Calculamos $\chi_{A}(X)$ expandiendo $det(XI_{5} – A)$ con respecto a la tercera fila y obtenemos (usando de nuevo la expansión respecto a la segunda fila en el nuevo determinante) \begin{align*} \chi_{A}(X) &= X \begin{vmatrix} X-1 & 0 & 0 & -2 \\ 0 & X & 0 & 0 \\ 0 & -1 & X & 0 \\ 1 & 0 & 0 & X+2 \end{vmatrix} \\ &= X^{2} \begin{vmatrix} X-1 & 0 & 2 \\ 0 & X & 0 \\ 1 & 0 & X+2 \end{vmatrix} \\ &= X^{3} \begin{vmatrix} X-1 & -2 \\ 1 & X+2 \end{vmatrix} \\ &= X^{4} (X+1) \end{align*}
El eigenvalor $-1$ tiene multiplicidad algebraica 1, por lo que hay un solo bloque de Jordan asociado con este eigenvalor, de tamaño 1. Ahora, veamos qué pasa con el eigenvalor 0 que tiene multiplicidad algebraica 4. Sea $N_{m}$ el número de bloques de Jordan de tamaño $m$ asociados con ese eigenvalor. Por el Teorema visto en la nota anterior tenemos que $$N_{1} = rango(A^{2}) – 2rango(A) + 5,$$ $$N_{2} = rango(A^{3}) – 2rango(A^{2}) + rango(A)$$ etcétera. Puedes checar fácilmente que $A$ tiene rango 3.
Nota que $A^{2}$ tiene rango 2 (pues una base del generado por sus filas está dada por la primera y cuarta fila) y $A^{3}$ tiene rango 1. De donde, $$N_{1} = 2-2 \cdot 3 + 5 = 1,$$ por lo que hay un bloque de Jordan de tamaño 1 y $$N_{2} = 1-2 \cdot 2 + 3 = 0,$$ entonces no hay un bloque de Jordan de tamaño 2. Dado que la suma de los tamaños de los bloques de Jordan asociados con el eigenvalor 0 es 4, y como ya sabemos que hay un bloque de tamaño 1 y no hay de tamaño 2, deducimos que hay un bloque de tamaño 3 y que la forma canónica de Jordan de $A$ es $$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1& 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$
Ejemplo 2
Más adelante…
Con esto finalizamos el curso de Álgebra Lineal II, lo que sigue es el maravilloso mundo del Álgebra Moderna.
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
Usa el Teorema de Jordan para probar que cualquier matriz $A \in M_{n}(\mathbb{C})$ es similar a su transpuesta.
Prueba que si $A \in M_{n}(\mathbb{C})$ es similar a $2A$, entonces $A$ es nilpotente.
Usa el teorema de Jordan para probar que si $A \in M_{n}(\mathbb{C})$ es nilpotente, entonces $A$ es similar a $2A$.
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»
En la entrada puntos nobles del triangulo, vimos que las medianas de un triangulo concurren en un punto, al que llamamos centroide, y que este punto tiene la propiedad de trisecar a las medianas. En esta entrada estudiaremos algunas propiedades más de las medinas y el centroide.
Medianas como los lados de un triángulo
Teorema 1. Si con las medianas de un triángulo dado construimos otro triangulo, entonces cada mediana del triángulo construido es igual a tres cuartos uno de los lados del triángulo dado.
Demostración. Sean $\triangle ABC$ y $AA´$, $BB’$ y $CC’$ las medianas del triángulo.
Construimos $D \in C’B’$ tal que $C’B’ = B’D$, como $C´B´$ es un segmento medio de $\triangle ABC$ entonces $C’B’ \parallel BC$ y $2C’B’ = BC$.
Lo anterior implica que $\square B’BA’D$ es un paralelogramo y por lo tanto $BB’ = A’D$.
Figura 1
Como las diagonales de $\square AC’CD$ se cortan en su punto medio entonces $\square AC’CD$ es un paralelogramo, por lo tanto, $CC’ = AD$, entonces los lados de $\triangle AA’D$ son las medianas de $\triangle ABC$, por criterio LLL, cualquier otro triangulo con los mismos lados será congruente con $\triangle AA’D$.
Sea $E = AA’ \cap C’B’$, como $A’C’$ es un segmento medio de $\triangle ABC$ entonces $\square AC’A’B’$ es un paralelogramo, por lo tanto, $E$ es el punto medio de $AA’$ y de $C’B’$.
Por lo anterior tenemos que $DE$ es mediana de $\triangle ADA’$ y que $DE = \dfrac{3}{4}$, pues por construcción $C’B’ = B’D$.
Dado que $C’D = BC$ $\Rightarrow DE = \dfrac{3}{4}BC$.
Con una construcción similar podemos ver que las otras medianas de $\triangle ADA’$ son iguales a $\dfrac{3}{4}AC$ y $\dfrac{3}{4}AB$.
Observación. Notemos que si seguimos este proceso de construir triángulos con las medianas del triángulo anterior obtenemos dos grupos de triángulos semejantes, un grupo conformado por el primer, el tercer, el quinto triángulo etc. En el otro grupo estarían el segundo, el cuarto triángulo … ambos con razón de semejanza $\dfrac{3}{4}$.
$\blacksquare$
Corolario 1. El área de un triángulo construido con las medianas de un triángulo dado, es igual a tres cuartos el área del triángulo dado.
Demostración. El área de $\triangle ADA’$ (figura 1) es igual a la suma de las áreas de $\triangle EDA$ y $\triangle EDA’$ que tienen la misma base $ED$ y la suma de sus alturas es igual a la altura de $\triangle ABC$ y por el teorema 1, $DE = \dfrac{3}{4}BC$.
Problema 1. Construir un triángulo dadas las longitudes de sus medianas $m_a$, $m_b$ y $m_c$.
Por el teorema 1, sabemos que las medianas del triángulo cuyos lados son $m_a$, $m_b$ y $m_c$, están en proporción $\dfrac{3}{4}$ a los lados del triángulo buscado.
Para encontrar las medianas del triángulo con lados $m_a$, $m_b$ y $m_c$, podemos construir este triangulo y luego sus medianas o podemos calcular sus longitudes con el teorema de Apolonio.
Después, multiplicamos cada valor obtenido por $\dfrac{4}{3}$ y así obtendremos los lados del triangulo requerido.
$\blacksquare$
Problema 2. Dados una circunferencia y un punto dentro de esta, es posible inscribir en la circunferencia una infinidad de triángulos que tienen como centroide el punto dado.
Demostración. Sean $\Gamma(O)$ y $G$ la circunferencia y el punto dado, tomamos $A \in \Gamma(O)$, sobre la recta $AG$ construimos $A’$ tal que $GA’ = \dfrac{AG}{2}$.
Si $A’$ cae dentro de $\Gamma(O)$ por $A’$ trazamos una perpendicular a $OA’$ que interseca a $\Gamma(O)$ en $B$ en $C$, como $\triangle BOC$ es isósceles y $OA’$ es la altura por $O$, entonces $A’$ es el punto medio de $BC$.
Figura 2
En $\triangle ABC$ se cumple que $AA’$ es mediana y $G$ triseca a $AA’$, como el centroide de un triángulo es el único que tienen esa propiedad, entonces $G$ es el centroide de $\triangle ABC$.
Notemos que $A$ y $A’$ están en homotecia con centro en $G$ y razón $\dfrac{-1}{2}$, como $A$ describe una circunferencia, $A’$ describe una circunferencia.
Entonces hay dos posibilidades, que la homotecia de $\Gamma(O)$ este totalmente contenida dentro de ella, con lo que con cualquier punto $A$ de $\Gamma(O)$ será posible hacer la construcción previa, o la homotecia de $\Gamma(O)$ este parcialmente contenida dentro de $\Gamma(O)$ y solo con un arco de $\Gamma(O)$ será posible hacer la construcción.
Finalmente, notemos que no es posible que la homotecia de $\Gamma$ se encuentre completamente fuera de esta pues $G$ es un punto interior de $\Gamma$.
$\blacksquare$
Una propiedad del centroide
Lema. Sea $P$ un punto dentro de un triángulo $\triangle ABC$, entonces las áreas $(\triangle APB) = (\triangle APC)$ si y solo si $P$ se encuentra en la mediana $AA’$.
Demostración. Supongamos que $(\triangle APB) = (\triangle APC)$. Como $\triangle APB$ y $\triangle APC$ tienen la misma base $AP$ entonces sus alturas son iguales es decir la distancia de $B$ a $AP$ es igual a la distancia de $C$ a $AP$.
Figura 3
Ahora consideremos $A’ = AP \cap BC$, los triángulos $\triangle A’PB$ y $\triangle A’CP$ tienen la misma base $PA’$, por lo anterior sus alturas por B y C respectivamente también son iguales y así sus áreas son iguales $(\triangle A’PB) = (\triangle A’CP)$.
Por otro lado, para ambos triángulos, $\triangle A’PB$ y $\triangle A’CP$, la altura trazada por $P$ es la misma, esto implica que las respectivas bases son iguales, es decir $BA’ = A’C$.
Por lo tanto, $P$ está en la mediana trazada por $A$.
Recíprocamente supongamos que $P$ es un punto en la mediana $AA’$, como los pares de triángulos $\triangle BA’A$, $\triangle A’CA$ y $\triangle BA’P$, $\triangle A’CP$ tienen la misma altura desde $A$ y $P$ respectivamente, entonces $(\triangle BA’A) = (\triangle A’CA)$ y $(\triangle BA’P) = (\triangle A’CP)$,
Por lo tanto, $(\triangle BA’A) – (\triangle BA’P) = (\triangle A’CA) – (\triangle A’CP)$ $\Rightarrow (\triangle APB) = (\triangle APC)$.
$\blacksquare$
Teorema 2. Sea $G$ un punto dentro de un triángulo $\triangle ABC$, entonces $(\triangle AGB) = (\triangle AGC) = (\triangle BGC)$ si y solo si $G$ es el centroide de $\triangle ABC$.
Demostración. Supongamos que $(\triangle AGB) = (\triangle AGC) = (\triangle BGC)$, por el teorema anterior esto ocurre si y solo si $G$ está en la intersección de las medianas, si y solo si $G$ es el centroide de $\triangle ABC$.
$\blacksquare$
Proposición 1. Sean $\triangle ABC$ con $BC = a$, $AC = b$ y $AB = c$. Sean $G$ el centroide y $P$, $Q$, $R$ los pies de las perpendiculares desde $G$ a los lados $AB$, $BC$ y $AC$ respectivamente, entonces $(\triangle PQR) = \dfrac{4}{9}(\triangle ABC)^3(\dfrac{a^2 + b^2 + c^2}{a^2b^2c^2})$.
Figura 4
Demostración. Por el teorema 3, $\triangle AGB$, $\triangle AGC$ y $\triangle BGC$ tienen la misma área, entonces $(\triangle BGC) = \dfrac{BC \times GQ}{2}$ $\Rightarrow GQ = \dfrac{2(\triangle BGC)}{a} = \dfrac{2(\triangle ABC)}{3a}$.
De manera análoga tenemos que $GP = \dfrac{2(\triangle ABC)}{3c}$ y $GR = \dfrac{2(\triangle ABC)}{3b}$.
Notemos que en $\square PBQG$, $\angle P + \angle Q = \pi$, en consecuencia tenemos que $\angle G + \angle B = \pi$ $\Rightarrow \sin \angle PGQ = \sin \angle B$
Recordemos que podemos calcular el área de $\triangle ABC$ con la formula $\dfrac{ac \sin \angle B}{2}$.
Teorema 3. Sean $\triangle ABC$, $G$ su centroide y $P$ un punto en el plano, entonces tenemos la siguiente igualdad $PA^2 + PB^2 + PC^2 = GA^2 + GB^2 + GC^2 + 3PG^2$.
Demostración. Consideremos $A’$ y $M$ puntos medios de $BC$ y $AG$ respectivamente, con el teorema de Apolonio podemos calcular las medianas de los triángulos $\triangle BPC$, $\triangle A’PM$ y $\triangle GPA$ y tomemos en cuenta que $GA = MA’$.
Ahora aplicamos el teorema de Apolonio a $\triangle BGC$ y obtenemos $GB^2 + GC^2 = 2GA’^2 + \dfrac{BC^2}{2}$.
Por lo tanto, $PA^2 + PB^2 + PC^2 = 3PG^2 + GA^2 + GB^2 + GC^2$.
$\blacksquare$
Proposición 2. La suma de los cuadrados de las distancias del centroide de un triángulo a sus vértices es igual a un tercio la suma de los cuadrados de los lados del triángulo.
Demostración. Sea $\triangle ABC$ con $a = BC$, $b = AC$ y $c = AB$, con la formula para las medianas obtenemos: $GA^2 = \dfrac{4}{9}AA’^2 = \dfrac{4}{9} (\dfrac{b^2 + c^2}{2} – \dfrac{a^2}{4})$, $GB^2 = \dfrac{4}{9}BB’^2 = \dfrac{4}{9} (\dfrac{a^2 + c^2}{2} – \dfrac{b^2}{4})$, $GC^2 = \dfrac{4}{9}CC’^2 = \dfrac{4}{9} (\dfrac{a^2 + b^2}{2} – \dfrac{c^2}{4})$.
Por lo tanto, $GA^2 + GB^2 + GC^2 = \dfrac{a^2 + b^2 + c^2}{3}$.
$\blacksquare$
Corolario 2. La distancia entre el centroide $G$ y el circuncentro $O$ de un triángulo $\triangle ABC$ con circunradio $R$ se puede expresar de la siguiente forma:
$OG^2 = R^2 – (\dfrac{a^2 + b^2 + c^2}{9})$.
Demostración. Por el teorema 3 y la proposición 2 tenemos lo siguiente $3R^2 = OA^2 + OB^2 + OC^2 = 3OG^2 + GA^2 + GB^2 + GC^2$ $= 3OG^2 + \dfrac{a^2 + b^2 + c^2}{3}$.
En la siguiente entrada estudiaremos algunas propiedades de un triangulo especial asociado a un triangulo dado, aquel que tiene como vértices los puntos medios del triangulo dado. Esto nos permitirá mostrar que el ortocentro, el centroide y el circuncentro de un triángulo siempre son colineales.
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
Construye un triángulo dados dos vértices y el centroide.
Prueba que en un triángulo la recta que une el punto medio de una de sus medianas con uno de los vértices del triángulo triseca el lado opuesto al vértice considerado.
Muestra que las medianas de un triángulo dividen al triangulo en seis triángulos que tienen la misma área.
Demuestra que en un triangulo, $i)$ entre cualesquiera dos de sus medianas la menor de ellas biseca al lado mas grande, $ii)$ si dos de sus medianas son iguales entonces el triangulo es isósceles.
Sean $\triangle ABC$ y $AA’$, $BB’$, $CC’$ sus medianas, muestra que $\frac{3}{4}(AB^2 + BC^2 + AC^2) = AA’^2 +BB’^2 + CC’^2$.
Sea $\triangle ABC$ con medianas $AA’$, $BB’$ y $CC’$, sean $m = AA’ + BB’ + CC’$ y $s = AB + BC + CA$, muestra que $\frac{3}{2}s > m > \frac{3}{4}s$.
Altshiller, N., College Geometry. New York: Dover, 2007, pp 65-71.
Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 80-84.
Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 14.
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»
En las notas anteriores hemos desarrollado el Teorema de Jordan, y ahora veremos cómo podemos clasificar matrices por similaridad.
Sección
Supongamos que $A$ es una matriz similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$
Entonces el polinomio característico de $A$ es $$\chi_{A}(X) = \prod_{i=1}^{d}\chi_{J_{k_{i}}} (\lambda_{i})(X).$$
Ahora, dado que $J_{n}$ es nilpotente tenemos $\chi_{J_{k_{i}}}(X) = X^{n}$ y así $$\chi_{J_{n}(\lambda)}(X) = (X – \lambda)^{n}.$$
Se sigue que $$\chi_{A}(X) = \prod_{i=1}^{d} (X – \lambda_{i})^{k_{i}}$$ y así necesariamente $\lambda_{1}, \ldots, \lambda_{d}$ son todos eigenvalores de $A$. Nota que no asumimos que $\lambda_{1}, \ldots, \lambda_{d}$ sean distintos a pares, por lo que no podemos concluir de la igualdad anterior que $k_{1}, \ldots, k_{d}$ sean las multiplicidades algebráicas de los eigenvalores de $A$. Esto no es verdad en general: varios bloques de Jordan correspondientes a un dado eigenvalor pueden aparecer. El problema de la unicidad se resuelve completamente por el siguiente:
Teorema: Supongamos que una matriz $A \in M_{n}(F)$ es similar a $$\begin{pmatrix} J_{k_{1}}(\lambda_{1}) & 0 & \cdots & 0 \\ 0 & J_{k_{2}}(\lambda_{2}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_{d}}(\lambda_{d}) \end{pmatrix}$$ para algunos enteros positivos $k_{1}, \ldots, k_{d}$ que suman $n$ y algunas $\lambda_{1}, \ldots, \lambda_{d} \in F$. Entonces
Cada $\lambda_{i}$ es un eigenvalor de $A$.
Para cada eigenvalor $\lambda$ de $A$ y cada entero positivo $m$, el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$ is $$N_{m}(\lambda) = rango(A – \lambda I_{n})^{m+1} – 2 rango(A – \lambda I_{n})^{m} + rango(A – \lambda I_{n})^{m-1}$$ y depende sólo en la clase de similaridad de $A$.
Demostración. Ya vimos el inciso 1. La prueba del inciso 2 es muy similar a la solución del Problema __. Más precisamente, sea $B = A – \lambda I_{n}$ y observa que $B^{m}$ es similar a $\begin{pmatrix} (J_{k_{1}}(\lambda_{1}) – \lambda I_{k_{1}})^{m} & 0 & \cdots & 0 \\ 0 & (J_{k_{2}}(\lambda_{2}) – \lambda I_{k_{2}})^{m} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (J_{k_{d}}(\lambda_{d}) – \lambda I_{k_{d}})^{m}\end{pmatrix}$, por lo que $\displaystyle rango(B^{m}) = \sum_{i=1}^{d} rango(J_{k_{i}} (\lambda_{i}) – \lambda I_{k_{i}})^{m}$.
Ahora, el rango de $(J_{n}(\lambda) – \mu I_{n})^{m}$ es
$n$ si $\lambda \neq \mu$, como en este caso $$J_{n}(\lambda) – \mu I_{n} = J_{n} + (\lambda – \mu) I_{n}$$ es invertible,
$n-m$ para $\lambda = \mu$ y $m \leq n$, como se sigue del Problema __.
0 para $\lambda = \mu$ y $m > n$, dado que $J^{n}_{n} = O_{n}$.
De ahí, si $N_{m}(\lambda)$ es el número de bloques de Jordan $J_{m}(\lambda)$ entre $J_{k_{1}}(\lambda_{1}), \ldots, J_{k_{d}}(\lambda_{d})$, entonces $$rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} (k_{i} – m) + \sum_{\lambda_{i} \neq \lambda} k_{i},$$ luego sustrayendo esas igualdades para $m-1$ y $m$ se tiene que $$rango(B^{m-1}) – rango(B^{m}) = \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} \geq m}} 1$$ y finalmente \begin{align*} rango(B^{m-1}) – 2rango(B^{m}) + rango(B^{m+1}) = \\ (rango(B^{m-1}) – rango(B^{m})) – (rango(B^{m}) – rango(B^{m+1})) = \\ \sum_{\substack{\lambda_{i} = \lambda \\ k_{i} = m}} 1 = N_{m}(\lambda) \end{align*} como queríamos.
$\square$
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
¿Cuáles son las posibles formas canónicas de Jordan de una matriz cuyo polinomio característico es $(X-1)(X-2)^{2}$?
Considera una matriz $A \in M_{6}(\mathbb{C}) de rango 4 cuyo polinomio mínimo es $X(X-1)(X-2)^{2}$.
¿Cuáles son los eigenvalores de $A$?
¿$A$ es diagonalizable?
¿Cuáles son las posibles formas canónicas de Jordan de $A$?
Más adelante…
En la siguiente nota veremos algunos ejemplos de cómo funciona todo esto.
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»
En la entrada anterior comenzamos el estudio del método de valores y vectores propios para resolver sistemas de ecuaciones lineales homogéneas con coeficientes constantes, de la forma $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Vimos que si somos capaces de encontrar $n$ vectores propios de la matriz $\textbf{A}$ linealmente independientes, entonces las funciones de la forma $e^{\lambda t}\textbf{v}$, donde $\lambda$ es un valor propio con vector propio asociado $\textbf{v}$, son soluciones linealmente independientes, y por tanto la combinación lineal de estas será la solución general del sistema. También estudiamos el caso cuando $\textbf{A}$ tiene todos sus valores propios reales y distintos.
En esta entrada nos dedicaremos a estudiar el caso cuando $\textbf{A}$ tiene valores propios complejos. Dado que $e^{\lambda t}\textbf{v}$ es una solución compleja al sistema, entonces la solución general sería una función con valores complejos. Sin embargo nosotros queremos soluciones con valores reales, por lo que debemos hallar una forma de generar soluciones de esta forma.
Lo primero será ver que las partes real e imaginaria de una solución compleja al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ serán soluciones reales al mismo sistema. Además este par de soluciones serán linealmente independientes. Así, seremos capaces de encontrar un conjunto linealmente independiente de $n$ soluciones reales al sistema mediante el método de valores y vectores propios que nos ayuda a encontrar soluciones de la forma $e^{\lambda t}\textbf{v}$.
Finalizaremos la entrada con tres ejemplos, uno de ellos el problema del oscilador armónico, el cual revisamos en el siguiente video y que tiene asociado una ecuación diferencial de segundo orden. Resolveremos el mismo problema pero ahora mediante un sistema de ecuaciones homogéneo.
Método de valores y vectores propios. Raíces complejas del polinomio característico
Encontramos dos soluciones reales al sistema $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ dada una solución compleja de la forma $e^{\lambda t}\textbf{v}$ donde $\lambda$ es un valor propio complejo con vector propio asociado $\textbf{v}$. Las soluciones reales serán las partes real e imaginaria de la solución compleja. Además las dos soluciones reales serán linealmente independientes.
El oscilador armónico y más ejemplos
En el primer video resolvemos un par de ejemplos de sistemas cuya matriz asociada tiene valores propios complejos. En el segundo video resolvemos el problema del oscilador armónico sin fricción y sin fuerzas externas mediante un sistema de ecuaciones.
Tarea moral
Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.
Supongamos que $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ es un sistema lineal homogéneo con coeficientes constantes de 4 ecuaciones, y supongamos que $\lambda$, $\bar{\lambda}$, $\mu$ y $\bar{\mu}$ son los valores propios complejos de $\textbf{A}$ con vectores propios $\textbf{v}$, $\bar{\textbf{v}}$, $\textbf{w}$ y $\bar{\textbf{w}}$, respectivamente. Prueba que si $\textbf{Y}_{1}(t)$, $\textbf{Z}_{1}(t)$ son las partes real e imaginaria de $e^{\lambda t}\textbf{v}$, y si $\textbf{Y}_{2}(t)$, $\textbf{Z}_{2}(t)$ son las partes real e imaginaria de $e^{\mu t}\textbf{w}$ entonces $\textbf{Y}_{1}(t)$, $\textbf{Z}_{1}(t)$, $\textbf{Y}_{2}(t)$ y $\textbf{Z}_{2}(t)$ son soluciones linealmente independientes al sistema.
Supongamos que $\dot{\textbf{X}}=\textbf{A}\textbf{X}$ es un sistema lineal homogéneo con coeficientes constantes de 3 ecuaciones. ¿Es posible que la matriz $\textbf{A}$ tenga tres valores propios complejos?
Demuestra que la matriz $\begin{pmatrix} a & b\\ -b & a\end{pmatrix}$, con $b\neq0$ tiene valores propios complejos.
Encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} -1 & 2\\ -1 & -1\end{pmatrix}\textbf{X}.$$
Resuelve el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 2 & -6\\ 2 & 1\end{pmatrix}\textbf{X} \, \, \, \, \, ; \, \, \, \, \, \textbf{X}(0)=\begin{pmatrix} 1\\ 0 \end{pmatrix}.$$
Más adelante
En la próxima entrada concluimos el estudio al método de valores y vectores propios estudiando el caso cuando $\textbf{A}$ es una matriz diagonalizable con valores propios repetidos, y también el caso cuando $\textbf{A}$ no es diagonalizable, es decir, cuando $\textbf{A}$ no tiene $n$ vectores propios linealmente independientes, por lo que no se pueden generar $n$ soluciones linealmente independientes al sistema en la forma que lo hemos venido haciendo. En este caso debemos introducir un concepto nuevo, que es el de vector propio generalizado, y modificar el método de valores y vectores propios para encontrar las $n$ soluciones linealmente independientes al sistema.
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»
En la entrada anterior estudiamos de manera un poco más sistemática las matrices y transformaciones lineales nilpotentes. Lo que haremos ahora es enunciar el teorema de la forma canónica de Jordan para matrices nilpotentes. Este es un teorema de existencia y unicidad. En esta entrada demostraremos la parte de la existencia. En la siguiente entrada hablaremos de la unicidad y de cómo encontrar la forma canónica de Jordan de matrices nilpotentes de manera práctica.
El teorema de Jordan para nilpotentes
El teorema que queremos demostrar tiene dos versiones: la de transformaciones y la matricial. La versión en transformaciones dice lo siguiente.
Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $T:V\to V$ una transformación lineal nilpotente. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales existe una base de $V$ en la cual $T$ tiene como forma matricial a la siguiente matriz de bloques:
Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$
A esta matriz de bloques (ya sea para una transformación, o para una matriz) le llamamos la forma canónica de Jordan de $A$.
En vista de que dos matrices son similares si y sólo si representan a la misma transformación lineal en distintas bases, entonces ambos teoremas son totalmente equivalentes. Así, basta enfocarnos en demostrar una de las versiones. Haremos esto con la versión para transformaciones lineales.
Trasnformaciones nilpotentes y unos vectores linealmente independientes
En esta sección enunciaremos un primer resultado auxiliar para demostrar la existencia de la forma canónica de Jordan. Veremos que a partir de una transformación lineal nilpotente podemos obtener algunos vectores linealmente independientes.
Proposición. Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal de índice $k$. Sea $v$ un vector tal que $T^{k-1}(v)\neq 0$, el cual existe ya que $T^{k-1}$ no es la transformación lineal cero. Entonces:
Los vectores $v$, $T(v)$, $\ldots$, $T^{k-1}(v)$ son linealmente independientes.
El subespacio $W$ que generan es de dimensión $k$ y es estable bajo $T$.
La transformación $T$ restringida a $W$ en la base $T^{k-1}(v)$, $T^{k-2}(v)$, $\ldots$, $T(v)$, $v$ tiene como matriz al bloque de Jordan $J_{0,k}$. Ojo. Aquí los vectores los escribimos en orden contrario, empezando con la mayor potencia de $T$ aplicada.
Demostración. Probemos las afirmaciones una por una. Para empezar, supongamos que para ciertos escalares $\alpha_0,\ldots,\alpha_{k-1}$ tenemos que $$\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v)=0.$$
Vamos a probar inductivamente de $0$ a $k-1$ que $\alpha_k=0$. Para mostrar que $\alpha_0=0$, aplicamos $T^{k-1}$ a la combinación lineal anterior para obtener:
Aquí estamos usando en todos los sumandos, excepto el primero, que $T^k=0$. Como $T^{k-1}(v)\neq 0$, concluimos que $\alpha_0=0$. Suponiendo que ya hemos mostrado $\alpha_0=\ldots=\alpha_l=0$, la combinación lineal con la que empezamos queda como $$\alpha_{l+1}T^{l+1}(v)+\alpha_{l+2}T^{l+2}(v)+\ldots+\alpha_{k-1}T^{k-1}(v)=0.$$ Aplicando $T^{k-l-2}$ y usando un argumento similar al anterior se llega a que $\alpha_{l+1}=0$. Esto muestra que la única combinación lineal de los vectores que da cero es la combinación lineal trivial, así que son linealmente independientes.
De manera inmediata obtenemos entonces que esos $k$ vectores generan un subespacio $W$ de dimensión $k$. Para ver que $W$ es $T$ estable, tomemos un elemento $w$ en $W$, es decir $$w=\alpha_0v+\alpha_1T(v)+\ldots+\alpha_{k-1}T^{k-1}(v)$$ para algunos escalares $\alpha_0,\ldots,\alpha_{k-1}$. Debemos ver que $T(w)$ está nuevamente en $W$. Haciendo las cuentas y usando nuevamente que $T^k=0$ obtenemos:
Este vector de nuevo es combinación lineal de los vectores que nos interesan, así que $T(w)$ está en $W$, como queríamos.
La afirmación de la forma matricial es inmediata pues precisamente
$$T(T^{j}(v))=0\cdot T^{n-1}(V)+\ldots+1\cdot T^{j+1}(v)+\ldots+0\cdot T(v) + 0\cdot v,$$ de donde se lee que las columnas de dicha forma matricial justo son las del bloque de Jordan $J_{0,k}$.
$\square$
El teorema anterior da otra demostración de algo que ya habíamos mostrado en la entada anterior: el índice de una matriz en $M_n(F)$ (o de una transformación nilpotente en un espacio vectorial de dimensión $n$) no puede exceder $n$.
Encontrar un subespacio complementario y estable
Ahora veremos otro resultado auxiliar que necesitaremos para demostrar la existencia de la forma canónica de Jordan. A partir de él podemos conseguirnos un «subespacio complementario y estable» que en la prueba de la existencia nos ayudará a proceder inductivamente. Este truco ya lo hemos visto antes en la clasificación de matrices ortogonales y el la demostración del teorema espectral.
Proposición. Sea $V$ un espacio vectorial de dimensión finita $n$ y $T:V\to V$ una transformación lineal nilpotente de índice $k$. Tomemos $v$ un vector tal que $T^{k-1}(v)\neq 0$. Sea $W$ el subespacio generado por $v,T(v),\ldots,T^{k-1}(v)$. Entonces, existe un subespacio $W’$ estable bajo $T$ y tal que $T=W\oplus W’$.
La principal dificultad para probar esta proposición es una cuestión creativa: debemos saber de dónde sacar el espacio $W’$. Para ello, haremos uso de la transformación transpuesta y de un espacio ortogonal por dualidad. Como recordatorio, si $T:V\to V$ es una transformación lineal, entonces su transformación transpuesta es una transformación lineal $^tT:V^\ast \to V^\ast$ para la cual $^tT(\ell)(u)=\ell(T(u))$ para cualquier forma lineal $\ell$ y cualquier vector $u$ en $V$.
Demostración. Primero, nos enfocamos en construir $W’$. Para ello procedemos como sigue. Como $T^{k-1}(v)\neq 0$, entonces existe una forma lineal $\ell$ tal que $\ell(T^{k-1}(v))\neq 0$. Se puede mostrar que $S:=\text{ }^t T$ también es nilpotente de índice $k$. Por la proposición de la sección anterior, tenemos entonces que $\ell, S(\ell),\ldots,S^{k-1}(\ell)$ son $k$ vectores linealmente independientes en $V^\ast$ y por lo tanto que generan un subespacio $Z$ de dimensión $k$. El espacio $W’$ que propondremos será $Z^\bot$.
Debemos mostrar que:
En efecto $V=W\oplus W’$.
En efecto $W’$ es $T$ estable.
Para la primer parte, usando teoría de espacios ortogonales tenemos que $$\dim(W’)=\dim(Z^\bot)=n-\dim(Z)=n-k,$$ así que los subespacios tienen la dimensión correcta para ser complementarios. Además, si $u\in W\cap W’$, entonces $u$ es combinación lineal de $v, T(v),\ldots, T^{k-1}(v),$ digamos $$u=\alpha_0v+\ldots+\alpha_{k-1}T^{k-1}(v)$$ y se anula por $\ell, S(\ell),\ldots,S^{k-1}(\ell)$, lo que quiere decir que se anula por $\ell, \ell\circ T, \ldots, \ell \circ T^{k-1}$. Esto permite probar iterativamente que $\alpha_0=\ldots=\alpha_{k-1}=0$, de modo que $u=0$. Con esto, $W$ y $W’$ son de intersección trivial y dimensiones complementarias, lo cual basta para que $V=W\oplus W’$.
Para terminar, debemos ver que $W’$ es $T$ estable. Tomemos un $u$ en $W’$, es decir, tal que se anula por $\ell, \ell\circ T, \ldots, \ell \circ T^{k-1}$. Al aplicar $T$, tenemos que $T(u)$ también se anula por todas estas transformaciones. Esto se debe a que para $\ell \circ T^j$ con $j\leq k-2$ se anula ya que $\ell\circ T^j(T(u))=\ell\circ T^{j+1}(u)=0$ por cómo tomamos $u$ y para $\ell \circ T^{k-1}$ se anula pues $T$ es nilpotente de índice $k$.
$\square$
Existencia de forma canónica de Jordan para nilpotentes
La idea para encontrar la forma canónica de Jordan debe ser clara a estas alturas: se procederá por inducción, el caso base será sencillo, asumiremos la hipótesis inductiva y para hacer el paso inductivo descomponeremos al espacio $V$ mediante la proposición de la sección anterior. Veamos los detalles.
Demostración (existencia de forma canónica de Jordan para nilpotentes). Estamos listos para probar la existencia de la forma canónica de Jordan para una transformación lineal nilpotente $T:V\to V$ con $V$ un espacio vectorial de dimensión finita $n$. Procederemos por inducción en la dimensión. Si $n=1$, entonces $V$ es generado por un vector $v$ y la transformación lineal $T$ debe mandarlo al vector $0$ para ser nilpotente. En esta base, $T(v)=0$ y la matriz que representa a $T$ es entonces $(0)=J_{0,1}$.
Supongamos que existe la forma canónica de Jordan para cuando $V$ es de cualquier dimensión menor a un entero positivo dado $n$. Tomemos $V$ un espacio vectorial de dimensión $n$ y $T:V\to V$ una transformación lineal nilpontente. Si $T$ es de índice $n$, entonces $T^{n-1}(v),\ldots,T(v),v$ son linealmente independientes y por lo tanto son una base de $V$. La forma matricial de $T$ en esta base es el bloque de Jordan $J_{0,n}$, en cuyo caso terminamos.
De otra forma, el índice es un número $k<n$. Entonces, $T^{k-1}(v),\ldots,T(v),v$ generan un subespacio estable $W$ de dimensión $k$. Por la proposición de la sección anterior, podemos encontrar un subespacio complementario $W’$ de dimensión $n-k<n$ y estable bajo $T$. Como la restricción de $T$ a $W’$ tiene codominio $W’$, es nilpotente y $\dim(W)<\dim(V)$, entonces por hipótesis inductiva $W’$ tiene una base $\beta$ bajo la cual la restricción de $T$ a $W’$ tiene como forma matricial una matriz diagonal por bloques con puros bloques de Jordan del estilo $J_{0,k_j}$. Al completar $\beta$ con $T^{k-1}(v),\ldots,T(v),v$ , obtenemos una base de $V$ en la cual $T$ tiene como forma matricial una matriz diagonal por bloques con puros bloques de Jordan del estilo $J_{0,k_j}$ (que vienen de la hipótesis inductiva) y un bloque de Jordan $J_{0,k}$. Salvo quizás un reordenamiento de la base para ordenar los $k_j$ y $k$, obtenemos exactamente lo buscado.
$\square$
Más adelante…
Ya demostramos una parte fundamental del teorema que nos interesa: la existencia de la forma canónica de Jordan para transformaciones (y matrices) nilpotentes. Nos falta otra parte muy importante: la de la unicidad. Las demostraciones de unicidad típicamente son sencillas, pero en este caso no es así. Para decir de manera explícita cuál es la forma canónica de Jordan de una transformación (o matriz) nilpotente, deberemos hacer un análisis cuidadoso del rango de las potencias de la transformación (o matriz). Veremos esto en las siguientes entradas.
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
Verifica que la siguiente matriz es nilpotente: $$\begin{pmatrix}13 & 6 & -14 & -5\\ 2 & 0 & -4 & -2 \\ 29 & 12 & -34 & -13 \\ -45 & -18 & 54 & 21\end{pmatrix}.$$ Siguiendo las ideas de la demostración de existencia de esta entrada, ¿cómo podrías dar la forma canónica de Jordan de esta matriz? Intenta hacerlo.
Sea $V$ un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal nilpotente de índice $k$. Demuestra que $^tT$ también es una transformación lineal nilpotente de índice $k$. ¿Cuál sería el resultado análogo para matrices?
Sea $V$ un espacio vectorial de dimensión finita y $T:V \to V$ una transformación lineal tal que para cualquier $v$ en $V$ existe algún entero $n$ tal que $T^n(v)=0$. Estos $n$ pueden ser distintos para distintos $v$. Muestra que $T$ es nilpotente.
Considera el subespacio $V$ de polinomios reales con grado a lo más $4$ y $D:V\to V$ la transformación lineal derivar. Da, de manera explícita, espacios $W$ y $W’$ como en las proposición de encontrar el subespacio complementario estable.
Hay varios detalles que quedaron pendientes en las demostraciones de esta entrada. Revisa la entrada para encontrarlos y da las demostraciones correspondientes.
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»