Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Cálculo Diferencial e Integral II: Propiedades de la integral indefinida

Por Moisés Morales Déciga

Introducción

En la entrada anterior se dio el paso de generalizar la integral. Ya no solo considerarla como un valor, si no como una función.

Al momento de precisar esta generalización, pudimos encontrar el paralelismo que existe con la integral definida, lo podemos ver de la siguiente forma.

$$\text{Integral Definida} \Rightarrow \int \limits_a^b f(u) \ du.$$

$$\text{Integral Indefinida} \Rightarrow \int \limits_a^x f(u) \ du.$$

Como lo mencionamos anteriormente, la diferencia reside en el intervalo de integración, como se observa arriba sería el límite superior.

Pero, sin perdida de generalidad, se puede considerar el límite inferior o ambos, ya que el hecho de que sea indefinida es que no tiene un inicio o fin especifico, si no que estos dependen de una variable.

Entonces, el resultado de la integral no es un número real, ahora es una función que depende de la variable $x$, en este caso.

Y, dado que esta es nuestra única diferencia, se puede hacer analogía con las propiedades propuestas con la integral definida.

I. Aditividad

Considere un intervalo de integración $[a,x]$, y un punto $c$ dentro de este intervalo. $a<c<x.$

Entonces, la integral se puede separar de la siguiente forma.

$$ \int \limits_a^x f(u) \ du = \int \limits_a^c f(u) \ du + \int \limits_c^x f(u) \ du.$$

En este caso, se genera una integral definida y una integral indefinida.

Ejemplo:

Sea $f(u)$ la siguiente función.

$$f(u) =\left\lbrace\begin{array}{c} u^2 \ \ [0, 3] \\ sin(u) \ \ (3,10] \end{array}\right.$$

Se pueden tener diferentes casos al momento de pedir la integral de la función, ya que se puede partir el intervalo dependiendo del valor de $x$.

a) Si $ 0 \leq x \leq 3.$

Entonces, la integral de $f(u)$ se plantea como sigue.

$$\int \limits_0^x u^2 \ du.$$

Ya que es la parte donde la función tiene el dominio que se quiere integrar.

b) Si $ 3 < x \leq 10.$

Entonces la integral se ve de la siguiente manera.

$$\int \limits_3^x sin(u) \ du.$$

Y tenemos el mismo argumento que en el caso anterior.

c) Si $x \in [0,10] \ y \ x > 3.$

En este caso la $x$ corre en todo el intervalo y está condicionado que $x$ tiene que ser mayor que 3, entonces la integral se ve de la siguiente manera.

$$\int \limits_0^x f(u) \ du = \int \limits_0^3 u^2 \ du + \int \limits_3^x sin(u) \ du.$$

Y este caso, como se mencionó en la propiedad de la Aditividad, genera una integral definida y una integral indefinida.

d) Si $x \in [0,10] .$

Este caso solo condiciona a que el valor de $x$ tiene que estar dentro del dominio de la función, por lo que la integral queda de la siguiente manera.

$$ \int \limits_a^x f(u) \ du .$$

Y que se podrá dar solución en el momento en que se defina el valor de $x$.

II. Suma

Sea $h(u)$ una función tal que:

$$h(u) = f(u) + g(u).$$

Donde $f(u)$ y $g(u)$ también son funciones. Entonces, para calcular la integral de $h(x)$, tenemos la siguiente propiedad.

$$\int \limits_a^x h(u) \ du = \int \limits_a^x [f(u) \ + \ g(u)] \ du = \int \limits_a^x f(u) \ du + \int \limits_a^x g(u) \ du. $$

Entonces, la integral de una suma, es la suma de las integrales.

III. Producto por una constante

Sea $h(u)$ una función tal que $h(u)= c \cdot f(u)$, donde $c$ es cualquier real y $f(u)$ una función. Entonces,

$$\int \limits_a^x h(u) \ du = \int \limits_a^x c \cdot f(u) \ du = c \int \limits_a^x f(u) \ du.$$

Las constantes que se encuentran multiplicando a una función pueden entrar y salir de la integral.

IV. Linealidad

Sean $f(x)$ y $h(x)$ dos funciones y sean $\alpha$ y $\beta$ dos números reales. Entonces:

$$\int \limits_a^x [\alpha \ f(u) + \beta \ g(u)] \ du = \alpha \int \limits_a^x f(u) \ du + \beta \int \limits_a^x g(u) \ du.$$

Esta propiedad contiene a las dos anteriores (suma y producto), lo que la hace sumamente útil y provoca que se mencione en múltiples ocasiones.

Más adelante…

Ya que tenemos estás propiedades, podemos simplificar el proceso para desarrollar la integral y poder descomponerla en integrales más simples ó, en caso contrario, podemos aplicarlas para poder simplificarlas (reducirlas) o encontrar una sustitución adecuada para que se pueda integrar con mayor facilidad.

En la siguiente sección, tendremos un recordatorio de derivadas. Esto es necesario ya que existe una relación importante entre la derivada y la integral. Es posible que para este momento de tu formación, haz escuchado que la integral es el proceso contrario a o la inversa de la derivación.

Entonces, para poder explicar esta relación entre ambos procesos, es necesario recordar como funciona la derivada, que significa y como se calcula.

Tarea moral

  1. Utiliza la propiedad de linealidad.
    $$\int \limits_a^x \alpha \ \left[ f(u) \ – \ g(u) + 1 \right] \cdot \beta \ h(u) \ du.$$
  2. Aplique las reglas correspondientes para expandir la forma de la integral, para los diferentes casos.
    $$f(x) = \left\lbrace\begin{array}{c} 3x^2 \ – \ x + 13 \ \ [0, 5] \\ \frac{7}{x} \ \ (5,10] \end{array}\right.$$
    i) Integral indefinida para cualquier $x$ entre 5 y 9.
    ii) Integral indefinida para cualquier $x$ entre 0 y 5.
    ii) Integral indefinida para cualquier $x$ entre 3 y 8, pasando por el 5.
  3. Aplique las reglas correspondientes para dejar en una sola integral la siguiente integral.
    $$1/7 \int \limits_a^x u^6 \ du \ – \ 7 \int \limits_a^x cos(u) \ du \ + \ 8 \int \limits_a^x \frac{1}{u+1} \ du.$$

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: La integral como función del límite superior – Integral Indefinida
  • Entrada siguiente: Recordatorio de derivadas

Cálculo Diferencial e Integral II: La integral como función del límite superior, integral indefinida.

Por Moisés Morales Déciga

Introducción:

En la primera unidad del curso, hemos definido la integral mediante las sumas de Riemann considerando los distintos comportamiento que estas pueden tener.

Vimos que hacer en los casos sencillos donde se tienen funciones bien portadas como las continuas, acotadas, monótonas, etc. Pero también se vieron casos más interesantes, por ejemplo, como cuando son continuas en subintervalos, y estos podían ser finitos o infinitos, como las funciones escalonadas o la función de Dirichlet.

En estos ejemplos se mostraba la integrabilidad o la no integrabilidad de la función. Pero a pesar de que los ejemplos podían ser contrastantes entre sí, todos compartían una característica y era que se encontraban definidos dentro de un intervalo cerrado.

Esto era, que la función se encontraba dentro de un segmento del eje de las abscisas el cual tenía un inicio y un fin bien determinado.

En esta nueva unidad se tendrá una generalización de este proceso. Ya no se considerarán intervalos con un inicio y fin, ahora trabajaremos la integral en un intervalo que el inicio o el fin (o ambos) dependerán de una variable, por lo que será un intervalo no definido.

A este nuevo fenómeno de generar la integral en un intervalo no definido se le conocerá como integral indefinida.

Integral Indefinida

En la unidad anterior se determinó que el valor de la integral depende del intervalo de integración o de los límites de integración donde teníamos la siguiente representación $[a,b]$.

Y se decía que el límite inferior era el punto $a$ y el límite superior era el punto $b$ y entre esos dos puntos se tenía la curva de la función y la integral era el área contenida bajo esa curva.

Ahora, consideremos el límite inferior como un número fijo $\alpha$, que no es un número particular, es decir, que puede ser cualquiera. Y el límite superior será una variable denotada con $x$. Teniendo la siguiente notación.

$$ \phi (x) =\int \limits_{\alpha}^{x} f(u) \ du.$$

Así que la función $\phi(x)$ se denomina como la integral indefinida de la función $f(x)$.

De forma que la función $\phi(x)$, es una función que depende de $x$.

Esto cambia la percepción de la integral ya que, anteriormente, solo se concebía la integral como un número (que era el área bajo la curva). Pero ahora la integral ya no solo es un escalar, a partir de este momento, podemos mostrar que la integral también es una función que puede depender de una variable independiente.

De manera análoga, se puede hacer que el límite inferior sea variable y, por lo tanto, que ambos límites puedan variables o dependan de otra función.

De una forma geométrica, se puede ver de la siguiente manera.

Así que la integral indefinida $ \phi (x) $ está dada por el área sombreada en rojo, que se encuentra delimitada por la curva en azul $y=f(u)$ dentro del intervalo $[\alpha , x]$.

Entonces, hasta que no se determine un valor para $x$, el valor de la integral irá cambiando.

Se debe recordar que el signo del área se determina por el cuadrante en el que se encuentra, como se vio en la Unidad 1.

Observación: Cualquier integral definida es un caso particular de una integral indefinida $\phi(x)$.

En el momento en que se define el valor de $\alpha$ y de $x$, recuperamos un intervalo definido y tenemos una integral definida.

Las reglas básicas para la integral que se vieron, tienen su generalización con integrales indefinidas, por ejemplo, la suma:

\begin{align*}
\int \limits_a^b f(u) \ du & = \int \limits_a^\alpha f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ &= – \int \limits_\alpha^a f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ & = \phi(b) \ – \ \phi(a) .
\end{align*}

De esta forma queda una integral definida en términos de integrales indefinidas.

Así, se puede expresar cualquier integral indefinida con límite inferior $\alpha’$ en términos de $\phi(x)$:

$$ \int \limits_{\alpha’}^x f(u) \ du = \phi(x) \ – \ \phi({\alpha’}) . $$

En donde $\phi({\alpha’}) $ es una constante, así que, sin pérdida de generalidad, se puede concluir que cualquier integral definida difiere de la integral indefinida $\phi(x)$ por una constante.

$$ \int \limits^x f(u) \ du = \phi(x) + C.$$

Donde a $C$ se le conoce como la constante de integración.

Continuidad de la integral indefinida

En la unidad anterior, al momento de trabajar con funciones continuas nos era sencillo generar las sumas de Riemann ya que se encontraba la función dentro del intervalo bien definida en todo momento. No presentaba saltos extraños o, como era continua, no presentaba discontinuidades en ningún tramo del intervalo o de cualquier partición de este.

En este caso, hemos dicho que la integral indefinida también es una función. Entonces, es importante conocer cuales son las características de esta nueva función.

En este caso, vamos a mostrar que la integral de una función continua, también es continua, entonces:

Sea $f(x)$ función continua en el intervalo $[a,b]$ y sea $\alpha$ un punto dentro del intervalo, i.e. $\alpha \in [a,b]$. Se define la integral indefinida como:

$$\phi(x) = \int \limits_\alpha^x f(u) \ du.$$

Teorema: La integral indefinida $\phi(x)$ de una función $f(x)$ continua, es asimismo, continua.

Demostración:

Sea $x, y$ dos valores dentro del intervalo donde la función es continua.

Por el teorema del valor medio se tiene que:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Donde $\xi$ es algún valor en el intervalo con puntos extremos $x$ y $y$.

Ahora, por la continuidad de $f$, obtenemos lo siguiente:

\begin{align*}
\lim_{y \rightarrow x} \phi(y) & = \lim_{y \rightarrow x} [\phi(x) + f(\xi) (y \ – \ x) ] \\&
= \ \lim_{y \rightarrow x} \phi(x) + \lim_{y \rightarrow x} f(\xi) (y \ – \ x) \\ &
= \ \phi(x) \ + \ f(\xi) \ \lim_{y \rightarrow x} (y \ – \ x) \\ &
= \ \phi(x) + f(\xi) \cdot 0
\end{align*}

$$\therefore \lim_{y \rightarrow x} \phi(y) = \phi(x).$$

Lo que muestra que $\phi$ es continua.

Adicionalmente, si lo vemos dentro de cualquier intervalo cerrado, obtenemos lo siguiente:

$$|\phi(y) \ – \ \phi(x)| \leq M \ |y \ – \ x|.$$

donde $M$ es el máximo de $|f|$ en el intervalo, de modo que $\phi$ es aún Lipschitz-continua.

Si quieres recordar continuidad, sigue este link.

$\square$

Durante la demostración se recordó el teorema del valor medio, mostrando la siguiente ecuación:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Observación: Si $f(x)$ es una función positiva en todo el intervalo $[x,y]$, se obtiene que $\phi(x)$ es una función creciente.

$$\phi(y) = f(\xi) (y \ – \ x) > \phi(x).$$

Más adelante…

Teniendo definidas las integrales indefinidas, podremos revisar las propiedades que estas integrales tienen y teoremas que son de alta importancia, tanto en cálculo como en las demás asignaturas.

Este paso de trabajar con integrales indefinidas nos da una mayor libertad al momento de trabajar con funciones. Anteriormente, al trabajar con integrales definidas, teníamos plena conciencia de que punto a que punto se necesitaba integrar, lo que, al momento de evaluar o de integral solo encontramos un número; pero ahora que trabajamos con integrales indefinidas.

Y como estamos ampliando la definición de la integral, es necesario mostrar las propiedades que esta extensión genera ya que, si consideramos estas propiedades se nos podrá facilitar el manejo de de esta transformación de funciones.

Estas propiedades las veremos en la siguiente entrada.

Tarea moral

  1. Escribe las siguientes integrales definidas como integrales indefinidas.
    • $ \int \limits_3^{12} x^3 \ dx $
    • $ \int \limits_1^5 ln(t) \ dt $
    • $ \int \limits_{-\pi}^{\pi} sin(\theta) \ d \theta $
  2. Sea $f(x)$ una función continua y se cumple que $f(x) = \int \limits_0^x f(t) \ dt$.
    Demuestra que $f(x)$ es idénticamente 0.

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: Funciones que no son Riemann integrables
  • Entrada siguiente: Propiedades de la integral indefinida

Geometría Moderna II: Unidad 4 Razón Cruzada

Por Armando Arzola Pérez

Introducción

Ya se ha visto que en una hilera armónica se tienen cuatro puntos colineales $A,B,C,D$, donde el segmento $AB$ está dividido por $C$ y $D$ en razones cuya razón es:
$\hspace{15em} \frac{AC}{CB} / \frac{AD}{DB} = -1.$
En este caso $A$ y $B$ están separados armónicamente por $C$ y $D$, pero que pasaría si estos cuatro puntos estuvieran en posiciones cualesquiera en la recta que se encuentran, es aquí donde entra la definición de razón cruzada.

Razón cruzada para hilera y haces

Definición. (Razón Cruzada) Dados cuatro puntos colineales distintos $A,B,C,D$ en una recta, diremos que la razón cruzada es:

$\frac{AC}{CB} / \frac{AD}{DB} = \{ ABCD \} = k$ con $k \neq -1.$

Lo denotaremos $\{ ABCD \} $.

También se le conoce como razón anarmónica y razón doble.

Observación. Si los cuatro puntos son armónicos, entonces $\{ ABCD \} = -1 $, de igual forma inversamente.

Definición. (Razón Cruzada con líneas concurrentes) Sean cuatro rectas concurrentes $OA$, $OB$, $OC$ y $OD$ en un punto $O$, que no se forme un haz armónico, entonces la razón cruzada es:

$\frac{sen (AOC)}{sen (COB)} / \frac{sen (AOD)}{sen (DOB)} $,

se denotará como $O \{ ABCD \} $. De igual forma, la razón cruzada de cuatro líneas concurrentes $a,b,c,d$ se denotará $\{ a,b,c,d \} $.

Observación. Dados cuatro puntos colineales $A,B,C, D$ se tienen estos casos:

1) $\{ ABCC \} =1$ esto, ya que $\{ ABCC \} =\frac{AC}{CB} / \frac{AC}{CB} = \frac{AC * CB}{CB * AC} =1$.

2) $\{ ABCB \} =0$ esto ya que $\{ ABCB \} =\frac{AC}{CB} / \frac{AB}{BB} = \frac{AC * BB}{CB * AB} =0$.

3) $\{ ABCA \} =\infty $ esto ya que $\{ ABCA \} =\frac{AC}{CB} / \frac{AA}{AB} = \frac{AC * AB}{CB * AA} =\infty $.

Por lo cual se puede demostrar que si la razón cruzada de cuatro puntos tiene uno de los valores $1,0, \infty $ entonces dos de los puntos coinciden.

Teorema. (Razón Cruzada) Si se tienen cuatro puntos distintos $A,B,C,D$ en una recta y $O$ un punto (no está en la recta) entonces:

$\{ ABCD \} =O \{ ABCD \} .$

Demostración. Para demostrar el teorema se usará lo siguiente, si dos puntos finitos $A$ y $B$ distintos en una recta, sea $P$ otro punto de la misma recta y $C$ un punto que no está en la recta, entonces

$\frac{AP}{PB}=\frac{CA*sen (ACP)}{CB*sen (PCB)}$

Entonces usando lo anterior:

$\frac{AC}{CB}=\frac{OA*sen (AOC)}{OB*sen (COB)}$ y $\frac{AD}{DB}=\frac{OA*sen( AOD)}{OB*sen (DOB)}$

$\{ ABCD \} = \frac{AC}{CB} / \frac{AD}{DB}=\frac{OA*sen(AOC)}{OB*sen(COB)} / \frac{OA*sen(AOD)}{OB*sen(DOB)}=\frac{sen(AOC)}{sen(COB)} / \frac{sen(AOD)}{sen( DOB)}=O \{ ABCD \}.$

Razón cruzada

$\square$

Corolario. Sean dos rectas transversales a cuatro líneas de un haz, de las cuales ninguna pasa por el vértice, cortan a estas líneas en $A,B,C,D$ y $A’,B’,C’,D’$ respectivamente, entonces $\{ ABCD \} = \{ A’B’C’D’ \} $.

Demostración. $\{ ABCD \} = O\{ ABCD \} = O\{ A’B’C’D’ \} =\{ A’B’C’D’ \}.$

$\square$

Corolario. Sean dos haces con vertices en $O$ y $O’$ son subtendidos por la misma hilera de puntos $A,B,C,D$ entonces $O\{ ABCD \} = O’\{ ABCD \}$.

Demostración. $O\{ ABCD \} = \{ ABCD \}=O’\{ ABCD \}.$

$\square$

Corolario. Sean $l$ y $l’$ dos rectas en posición cualquiera y sean $A,B,C,D \in l$ y $A’,B’,C’,D’ \in l’$. Si $\{ ABCD \} = \{ A’B’C’D’ \} $ y $O$ y $O’$ son colineales con $A$ y $A’$, entonces las intersecciones $OB$ y $O’B’$, $OC$ y $O’C’$, $OD$ y $O’D’$ son colineales.

Demostración. Sea $l’$$’$ la recta que contiene a $B’$$’$ y $C’$$’$, y sean $A’$$’=l’$$’ \cap OO’$, $D’$$’=OD \cap O’D’$ y sea $D^*=l’$$’ \cap O’D’$.
Tenemos que $\{ ABCD \} = \{ A’B’C’D’ \} $ entonces $\{ A’B’C’D’ \} = \{ A’$$’B’$$’C’$$’D^* \} $.
$\Rightarrow $ $\{ ABCD \} = \{ A’$$’B’$$’C’$$’D^* \} $
$\Rightarrow $ $O\{ ABCD \} = \{ A’$$’B’$$’C’$$’D^* \} $
$\Rightarrow $ $D’$$’=D^*.$

$\square$

Más adelante…

Se seguirá abordando unas propiedades de la razón cruzada y además se construirá un cuarto elemento dada una razón.

Entradas relacionadas

Geometría Moderna II: Ejercicios Unidad 3 Polos y Polares

Por Armando Arzola Pérez

Introducción

Una vez visto el tema de Polos y Polares y todos los subtemas que conlleva este, es hora de realizar unos ejercicios que se dejaran a continuación, todo con el objetivo de practicar y fortalecer el tema visto.

Ejercicios

1.- Demuestre que cualquier punto en la circunferencia es conjugado a todos los puntos de la tangente en ese punto.

2.- Dados P y Q los polos de dos rectas conjugadas p y q respectivamente, entonces demostrar que el polo de la recta PQ es el punto donde intersecan p y q.

3.- Sean tres puntos no colineales, construir la polar de un cuarto punto con respecto a la circunferencia determinada por los tres puntos dados, sin dibujar la circunferencia o cualquier arco de ella.

4.- Encontrar el lugar geométrico de un punto cuyas polares con respecto a dos circunferencias dadas forman un ángulo fijo entre ellas.

5.- Dados tres puntos colineales A, B y D se deberá encontrar el punto C tal que {ABCD} = -1 usando polos y polares.

6.- Demuestre que dadas dos rectas conjugadas que se intersecan en el exterior de una circunferencia, una es secante y la otra no.

7.- Dado un triángulo con circunferencia polar, el inverso de uno de sus lados con respecto a la circunferencia polar, es la circunferencia cuyo diámetro es la recta que une el vértice opuesto con el ortocentro.

8.- Dado un triángulo autopolar uno de sus vértices está dentro de la circunferencia y los otros dos fuera de esta, demostrarlo.

9.- Resolver el problema 7 de los 10 problemas de Apolonio.

10.- Resolver el Problema 10 de Apolonio usando polos y polares.

Más adelante…

La unidad siguiente es Razón Cruzada.

Entradas relacionadas

Álgebra Superior I: Traza de matrices y propiedades

Por Eduardo García Caballero

Introducción

En esta entrada conoceremos una nueva operación que se puede aplicar a matrices: la traza. Esta operación a primera vista parece bastante sencilla, pero no por eso es menos importante; en futuros cursos conocerás cómo se relaciona estrechamente con otros conceptos matemáticos y sus aplicaciones.

Traza

Definimos la traza de una matriz cuadrada como la suma de los elementos de su diagonal. Es importante destacar que únicament ele aplicaremos la operación de traza a matrices cuadradas pues más adelante las propiedades que nos interesarán requieren de esta condición.

Por ejemplo, las trazas de las matrices
\[
A=
\begin{pmatrix}
4 & 9 \\
1 & -6
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
1 & 0 & 3 \\
11 & 5 & 2 \\
6 & 12 & -5
\end{pmatrix}
\]
son, respectivamente,
\[
\operatorname{tr}(A)
=
\operatorname{tr}
\begin{pmatrix}
4 & 9 \\
1 & -6
\end{pmatrix}
=
4+ (-6)
=
-2
\]
y
\[
\operatorname{tr}(B)
=
\operatorname{tr}
\begin{pmatrix}
1 & 0 & 3 \\
11 & 5 & 2 \\
6 & 12 & -5
\end{pmatrix}
=
1 + 5 + (-5) = 1.
\]

Propiedades de la traza

La traza cumple un par de propiedades importantes con respecto a otras operaciones que definimos anteriormente. Para la prueba de estas propiedades consideraremos matrices de tamaño $2 \times 2$, pero fácilmente podrás probarlo para cualquier otro tamaño de matrices cuadradas.

Consideremos las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.
\]

Observemos que la traza se distribuye con respecto a la suma; es decir,
\begin{align*}
\operatorname{tr}(A+B)
&=
\operatorname{tr}
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}+b_{11}) + (a_{22}+b_{22})
\\[5pt]
&=
(a_{11} + a_{22}) + (b_{11}+b_{22})
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
+
\operatorname{tr}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{tr}(A) + \operatorname{tr}(B).
\end{align*}

Además, la traza saca escalares; es decir, para cualquier escalar $r$ se cumple que
\begin{align*}
\operatorname{tr}(rA)
&=
\operatorname{tr}
\left(
r
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
ra_{11} & ra_{12} \\
ra_{21} & ra_{22}
\end{pmatrix}
\\[5pt]
&=
ra_{11} + ra_{22}
\\[5pt]
&=
r(a_{11} + a_{22})
\\[5pt]
&=
r
\operatorname{tr}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\\[5pt]
&=
r\operatorname{tr}(A).
\end{align*}

Problemas

Trabajemos con algunos problemas en los cuales aparece la traza:

Problema. Demuestra que para matrices $A$ y $B$ de $2 \times 2$ se cumple que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Solución. Lo demostraremos directamente por la definición de traza.

Consideremos las matrices
\[
A=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.
\]

Observemos que
\begin{align*}
\operatorname{tr}(AB)
&=
\operatorname{tr}
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}b_{11} + a_{12}b_{21}) + (a_{21}b_{12} + a_{22}b_{22})
\\[5pt]
&=
(b_{11}a_{11} + b_{12}a_{21}) + (b_{21}a_{12} + b_{22}a_{22})
\\[5pt]
&=
\operatorname{tr}
\begin{pmatrix}
b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\
b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{tr}(BA).
\end{align*}

$\square$

Problema. ¿Para qué matrices de $2 \times 2$ se tiene que $\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2$?

Solución. Consideremos la matriz de $2 \times 2$
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.
\]

Calculamos
\[
\operatorname{tr}(A^2)
=
\operatorname{tr}
\begin{pmatrix}
a^2 + bc & ab + bd \\
ac + cd & bc + d^2
\end{pmatrix}
=
(a^2+bc)+(bc+d^2) = a^2 + 2bc + d^2
\]
y
\[
(\operatorname{tr}(A))^2
=
(a + d)^2
=
a^2 + 2ad + d^2.
\]

Entonces, notamos que
\[
\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2
\]
si y sólo si
\[
a^2 + 2bc + d^2 = a^2 + 2ad + d^2,
\]
lo cual se cumple si y sólo si
\[
bc = ad.
\]

Entonces, las matrices de $2\times 2$ que cumplen que $\operatorname{tr}(A^2) = (\operatorname{tr}(A))^2$ son aquellas de la forma $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tales que $bc = ad$. ¿Podrías dar un ejemplo de una matriz que cumpla esto?

$\square$

Nota. El hecho de que la matriz $A$ anterior cumpla que $bc = ad$ equivale a que $ac – bd = 0$, y esto equivale, como verás en la siguiente entrada, a que “el determinante de $A$ sea cero”.

Más adelante…

En esta entrada aprendimos la definición de traza y vimos algunas de sus propiedades.

Además, en el problema 2, mencionamos un concepto que hasta ahora no hemos visto. En la siguiente entrada conoceremos una de las operaciones más importantes que se pueden aplicar a matrices cuadradas: el determinante.

Tarea moral

  1. Encuenta la traza de las siguientes matrices:
    \[
    \begin{pmatrix}
    3 & 4 \\
    5 & 6
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    \sqrt{2} & 3/\sqrt{2} \\
    \sqrt{3} & \sqrt{6}
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    2x & 9y \\
    4y & -5x
    \end{pmatrix},
    \]
    \[
    \begin{pmatrix}
    1 & 2 & 1 \\
    1 & -3 & 4 \\
    -1 & 0 & 4
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    -3 & 2 & 4 \\
    -4 & 2 & 4 \\
    1 & -1 & 1
    \end{pmatrix},
    \quad
    \begin{pmatrix}
    a & b & c \\
    d & e & f \\
    1 & 2 & 3
    \end{pmatrix}.
    \]
  2. Demuestra que $\text{tr}(AB)=\text{tr}(BA)$ para matrices $A$ y $B$ de $3\times 3$. Intenta también hacerlo para matrices de $n\times n$.
  3. Determina si el siguiente enunciado es verdadero o falso. Si $A$ y $B$ son matrices de $2\times 2$ tales que $\text{tr}(A)=\text{tr}(B)$ y $\text{tr}(A^2)=\text{tr}(B^2)$, entonces $A=B$.
  4. ¿Será cierto que la traza es multiplicativa? Es decir, ¿para cualesquiera matrices $A$ y $B$ se cumple que $\text{tr}(AB)=\text{tr}(A)\text{tr}(B)$?
  5. Sea $A$ una matriz de $2\times 2$. Demuestra que $\text{tr}(AA^T)$ siempre es un número real mayor o igual que cero. ¿Es cierto esto mismo si la matriz es de $3\times 3$? ¿Es cierto siempre que $\text{tr}(A^2)$ es un número mayor o igual a cero?

Entradas relacionadas