paralelogramo lo divide en dos triángulos congruentes, por lo que basta construir un triángulo de lados $M_{ab}M_{cd}$, $\dfrac{BC}{2}$  y $\dfrac{AD}{2}$ y luego trazar paralelas por $M_{ab}$ y $M_{cd}$ a los lados del triángulo construido completando así el paralelogramo.

De manera similar construimos el paralelogramo $\square M_{ab}M_{bc}M_{cd}M_{da}$ donde $M_{bc}$ y $M_{da}$ serían los puntos medios de $BC$ y $AD$ respectivamente.

Sabemos también que $M_{bc}M \parallel AB$ por lo que trazamos la paralela $AB$ a $M_{bc}M$ por $M_{ab}$ tal que $AM_{ab} = M_{bc}B = \dfrac{AB}{2}$.

Con $A$ y $B$ construidos, por $M_{bc}$ trazamos $ABC$ tal que $BM_{bc} = M_{bc}C = \dfrac{BC}{2}$, similarmente construimos $D$.

$\blacksquare$

Teorema de Van Aubel

Teorema 3, de Van Aubel. Los segmentos que unen los centros de cuadrados construidos externamente sobre lados opuestos de un cuadrilátero convexo son perpendiculares y tienen la misma longitud.

Demostración. Sean $\square ABCD$ un cuadrilátero convexo y $\square EFBA$, $\square BGHC$, $\square DCIJ$, $\square LADK$, cuadrados construidos externamente sobre los lados de $\square ABCD$ y $O_1$, $O_2$, $O_3$, $O_4$, sus respectivos centros.

Figura 5

Sea $M = LB \cap ED$, como $AL = AD$ y $AB = AE$ y $\angle LAB = \angle DAE$, por criterio de congruencia LAL, $\triangle LAB \cong \triangle DAE$,
$\Rightarrow LB = DE$ y $\angle AEM = \angle ABM$.

Por lo tanto, $\square MEBA$ es cíclico, así, $\angle EMB = \angle EAB$, es decir $LB \perp DE$.

Considera $N$ el punto medio de $BD$, $NO_4$ y $NO_3$ son segmentos medios de $\triangle BDE$ y $\triangle DBL$ respectivamente.

Esto implica que $2NO_4 = DE$ y $NO_4 \parallel DE$ y $2NO_3 = LB$ y $NO_4 \parallel LB$.

Por lo tanto, $NO_4 = NO_3$ y $NO_4 \perp NO_3$.

Igualmente vemos que $NO_1 = NO_2$ y $NO_1 \perp NO_2$.

Sea $V = O_1O_3 \cap O_2O_4$, por criterio de congruencia LAL, $NO_1O_3 \cong NO_2O_4$,
$\Rightarrow O_1O_3 = O_2O_4$ y $\angle VO_1N = \angle VO_2N$.

Por lo tanto, $\square VNO_1O_2$ es cíclico, y así $O_1O_3 \perp O_2O_4$.

$\blacksquare$

Definición 3. Nos referiremos al cuadrilátero $\square O_1O_1O_3O_4$ como cuadrilátero externo de Van Aubel y a la intersección de sus diagonales como punto externo de Van Aubel.

Centroide del cuadrilátero de Van Aubel

Teorema 4. Un cuadrilátero y su cuadrilátero externo de Van Aubel tienen el mismo centroide.

Demostración. Sean $\square ABCD$ y $\square O_1O_2O_3O_4$ su cuadrilátero externo de Van Aubel, $M$ y $N$ los puntos medios de $AC$ y $BD$, y $V$ el punto externo de Van Aubel.

Figura 6

En el teorema anterior vimos que $NV$ es una cuerda común a las circunferencias cuyos diámetros son $O_1O_2$ y $O_3O_4$, por lo tanto la línea que une sus centros $M_{1,2}M_{3,4}$ biseca a $NV$ y $M_{1,2}M_{3,4} \perp NV$.

De manera análoga podemos ver que $MV$ es una cuerda común a las circunferencias cuyos diámetros son $O_2O_3$ y $O_4O_1$ y por lo tanto la línea que une sus centros $M_{2,3}M_{4,1}$ biseca a $MV$ y $M_{2,3}M_{4,1} \perp MV$.

Por otra parte, por el teorema de Van Aubel las diagonales del cuadrilátero de Van Aubel son perpendiculares y tienen la misma longitud. Entonces por el corolario, su paralelogramo de Varignon $\square M_{1,2}M_{2,3}M_{3,4}M_{4,1}$ es un cuadrado, en particular, $M_{1,2}M_{3,4} \perp M_{2,3}M_{4,1}$.

En consecuencia, en $\triangle MNV$, $M_{1,2}M_{2,3} \parallel MV$ y $M_{1,2}M_{2,3}$ pasa por el punto medio de $NV$, por lo tanto $M_{1,2}M_{2,3}$ biseca a $MN$.

Igualmente podemos ver que $M_{2,3}M_{4,1}$ biseca a $MN$.

Por el teorema 2 sabemos que el punto medio $J$ de $MN$ es el centroide de $\square ABCD$ y que la intersección de las bimedianas $M_{1,2}M_{3,4}$ y $M_{2,3}M_{4,1}$ es el centroide de $\square O_1O_2O_3O_4$.

$\blacksquare$

Tarea moral

  1. Muestra que un cuadrilátero es dividido por una de sus diagonales en dos triángulos de igual área si y solo si la diagonal biseca a la otra diagonal.
  2.  Verifica que el teorema de Varignon se cumple para los cuadriláteros cóncavo y cruzado.
  3. Sean $\square ABCD$ un cuadrilátero $U$ y $V$ los puntos medios de $\overline{AC}$ y $\overline{BD}$ respectivamente y $T$ la intersección de $\overline{AB}$ con $\overline{CD}$. Prueba que $(\triangle TUV) = \dfrac{(\square ABCD)}{4}$.
    Sugerencia. Considera $H$ y $F$ los puntos medios de $\overline{AD}$ y $\overline{BC}$ y los cuadriláteros $\square ACBD$, $\square CUFT$ y $\square BVFT$ para calcular el área de los triángulos $\triangle UVF$, $\triangle UFT$ y $\triangle VFT$.
Figura 7
  1. Construye un cuadrilátero dados dos ángulos opuestos, la longitud de las diagonales y el ángulo entre las diagonales.
  2. Verifica que el teorema de Van Aubel se cumple cuando los cuadrados son construidos internamente, y también para los para los cuadriláteros cóncavo y cruzado.
  3. Muestra que en un cuadrilátero convexo los puntos medios de sus diagonales y los puntos medios de las diagonales de su cuadrilátero externo de Van Aubel, forman un cuadrado, y que el punto externo de Van Aubel pertenece al circuncírculo de este cuadrado.

Más adelante…

En la siguiente entrada continuaremos el estudio de los cuadriláteros cíclicos que comenzamos en la entada teorema de Ptolomeo.

Entradas relacionadas

Fuentes