Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Cálculo Diferencial e Integral II: La integral como función del límite superior, integral indefinida.

Por Moisés Morales Déciga

Introducción:

En la primera unidad del curso, hemos definido la integral mediante las sumas de Riemann considerando los distintos comportamiento que estas pueden tener.

Vimos que hacer en los casos sencillos donde se tienen funciones bien portadas como las continuas, acotadas, monótonas, etc. Pero también se vieron casos más interesantes, por ejemplo, como cuando son continuas en subintervalos, y estos podían ser finitos o infinitos, como las funciones escalonadas o la función de Dirichlet.

En estos ejemplos se mostraba la integrabilidad o la no integrabilidad de la función. Pero a pesar de que los ejemplos podían ser contrastantes entre sí, todos compartían una característica y era que se encontraban definidos dentro de un intervalo cerrado.

Esto era, que la función se encontraba dentro de un segmento del eje de las abscisas el cual tenía un inicio y un fin bien determinado.

En esta nueva unidad se tendrá una generalización de este proceso. Ya no se considerarán intervalos con un inicio y fin, ahora trabajaremos la integral en un intervalo que el inicio o el fin (o ambos) dependerán de una variable, por lo que será un intervalo no definido.

A este nuevo fenómeno de generar la integral en un intervalo no definido se le conocerá como integral indefinida.

Integral Indefinida

En la unidad anterior se determinó que el valor de la integral depende del intervalo de integración o de los límites de integración donde teníamos la siguiente representación $[a,b]$.

Y se decía que el límite inferior era el punto $a$ y el límite superior era el punto $b$ y entre esos dos puntos se tenía la curva de la función y la integral era el área contenida bajo esa curva.

Ahora, consideremos el límite inferior como un número fijo $\alpha$, que no es un número particular, es decir, que puede ser cualquiera. Y el límite superior será una variable denotada con $x$. Teniendo la siguiente notación.

$$ \phi (x) =\int \limits_{\alpha}^{x} f(u) \ du.$$

Así que la función $\phi(x)$ se denomina como la integral indefinida de la función $f(x)$.

De forma que la función $\phi(x)$, es una función que depende de $x$.

Esto cambia la percepción de la integral ya que, anteriormente, solo se concebía la integral como un número (que era el área bajo la curva). Pero ahora la integral ya no solo es un escalar, a partir de este momento, podemos mostrar que la integral también es una función que puede depender de una variable independiente.

De manera análoga, se puede hacer que el límite inferior sea variable y, por lo tanto, que ambos límites puedan variables o dependan de otra función.

De una forma geométrica, se puede ver de la siguiente manera.

Así que la integral indefinida $ \phi (x) $ está dada por el área sombreada en rojo, que se encuentra delimitada por la curva en azul $y=f(u)$ dentro del intervalo $[\alpha , x]$.

Entonces, hasta que no se determine un valor para $x$, el valor de la integral irá cambiando.

Se debe recordar que el signo del área se determina por el cuadrante en el que se encuentra, como se vio en la Unidad 1.

Observación: Cualquier integral definida es un caso particular de una integral indefinida $\phi(x)$.

En el momento en que se define el valor de $\alpha$ y de $x$, recuperamos un intervalo definido y tenemos una integral definida.

Las reglas básicas para la integral que se vieron, tienen su generalización con integrales indefinidas, por ejemplo, la suma:

\begin{align*}
\int \limits_a^b f(u) \ du & = \int \limits_a^\alpha f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ &= – \int \limits_\alpha^a f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ & = \phi(b) \ – \ \phi(a) .
\end{align*}

De esta forma queda una integral definida en términos de integrales indefinidas.

Así, se puede expresar cualquier integral indefinida con límite inferior $\alpha’$ en términos de $\phi(x)$:

$$ \int \limits_{\alpha’}^x f(u) \ du = \phi(x) \ – \ \phi({\alpha’}) . $$

En donde $\phi({\alpha’}) $ es una constante, así que, sin pérdida de generalidad, se puede concluir que cualquier integral definida difiere de la integral indefinida $\phi(x)$ por una constante.

$$ \int \limits^x f(u) \ du = \phi(x) + C.$$

Donde a $C$ se le conoce como la constante de integración.

Continuidad de la integral indefinida

En la unidad anterior, al momento de trabajar con funciones continuas nos era sencillo generar las sumas de Riemann ya que se encontraba la función dentro del intervalo bien definida en todo momento. No presentaba saltos extraños o, como era continua, no presentaba discontinuidades en ningún tramo del intervalo o de cualquier partición de este.

En este caso, hemos dicho que la integral indefinida también es una función. Entonces, es importante conocer cuales son las características de esta nueva función.

En este caso, vamos a mostrar que la integral de una función continua, también es continua, entonces:

Sea $f(x)$ función continua en el intervalo $[a,b]$ y sea $\alpha$ un punto dentro del intervalo, i.e. $\alpha \in [a,b]$. Se define la integral indefinida como:

$$\phi(x) = \int \limits_\alpha^x f(u) \ du.$$

Teorema: La integral indefinida $\phi(x)$ de una función $f(x)$ continua, es asimismo, continua.

Demostración:

Sea $x, y$ dos valores dentro del intervalo donde la función es continua.

Por el teorema del valor medio se tiene que:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Donde $\xi$ es algún valor en el intervalo con puntos extremos $x$ y $y$.

Ahora, por la continuidad de $f$, obtenemos lo siguiente:

\begin{align*}
\lim_{y \rightarrow x} \phi(y) & = \lim_{y \rightarrow x} [\phi(x) + f(\xi) (y \ – \ x) ] \\&
= \ \lim_{y \rightarrow x} \phi(x) + \lim_{y \rightarrow x} f(\xi) (y \ – \ x) \\ &
= \ \phi(x) \ + \ f(\xi) \ \lim_{y \rightarrow x} (y \ – \ x) \\ &
= \ \phi(x) + f(\xi) \cdot 0
\end{align*}

$$\therefore \lim_{y \rightarrow x} \phi(y) = \phi(x).$$

Lo que muestra que $\phi$ es continua.

Adicionalmente, si lo vemos dentro de cualquier intervalo cerrado, obtenemos lo siguiente:

$$|\phi(y) \ – \ \phi(x)| \leq M \ |y \ – \ x|.$$

donde $M$ es el máximo de $|f|$ en el intervalo, de modo que $\phi$ es aún Lipschitz-continua.

Si quieres recordar continuidad, sigue este link.

$\square$

Durante la demostración se recordó el teorema del valor medio, mostrando la siguiente ecuación:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Observación: Si $f(x)$ es una función positiva en todo el intervalo $[x,y]$, se obtiene que $\phi(x)$ es una función creciente.

$$\phi(y) = f(\xi) (y \ – \ x) > \phi(x).$$

Más adelante…

Teniendo definidas las integrales indefinidas, podremos revisar las propiedades que estas integrales tienen y teoremas que son de alta importancia, tanto en cálculo como en las demás asignaturas.

Este paso de trabajar con integrales indefinidas nos da una mayor libertad al momento de trabajar con funciones. Anteriormente, al trabajar con integrales definidas, teníamos plena conciencia de que punto a que punto se necesitaba integrar, lo que, al momento de evaluar o de integral solo encontramos un número; pero ahora que trabajamos con integrales indefinidas.

Y como estamos ampliando la definición de la integral, es necesario mostrar las propiedades que esta extensión genera ya que, si consideramos estas propiedades se nos podrá facilitar el manejo de de esta transformación de funciones.

Estas propiedades las veremos en la siguiente entrada.

Tarea moral

  1. Escribe las siguientes integrales definidas como integrales indefinidas.
    • $ \int \limits_3^{12} x^3 \ dx $
    • $ \int \limits_1^5 ln(t) \ dt $
    • $ \int \limits_{-\pi}^{\pi} sin(\theta) \ d \theta $
  2. Sea $f(x)$ una función continua y se cumple que $f(x) = \int \limits_0^x f(t) \ dt$.
    Demuestra que $f(x)$ es idénticamente 0.

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: Funciones que no son Riemann integrables
  • Entrada siguiente: Propiedades de la integral indefinida

Geometría Moderna II: Unidad 4 Razón Cruzada

Por Armando Arzola Pérez

Introducción

Ya se ha visto que en una hilera armónica se tienen cuatro puntos colineales $A,B,C,D$, donde el segmento $AB$ está dividido por $C$ y $D$ en razones cuya razón es:
$\hspace{15em} \frac{AC}{CB} / \frac{AD}{DB} = -1.$
En este caso $A$ y $B$ están separados armónicamente por $C$ y $D$, pero que pasaría si estos cuatro puntos estuvieran en posiciones cualesquiera en la recta que se encuentran, es aquí donde entra la definición de razón cruzada.

Razón cruzada para hilera y haces

Definición. (Razón Cruzada) Dados cuatro puntos colineales distintos $A,B,C,D$ en una recta, diremos que la razón cruzada es:

$\frac{AC}{CB} / \frac{AD}{DB} = \{ ABCD \} = k$ con $k \neq -1.$

Lo denotaremos $\{ ABCD \} $.

También se le conoce como razón anarmónica y razón doble.

Observación. Si los cuatro puntos son armónicos, entonces $\{ ABCD \} = -1 $, de igual forma inversamente.

Definición. (Razón Cruzada con líneas concurrentes) Sean cuatro rectas concurrentes $OA$, $OB$, $OC$ y $OD$ en un punto $O$, que no se forme un haz armónico, entonces la razón cruzada es:

$\frac{sen (AOC)}{sen (COB)} / \frac{sen (AOD)}{sen (DOB)} $,

se denotará como $O \{ ABCD \} $. De igual forma, la razón cruzada de cuatro líneas concurrentes $a,b,c,d$ se denotará $\{ a,b,c,d \} $.

Observación. Dados cuatro puntos colineales $A,B,C, D$ se tienen estos casos:

1) $\{ ABCC \} =1$ esto, ya que $\{ ABCC \} =\frac{AC}{CB} / \frac{AC}{CB} = \frac{AC * CB}{CB * AC} =1$.

2) $\{ ABCB \} =0$ esto ya que $\{ ABCB \} =\frac{AC}{CB} / \frac{AB}{BB} = \frac{AC * BB}{CB * AB} =0$.

3) $\{ ABCA \} =\infty $ esto ya que $\{ ABCA \} =\frac{AC}{CB} / \frac{AA}{AB} = \frac{AC * AB}{CB * AA} =\infty $.

Por lo cual se puede demostrar que si la razón cruzada de cuatro puntos tiene uno de los valores $1,0, \infty $ entonces dos de los puntos coinciden.

Teorema. (Razón Cruzada) Si se tienen cuatro puntos distintos $A,B,C,D$ en una recta y $O$ un punto (no está en la recta) entonces:

$\{ ABCD \} =O \{ ABCD \} .$

Demostración. Para demostrar el teorema se usará lo siguiente, si dos puntos finitos $A$ y $B$ distintos en una recta, sea $P$ otro punto de la misma recta y $C$ un punto que no está en la recta, entonces

$\frac{AP}{PB}=\frac{CA*sen (ACP)}{CB*sen (PCB)}$

Entonces usando lo anterior:

$\frac{AC}{CB}=\frac{OA*sen (AOC)}{OB*sen (COB)}$ y $\frac{AD}{DB}=\frac{OA*sen( AOD)}{OB*sen (DOB)}$

$\{ ABCD \} = \frac{AC}{CB} / \frac{AD}{DB}=\frac{OA*sen(AOC)}{OB*sen(COB)} / \frac{OA*sen(AOD)}{OB*sen(DOB)}=\frac{sen(AOC)}{sen(COB)} / \frac{sen(AOD)}{sen( DOB)}=O \{ ABCD \}.$

Razón cruzada

$\square$

Corolario. Sean dos rectas transversales a cuatro líneas de un haz, de las cuales ninguna pasa por el vértice, cortan a estas líneas en $A,B,C,D$ y $A’,B’,C’,D’$ respectivamente, entonces $\{ ABCD \} = \{ A’B’C’D’ \} $.

Demostración. $\{ ABCD \} = O\{ ABCD \} = O\{ A’B’C’D’ \} =\{ A’B’C’D’ \}.$

$\square$

Corolario. Sean dos haces con vertices en $O$ y $O’$ son subtendidos por la misma hilera de puntos $A,B,C,D$ entonces $O\{ ABCD \} = O’\{ ABCD \}$.

Demostración. $O\{ ABCD \} = \{ ABCD \}=O’\{ ABCD \}.$

$\square$

Corolario. Sean $l$ y $l’$ dos rectas en posición cualquiera y sean $A,B,C,D \in l$ y $A’,B’,C’,D’ \in l’$. Si $\{ ABCD \} = \{ A’B’C’D’ \} $ y $O$ y $O’$ son colineales con $A$ y $A’$, entonces las intersecciones $OB$ y $O’B’$, $OC$ y $O’C’$, $OD$ y $O’D’$ son colineales.

Demostración. Sea $l’$$’$ la recta que contiene a $B’$$’$ y $C’$$’$, y sean $A’$$’=l’$$’ \cap OO’$, $D’$$’=OD \cap O’D’$ y sea $D^*=l’$$’ \cap O’D’$.
Tenemos que $\{ ABCD \} = \{ A’B’C’D’ \} $ entonces $\{ A’B’C’D’ \} = \{ A’$$’B’$$’C’$$’D^* \} $.
$\Rightarrow $ $\{ ABCD \} = \{ A’$$’B’$$’C’$$’D^* \} $
$\Rightarrow $ $O\{ ABCD \} = \{ A’$$’B’$$’C’$$’D^* \} $
$\Rightarrow $ $D’$$’=D^*.$

$\square$

Más adelante…

Se seguirá abordando unas propiedades de la razón cruzada y además se construirá un cuarto elemento dada una razón.

Entradas relacionadas

Geometría Moderna II: Ejercicios Unidad 3 Polos y Polares

Por Armando Arzola Pérez

Introducción

Una vez visto el tema de Polos y Polares y todos los subtemas que conlleva este, es hora de realizar unos ejercicios que se dejaran a continuación, todo con el objetivo de practicar y fortalecer el tema visto.

Ejercicios

1.- Demuestre que cualquier punto en la circunferencia es conjugado a todos los puntos de la tangente en ese punto.

2.- Dados P y Q los polos de dos rectas conjugadas p y q respectivamente, entonces demostrar que el polo de la recta PQ es el punto donde intersecan p y q.

3.- Sean tres puntos no colineales, construir la polar de un cuarto punto con respecto a la circunferencia determinada por los tres puntos dados, sin dibujar la circunferencia o cualquier arco de ella.

4.- Encontrar el lugar geométrico de un punto cuyas polares con respecto a dos circunferencias dadas forman un ángulo fijo entre ellas.

5.- Dados tres puntos colineales A, B y D se deberá encontrar el punto C tal que {ABCD} = -1 usando polos y polares.

6.- Demuestre que dadas dos rectas conjugadas que se intersecan en el exterior de una circunferencia, una es secante y la otra no.

7.- Dado un triángulo con circunferencia polar, el inverso de uno de sus lados con respecto a la circunferencia polar, es la circunferencia cuyo diámetro es la recta que une el vértice opuesto con el ortocentro.

8.- Dado un triángulo autopolar uno de sus vértices está dentro de la circunferencia y los otros dos fuera de esta, demostrarlo.

9.- Resolver el problema 7 de los 10 problemas de Apolonio.

10.- Resolver el Problema 10 de Apolonio usando polos y polares.

Más adelante…

La unidad siguiente es Razón Cruzada.

Entradas relacionadas

Álgebra Superior I: Traza de matrices y propiedades

Por Eduardo García Caballero

Introducción

En esta entrada conoceremos una nueva operación que se puede aplicar a matrices: la traza. Esta operación a primera vista parece bastante sencilla, pero no por eso es menos importante; en futuros cursos conocerás cómo se relaciona estrechamente con otros conceptos matemáticos y sus aplicaciones.

Traza

Definimos la traza de una matriz cuadrada como la suma de los elementos de su diagonal. Es importante destacar que únicament ele aplicaremos la operación de traza a matrices cuadradas pues más adelante las propiedades que nos interesarán requieren de esta condición.

Por ejemplo, las trazas de las matrices
\[
A=
\begin{pmatrix}
4 & 9 \\
1 & -6
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
1 & 0 & 3 \\
11 & 5 & 2 \\
6 & 12 & -5
\end{pmatrix}
\]
son, respectivamente,
\[
\operatorname{tr}(A)
=
\operatorname{tr}
\begin{pmatrix}
4 & 9 \\
1 & -6
\end{pmatrix}
=
4+ (-6)
=
-2
\]
y
\[
\operatorname{tr}(B)
=
\operatorname{tr}
\begin{pmatrix}
1 & 0 & 3 \\
11 & 5 & 2 \\
6 & 12 & -5
\end{pmatrix}
=
1 + 5 + (-5) = 1.
\]

Propiedades de la traza

La traza cumple un par de propiedades importantes con respecto a otras operaciones que definimos anteriormente. Para la prueba de estas propiedades consideraremos matrices de tamaño $2 \times 2$, pero fácilmente podrás probarlo para cualquier otro tamaño de matrices cuadradas.

Consideremos las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.
\]

Observemos que la traza se distribuye con respecto a la suma; es decir,
\begin{align*}
\operatorname{tr}(A+B)
&=
\operatorname{tr}
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}+b_{11}) + (a_{22}+b_{22})
\\[5pt]
&=
(a_{11} + a_{22}) + (b_{11}+b_{22})
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
+
\operatorname{tr}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{tr}(A) + \operatorname{tr}(B).
\end{align*}

Además, la traza saca escalares; es decir, para cualquier escalar $r$ se cumple que
\begin{align*}
\operatorname{tr}(rA)
&=
\operatorname{tr}
\left(
r
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
ra_{11} & ra_{12} \\
ra_{21} & ra_{22}
\end{pmatrix}
\\[5pt]
&=
ra_{11} + ra_{22}
\\[5pt]
&=
r(a_{11} + a_{22})
\\[5pt]
&=
r
\operatorname{tr}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\\[5pt]
&=
r\operatorname{tr}(A).
\end{align*}

Problemas

Trabajemos con algunos problemas en los cuales aparece la traza:

Problema. Demuestra que para matrices $A$ y $B$ de $2 \times 2$ se cumple que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Solución. Lo demostraremos directamente por la definición de traza.

Consideremos las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.
\]

Observemos que
\begin{align*}
\operatorname{tr}(AB)
&=
\operatorname{tr}
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}b_{11} + a_{12}b_{21}) + (a_{21}b_{12} + a_{22}b_{22})
\\[5pt]
&=
(b_{11}a_{11} + b_{12}a_{21}) + (b_{21}a_{12} + b_{22}a_{22})
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\
b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{tr}(BA).
\end{align*}

$\square$

Problema. ¿Para qué matrices de $2 \times 2$ se tiene que $\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2$?

Solución. Consideremos la matriz de $2 \times 2$
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.
\]

Calculamos
\[
\operatorname{tr}(A^2)
=
\operatorname{tr}
\begin{pmatrix}
a^2 + bc & ab + bd \\
ac + cd & bc + d^2
\end{pmatrix}
=
(a^2+bc)+(bc+d^2) = a^2 + 2bc + d^2
\]
y
\[
(\operatorname{tr}(A))^2
=
(a + d)^2
=
a^2 + 2ad + d^2.
\]

Entonces, notamos que
\[
\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2
\]
si y sólo si
\[
a^2 + 2bc + d^2 = a^2 + 2ad + d^2,
\]
lo cual se cumple si y sólo si
\[
bc = ad.
\]

Entonces, las matrices de $2\times 2$ que cumplen que $\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2$ son aquellas de la forma $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tales que $bc = ad$. ¿Podrías dar un ejemplo de una matriz que cumpla esto?

$\square$

Nota. El hecho de que la matriz $A$ anterior cumpla que $bc = ad$ equivale a que $ac – bd = 0$, y esto equivale, como verás en la siguiente entrada, a que “el determinante de $A$ sea cero”.

Más adelante…

En esta entrada aprendimos la definición de traza y vimos algunas de sus propiedades.

Además, en el problema 2, mencionamos un concepto que hasta ahora no hemos visto. En la siguiente entrada conoceremos una de las operaciones más importantes que se pueden aplicar a matrices cuadradas: el determinante.

Tarea moral

  1. Encuenta la traza de las siguientes matrices:
    \[
    \begin{pmatrix}
    3 & 4 \\
    5 & 6
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    \sqrt{2} & 3/\sqrt{2} \\
    \sqrt{3} & \sqrt{6}
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    2x & 9y \\
    4y & -5x
    \end{pmatrix},
    \]
    \[
    \begin{pmatrix}
    1 & 2 & 1 \\
    1 & -3 & 4 \\
    -1 & 0 & 4
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    -3 & 2 & 4 \\
    -4 & 2 & 4 \\
    1 & -1 & 1
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    a & b & c \\
    d & e & f \\
    1 & 2 & 3
    \end{pmatrix}.
    \]
  2. Demuestra que $\text{tr}(AB)=\text{tr}(BA)$ para matrices $A$ y $B$ de $3\times 3$. Intenta también hacerlo para matrices de $n\times n$.
  3. Determina si el siguiente enunciado es verdadero o falso. Si $A$ y $B$ son matrices de $2\times 2$ tales que $\text{tr}(A)=\text{tr}(B)$ y $\text{tr}(A^2)=\text{tr}(B^2)$, entonces $A=B$.
  4. ¿Será cierto que la traza es multiplicativa? Es decir, ¿para cualesquiera matrices $A$ y $B$ se cumple que $\text{tr}(AB)=\text{tr}(A)\text{tr}(B)$?
  5. Sea $A$ una matriz de $2\times 2$. Demuestra que $\text{tr}(AA^T)$ siempre es un número real mayor o igual que cero. ¿Es cierto esto mismo si la matriz es de $3\times 3$? ¿Es cierto siempre que $\text{tr}(A^2)$ es un número mayor o igual a cero?

Entradas relacionadas

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas