Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Superior I: Producto de matrices con matrices

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido varias operaciones que involucran escalares, vectores y matrices. En esta entrada aprenderemos sobre una de las operaciones más importantes en el álgebra lineal: el producto de matrices con matrices.

Definición de producto de matrices

Para poder efectuar el producto de dos matrices, hay que asegurarnos de que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

El resultado de una matriz $A$ de tamaño $m \times n$ por una matriz $B$ de tamaño $n \times \ell$ será la matriz $C = AB$ de tamaño $m \times \ell$, donde la entrada $c_{ij}$ de $C$ está dada por la fórmula
\[
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.
\]

A primera vista esta fórmula puede parecer complicada, sin embargo, practicando con algunos ejemplos verás que es muy fácil de implementar.

  • Producto de matrices de tamaño $2 \times 2$:

Sean
\[
A
=
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & 4 \\
6 & 8
\end{pmatrix}.
\]

Como estamos multiplicando una matriz de tamaño $2 \times 2$ por una matriz de tamaño $2 \times 2$, sabemos que el resultado será otra matriz de tamaño $2 \times 2$. Ahora, iremos calculando una por una sus entradas.

Sea $C = AB$. Para calcular la entrada $c_{11}$ observamos la primera fila de $A$ y la primera columna de $B$, las cuales son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
de modo que $c_{11} = (1)(2)+(3)(6) = 20$:
\[
AB
=
\begin{pmatrix}
20 & \phantom{28} \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

Para la entrada $c_{12}$, nos fijamos en la primera columna de $A$ y en la segunda columna de $B$, que son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{12} = (1)(4) + (3)(8) = 28$:
\[
AB
=
\begin{pmatrix}
20 & 28 \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

De manera similar, observemos la segunda fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
obteniendo $c_{21} = (5)(2) + (7)(6) = 52$, mientras que la segunda fila de $A$ y la segunda columna de $B$ son
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{22} = (5)(4) + (7)(8) = 76$.

Por lo tanto,
\[
AB
=
\begin{pmatrix}
20 & 28 \\
52 & 76
\end{pmatrix}.
\]

En general, el resultado del producto de las matrices
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
es
\[
AB
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $3 \times 2$ por matriz de $2 \times 2$:

Supongamos que
\[
A
=
\begin{pmatrix}
3 & 5 \\
1 & 0 \\
4 & 3
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
7 & 8 \\
5 & 2
\end{pmatrix}.
\]

En este caso, como estamos multiplicando una matriz de tamaño $3 \times 2$ por una matriz de tamaño $2 \times 2$, la matriz resultante tendrá tamaño $3 \times 2$.

Podemos obtener sus entradas de manera similar al caso anterior. Si $C = AB$, entonces la entrada $c_{12}$ la podemos encontrar revisando la primera fila de $A$ y la segunda columna de $B$,
\[
A
=
\begin{pmatrix}
3 & 5 \\
\phantom{1} & \phantom{0} \\
\phantom{4} & \phantom{3}
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{7} & 8 \\
\phantom{5} & 2
\end{pmatrix}.
\]
de modo que $c_{12} = (3)(8) + (5)(2) = 34$. Por su parte, para obtener la entrada $c_{31}$ nos fijamos en la tercera fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{3} & \phantom{5} \\
\phantom{1} & \phantom{0} \\
4 & 3
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
7 & \phantom{8} \\
5 & \phantom{2}
\end{pmatrix}.
\]
obteniendo $c_{31} = (4)(7) + (3)(5) = 43$.

¿Podrías comprobar que
\[
AB
=
\begin{pmatrix}
46 & 34 \\
7 & 8 \\
43 & 38
\end{pmatrix}?
\]

Así, para el caso general de matrices de $3 \times 2$ por $2 \times 2$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $4 \times 2$ por matriz de $2 \times 3$:

¿Podrías verificar que la siguiente fórmula es correcta?
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\
a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23}
\end{pmatrix}.
\]

Propiedades del producto de matrices

A continuación revisaremos algunas de las propiedades que cumple la multiplicación de matrices. Para demostrar las siguientes propiedades, consideraremos la matriz $A$ de tamaño $3 \times 2$ y las matrices $B$ y $C$ de tamaño $2 \times 2$, aunque se pueden probar para matrices de cualesquier otro tamaño entre las cuales se puedan efectuar las operaciones.

Veamos que si efectuamos la multiplicación de una matriz de tamaño $m \times n$ por una matriz de tamaño $n \times 1$ siguiendo el algoritmo descrito anteriormente, el resultado coincide con el de multiplicar la matriz de tamaño $m \times n$ por un vector de tamaño $n$. Por ejemplo, si multiplicamos $A$ por una matriz $U$ de tamaño $2 \times 1$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_{11} \\
u_{12}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_{11} + a_{12}u_{21} \\
a_{21}u_{11} + a_{22}u_{21} \\
a_{31}u_{11} + a_{32}u_{21}
\end{pmatrix}.
\]

Esta es una observación importante pues todo lo que demostremos para el producto de matrices también lo tendremos para el producto de matriz por vector.

Veamos que la multiplicación de matrices es asociativa:

\begin{align*}
(AB)C
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \\
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}b_{11} + a_{12}b_{21})c_{11} + (a_{11}b_{12} + a_{12}b_{22})c_{21}
& (a_{11}b_{11} + a_{12}b_{21})c_{12} + (a_{11}b_{12} + a_{12}b_{22})c_{22} \\
(a_{21}b_{11} + a_{22}b_{21})c_{11} + (a_{21}b_{12} + a_{22}b_{22})c_{21}
& (a_{21}b_{11} + a_{22}b_{21})c_{12} + (a_{21}b_{12} + a_{22}b_{22})c_{22} \\
(a_{31}b_{11} + a_{32}b_{21})c_{11} + (a_{31}b_{12} + a_{32}b_{22})c_{21}
& (a_{31}b_{11} + a_{32}b_{21})c_{12} + (a_{31}b_{12} + a_{32}b_{22})c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}c_{11} + b_{12}c_{21}) + a_{12}(b_{21}c_{11} + b_{22}c_{21})
& a_{11}(b_{11}c_{12} + b_{12}c_{22}) + a_{12}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{21}(b_{11}c_{11} + b_{12}c_{21}) + a_{22}(b_{21}c_{11} + b_{22}c_{21})
& a_{21}(b_{11}c_{12} + b_{12}c_{22}) + a_{22}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{31}(b_{11}c_{11} + b_{12}c_{21}) + a_{32}(b_{21}c_{11} + b_{22}c_{21})
& a_{31}(b_{11}c_{12} + b_{12}c_{22}) + a_{32}(b_{21}c_{12} + b_{22}c_{22})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}c_{11} + b_{12}c_{21} & b_{11}c_{12} + b_{12}c_{22} \\
b_{21}c_{11} + b_{22}c_{21} & b_{21}c_{12} + b_{22}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
A(BC).
\end{align*}

De manera muy similar, si $u$ es un vector de tamaño 2, podemos ver que se cumple que $A(Bu) = (AB)u$. ¿Puedes demostrarlo? Hazlo por lo menos para matrices $A$ y $B$ ambas de $2\times 2$.

Quizás tengas la impresión de que hay que hacer demasiadas cuentas y que sería sumamente difícil demostrar estas propiedades para matrices más grandes. Sin embargo, en cursos posteriores verás cómo trabajar apropiadamente con la notación para poder hacer estas demostraciones más fácilmente.

El producto de matrices es asociativo. Sin embargo, no es conmutativo. Por ejemplo, consideremos las matrices
\[
E=
\begin{pmatrix}
5 & 7 \\
-3 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
F=
\begin{pmatrix}
1 & 2 \\
9 & -1
\end{pmatrix}.
\]


Veamos que
\[
EF =
\begin{pmatrix}
68 & 3 \\
-3 & -6
\end{pmatrix}
\ne
\begin{pmatrix}
-1 & 7 \\
48 & 63
\end{pmatrix}
=
FE.
\]

En términos de combinar el producto de matrices con otras operaciones, tenemos que el producto de matrices por la izquierda se distribuye sobre la suma de matrices:
\begin{align*}
A(B+C)
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}+c_{11} & b_{12}+c_{12} \\
b_{21}+c_{21} & b_{22}+c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}+c_{11}) + a_{12}(b_{21}+c_{21})
& a_{11}(b_{12}+c_{21}) + a_{12}(b_{22}+c_{22}) \\
a_{21}(b_{11}+c_{11}) + a_{22}(b_{21}+c_{21})
& a_{21}(b_{12}+c_{21}) + a_{22}(b_{22}+c_{22}) \\
a_{31}(b_{11}+c_{11}) + a_{32}(b_{21}+c_{21})
& a_{31}(b_{12}+c_{21}) + a_{32}(b_{22}+c_{22}) \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11}+a_{11}c_{11} + a_{12}b_{21}+a_{12}c_{21}
& a_{11}b_{12}+a_{11}c_{11} + a_{12}b_{22}+a_{12}c_{22} \\
a_{21}b_{11}+a_{21}c_{11}+ a_{22}b_{21}+a_{22}c_{21}
& a_{21}b_{12}+a_{21}c_{12}+ a_{22}b_{22}+a_{22}c_{22} \\
a_{31}b_{11}+a_{31}c_{11} + a_{32}b_{21}+a_{32}c_{21}
& a_{31}b_{12}+a_{31}c_{12} + a_{32}b_{22}+a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\
a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \\
a_{31}c_{11} + a_{32}c_{21} & a_{31}c_{12} + a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
AB + AC.
\end{align*}

El producto también se distribuye sobre la suma cuando la suma aparece a la izquierda. ¿Podrías probar que si $D$ es una matriz de tamaño $3 \times 2$, entonces se cumple $(A+D)B = AB + DB$?

En entradas anteriores vimos que $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarla por un vector de tamaño $n$. Resulta que $\mathcal{I}_n$ también tiene esta propiedad al multiplicarla por la izquierda por una matriz de tamaño $n\times m$. Por ejemplo, veamos que al multiplicar $\mathcal{I}_3$ por la izquierda por $A$, obtenemos
\begin{align*}
\mathcal{I}_3 A
&=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} + 0a_{21} + 0a_{31} & 1a_{12} + 0a_{22} + 0a_{32} \\
0a_{11} + 1a_{21} + 0a_{31} & 0a_{12} + 1a_{22} + 0a_{32} \\
0a_{11} + 0a_{21} + 1a_{31} & 0a_{12} + 0a_{22} + 1a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
A.
\end{align*}

¿Podrías probar que $A\mathcal{I}_2 = A$ (es decir, que $\mathcal{I}_2$ es neutro por la derecha para $A$)?

Habiendo visto que el producto de matrices es asociativo, conmutativo y tiene neutros, probablemente te estarás preguntando si existen inversos en la multiplicación de matrices. Este cuestionamiento lo dejaremos para la siguiente entrada.

Relación con la composición de transformaciones

Como vimos en la entrada anterior, una forma de visualzar el producto de una matriz $A$ por un vector $u$ es como una transformación que envía el vector $u$ a un único vector $Au$.

Teniendo en mente esto, veamos que la propiedad de que $A(Bu) = (AB)u$ resulta aún más interesante. Para esto, veamos que el siguiente ejemplo: sean
\[
A
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix},
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Si multiplicamos $B$ por $u$, vemos que corresponde a la transformación que envía $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ al vector $Bu = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

Ahora, si multiplicamos $A$ por el vector $Bu$, vemos que corresponde a la transformación que envía $Bu$ al vector $A(Bu) = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ (Acabamos de obtener el resultado de aplicar a $u$ la composición de las transformaciones $B$ y $A$).

Por otra parte, si realizamos la multiplicación
\[
AB
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix}
=
\begin{pmatrix}
6 & 0 \\
4 & 2
\end{pmatrix},
\]
la transformación asociada a $AB$ envía $u$ al vector $(AB)u = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$.

¡La composición de las transformaciones asociadas a $B$ y $A$ aplicada al vector $u$ coincide con la transformación asociada a la matriz $AB$ aplicada al mismo vector!

Si probamos esto para un vector arbitrario, nos daremos cuenta de que en todos los casos se cumple lo mismo. En realidad, esto no es una coincidencia: como aprenderás en tus cursos de álgebra lineal, la composición de transformaciones lineales está directamente asociada al producto de matrices.

Potencias de matrices

Podemos ver que si una matriz $A$ es cuadrada, al tener el mismo número de filas que de columnas, entonces podemos realizar la multiplicaciones $AA$, $AAA$, $AAAA$, etc., que por asociatividad no importa en qué orden multipliquemos. Esto nos sugiere que podemos cacular potencias de matrices.

Para una matriz cuadrada $A$, definiremos de manera recursiva la potencia $A^n$:

  • Definimos $A^0 = \mathcal{I}$.
  • Dada $A^n$, con $n$ un número natural, definimos $A^{n+1} = A^n A$.

Por ejemplo, si
\[
A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\]
calculemos $A^3$ empleando la definición recursiva. Para esto, iremos calculando una por una las potencias de $A$, hasta llegar a $A^3$:
\begin{align*}
A^0
&=
\mathcal{I}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\\[5pt]
A^1
&=
A^0A
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\\[5pt]
A^2
&=
A^1 A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(2)(2) + (1)(3) & (2)(1) + (1)(4) \\
(3)(2) + (4)(3) & (3)(1) + (4)(4)
\end{pmatrix}
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix},
\\[5pt]
A^3
&=
A^2A
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(7)(2) + (6)(3) & (7)(1) + (6)(4) \\
(18)(2) + (19)(3) & (18)(1) + (19)(4)
\end{pmatrix}
=
\begin{pmatrix}
32 & 31 \\
93 & 94
\end{pmatrix}.
\end{align*}

Prueba calcular algunas potencias de la matriz \(
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}.
\) ¿Notas algún patrón especial?

Más adelante…

En esta entrada aprendimos sobre el producto de matrices con matrices y conocimos algunas de sus propiedades. En la siguiente entrada abordaremos la pregunta sobre si existen los inversos en la multiplicación de matrices.

Tarea moral

  1. Realiza el producto de matrices $$\begin{pmatrix} -1 & -2 & -3 \\ 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$
  2. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza las siguientes operaciones por separado, sin usar la asociatividad del producto de matrices. ¿Cuál de las dos operaciones te resultó más fácil de hacer?
    • $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
    • $$(((AA)A)A)\begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$
  3. Completa las pruebas faltantes de las propiedades de la multiplicación de matrices.
  4. Demuestra la siguiente ley de exponentes para matrices: $A^mA^n=A^{m+n}$.
  5. Prueba que si
    \[
    A =
    \begin{pmatrix}
    a_{11} & 0 \\
    0 & a_{22}
    \end{pmatrix},
    \]
    y $k$ es un entero mayor o igual que $0$, entonces
    \[
    A^k
    =
    \begin{pmatrix}
    {a_{11}}^k & 0 \\
    0 & {a_{22}}^k
    \end{pmatrix}
    \]
    (Sugerencia: realizarlo por inducción sobre $k$, utilizando la definición recursiva).
  6. Encuentra matrices $A$ y $B$ de $2\times 2$ para las cuales $A^2-B^2\neq (A+B)(A-B)$.

Entradas relacionadas

Álgebra Superior I: Determinante de matrices y propiedades

Por Eduardo García Caballero

Introducción

Uno de los conceptos más importantes en el álgebra lineal es la operación conocida como determinante. Si bien este concepto se extiende a distintos objetos, en esta entrada lo revisaremos como una operación que se puede aplicar a matrices cuadradas. Como veremos, el determinante está muy conectado con otros conceptos que hemos platicado sobre matrices

Definición para matrices de $2\times 2$

A modo de introducción, comenzaremos hablando de determinantes para matrices de $2\times 2$. Aunque este caso es sencillo, podremos explorar algunas de las propiedades que tienen los determinantes, las cuales se cumplirán de manera más genera. Así, comencemos con la siguiente definición.

Definición. Para una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, definimos su determinante como
\[
\operatorname{det}(A) = ad – bc.
\]

Basándonos en esta definición, podemos calcular los determinantes
\[
\operatorname{det}
\begin{pmatrix} 9 & 3 \\ 5 & 2 \end{pmatrix}=9\cdot 2 – 3\cdot 5 = 3
\]
y
\[
\operatorname{det}
\begin{pmatrix} 4 & -3 \\ 12 & -9 \end{pmatrix}
=
4\cdot (-9)-(-3)\cdot 12= 0.
\]

Otra notación que podemos encontrar para determinantes es la notación de barras. Lo que se hace es que la matriz se encierra en barras verticales, en vez de paréntesis. Así, los determinantes anteriores también se pueden escribir como
\[
\begin{vmatrix} 9 & 3 \\ 5 & 2 \end{vmatrix} = 3
\qquad
\text{y}
\qquad
\begin{vmatrix} 4 & -3 \\ 12 & -9 \end{vmatrix} = 0.
\]

Primeras propiedades del determinante

El determinante de una matriz de $2\times 2$ ayuda a detectar cuándo una matriz es invertible. De hecho, esto es algo que vimos previamente, en la entrada de matrices invertibles. En ella, dijimos que una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si se cumple que $ad – bc \ne 0$. ¡Aquí aparece el determinante! Podemos reescribir el resultado de la siguiente manera.

Teorema. Una matriz de la forma $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si $\det(A) \ne 0$. Cuando el determinante es distinto de cero, la inversa es $A^{-1} = \frac{1}{\det(A)}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Otra propiedad muy importante que cumple el determinante para matrices de $2\times 2$ es la de ser multiplicativo; es decir, para matrices $A$ y $B$ se cumple que $\operatorname{det}(AB) = \operatorname{det}(A) \operatorname{det}(B)$. La demostración de esto se basa directamente en las definiciones de determinante y de producto de matrices. Hagamos las cuentas a continuación para matrices $A=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}$ y $B=\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.$

Tenemos que:
\begin{align*}
\operatorname{det}(AB)
&=
\operatorname{det}
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22})-(a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21})
\\[5pt]
&=
a_{11}a_{22}b_{11}b_{22} – a_{12}a_{21}b_{11}b_{22} – a_{11}a_{22}b_{12}b_{21} + a_{12}a_{21}b_{12}b_{21}
\\[5pt]
&=
(a_{11}a_{22} – a_{12}a_{21})(b_{11}b_{22} – b_{12}b_{21})
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\operatorname{det}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{det}(A)\operatorname{det}(B).
\end{align*}

Interpretación geométrica del determinante de $2\times 2$

El determinante también tiene una interpretación geométrica muy interesante. Si tenemos una matriz de $2\times 2$, entonces podemos pensar a cada una de las columnas de esta matriz como un vector en el plano. Resulta que el determinante es igual al área del paralelogramo formado por estos vectores.

Por ejemplo, si consideramos la matriz
\[
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix},
\]
podemos ver que el vector asociado a su primera columna es el vector $(4,1)$, mientras que el vector asociado a su segunda columna es $(2,3)$:

Así, el paralelogramo $ABDC$ de la figura anterior formado por estos dos vectores tiene área igual a
\[
\operatorname{det}
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}
= 4\cdot 3 – 2\cdot 1 = 10.
\]

No daremos la demostración de este hecho, pues se necesita hablar más sobre la geometría del plano. Sin embargo, las ideas necesarias para este resultado pueden consultarse en un curso de Geometría Analítica I.

Definición recursiva

También nos interesa hablar de determinantes de matrices más grandes. De hecho, nos interesa hablar del determinante de cualquier matriz cuadrada. La definición formal requiere de varios conocimientos de Álgebra Lineal I. Sin embargo, por el momento podemos platicar de cómo se obtienen los determinantes de matrices recursivamente. Con esto queremos decir que para calcular el determinante de matrices de $3\times 3$, necesitaremos calcular varios de matrices de $2\times 2$. Así mismo, para calcular el de matrices de $4\times 4$ requeriremos calcular varios de matrices de $3\times 3$ (que a su vez requieren varios de $2\times 2$).

Para explicar cómo es esta relación de poner determinantes de matrices grandes en términos de matrices más pequeñas, primeramente definiremos la función $\operatorname{sign}$, la cual asigna a cada pareja de enteros positivos $(i,j)$ el valor
\[
\operatorname{sign}(i,j) = (-1)^{i+j}.
\]
A partir de la función $\operatorname{sign}$ podemos hacer una matriz cuya entrada $a_{ij}$ es $\operatorname{sign}(i,j)$. Para visualizarla más fácilmente, podemos pensar que a la entrada $a_{11}$ (la cual se encuentra en la esquina superior izquierda) le asigna el signo “$+$”, y posteriormente va alternando los signos del resto de entradas. Por ejemplo, los signos correspondientes a las entradas de la matriz de $3 \times 3$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + \\
– & + & – \\
+ & – & +
\end{pmatrix},
\]
mientras que los signos correspondientes a las entradas de la matriz de $4 \times 4$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + & – \\
– & + & – & + \\
+ & – & + & – \\
– & + & – & +
\end{pmatrix}.
\]

Ya que entendimos cómo se construyen estas matrices, el cálculo de determinantes se realiza como sigue.

Estrategia. Realizaremos el cálculo de determinante de una matriz de $n \times n$ descomponiéndola para realizar el cálculo de determinantes de matrices de $(n-1) \times (n-1)$. Eventualmente llegaremos al calcular únicamente determinantes de matrices de $2 \times 2$, para las cuales ya tenemos una fórmula. Para esto, haremos los siguientes pasos repetidamente.

  1. Seleccionaremos una fila o columna arbitraria de la matriz original (como en este paso no importa cuál fila o columna seleccionemos, buscaremos una que simplifique las operaciones que realizaremos; generalmente nos convendrá seleccionar una fila o columna que cuente en su mayoría con ceros).
  2. Para cada entrada $a_{ij}$ en la fila o columna seleccionada, calculamos el valor de
    \[
    \operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
    \]
    donde $A_{ij}$ es el la matriz que resulta de quitar la fila $i$ y la columna $j$ a la matriz original.
  3. El determinante de la matriz será la suma de todos los términos calculados en el paso anterior.

Veamos algunos ejemplos de cómo se utiliza la estrategia recién descrita.

Ejemplo con matriz de $3\times 3$

Consideremos la matriz de $3 \times 3$
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

A primera vista no hay alguna fila o columna que parezca simplificar los cálculos, por lo cual podemos proceder con cualquiera de estas; nosotros seleccionaremos la primera fila.
\[
\begin{pmatrix}
\fbox{3} & \fbox{1} & \fbox{-1} \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

Para cada término de la primera fila, calculamos el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{i,j}),
\]
obteniendo
\begin{align*}
\operatorname{sign}(1,1) \cdot (a_{11}) \cdot \operatorname{det}(A_{11})
&= +(3)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
\blacksquare & -1 & -2 \\
\blacksquare & -3 & -2
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det} \begin{pmatrix} -1 & -2 \\ -3 & -2 \end{pmatrix}
\\[5pt]
&= +(3)[(-1)(-2) – (-2)(-3)]
\\[5pt]
&= +(3)(-4)
\\[5pt]
&= -12,
\\[10pt]
\operatorname{sign}(1,2) \cdot (a_{12}) \cdot \operatorname{det}(A_{12})
&= -(1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & \blacksquare & -2 \\
4 & \blacksquare & -2
\end{pmatrix}
\\[5pt]
&= -(1)\operatorname{det}
\begin{pmatrix} 6 & -2 \\ 4 & -2 \end{pmatrix}
\\[5pt]
&=-(1)[(6)(-2) – (-2)(4)]
\\[5pt]
&=-(1)(-4)
\\[5pt]
&=4,
\\[10pt]
\operatorname{sign}(1,3) \cdot (a_{13}) \cdot \operatorname{det}(A_{13})
&= +(-1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & -1 & \blacksquare \\
4 & -3 & \blacksquare
\end{pmatrix}
\\[5pt]
&= +(-1)\operatorname{det} \begin{pmatrix} 6 & -1 \\ 4 & -3 \end{pmatrix}
\\[5pt]
&= +(-1)[(6)(-3) – (-1)(4)]
\\[5pt]
&= +(-1)(-14)
\\[5pt]
&= 14.
\end{align*}

Finalmente, el determinante de nuestra matriz original será la suma de los términos calculados; es decir,
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -1
\end{pmatrix}
=
(-12) + (4) + (14) = 6.
\]

Ejemplo con matriz de $4\times 4$

En el siguiente ejemplo veremos cómo el escoger una fila o columna en específico nos puede ayudar a simplificar mucho los cálculos.

Consideremos la matriz
\[
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}.
\]

Observemos que el valor de tres de las entradas de la segunda columna es $0$. Por esta razón, seleccionaremos esta columna para descomponer la matriz:
\[
\begin{pmatrix}
4 & \fbox{0} & 2 & 2 \\
-1 & \fbox{3} & -2 & 5 \\
-2 & \fbox{0} & 2 & -3 \\
1 & \fbox{0} & 4 & -1
\end{pmatrix}.
\]

El siguiente paso será calcular el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
\]
para cada entrada de esta columna. Sin embargo, por la elección de columna que hicimos, podemos ver que el valor de $a_{ij}$ es 0 para tres de las entradas, y por tanto también lo es para el producto que deseamos calcular. De este modo, únicamente nos restaría calcular el producto
\begin{align*}
\operatorname{sign}(2,2) \cdot a_{22} \cdot \operatorname{det}(A_{22})
&=
+(3)\operatorname{det}
\begin{pmatrix}
4 & \blacksquare & 2 & 2 \\
\blacksquare & \blacksquare & \blacksquare & \blacksquare \\
-2 & \blacksquare & 2 & -3 \\
1 & \blacksquare & 4 & -1
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det}
\begin{pmatrix}
4 & 2 & 2 \\
-2 & 2 & -3 \\
1 & 4 & -1
\end{pmatrix}.
\end{align*}
Se queda como ejercicio al lector concluir que el resultado de este último producto es 30.

De este modo, obtenemos que
\[
\operatorname{det}
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}
= 0 + 30 + 0 + 0 = 30.
\]

Aunque esta definición recursiva nos permite calcular el determinante de una matriz cuadrada de cualquier tamaño, rápidamente se vuelve un método muy poco práctico (para obtener el determinante de una matriz de $6 \times 6$ tendríamos que calcular hasta 60 determinantes de matrices de $2 \times 2$). En el curso de Álgebra Lineal I se aprende otra definición de determinante a través de permutaciones, de las cuales se desprenden varios métodos más eficientes para calcular determinante. Hablaremos un poco de estos métodos en la siguiente entrada.

Las propiedades de $2\times 2$ también se valen para $n\times n$

Las propiedades que enunciamos para matrices de $2\times 2$ también se valen para determinantes de matrices más grandes. Todo lo siguiente es cierto, sin embargo, en este curso no contamos con las herramientas para demostrar todo con la formalidad apropiada:

  • El determinante es multiplicativo: Si $A$ y $B$ son matrices de $n\times n$, entonces $\operatorname{det}(AB) = \operatorname{det}(A)\operatorname{det}(B)$.
  • El determinante detecta matrices invertibles: Una matriz $A$ de $n\times n$ es invertible si y sólo si su determinante es distinto de $0$.
  • El determinante tiene que ver con un volumen: Los vectores columna de una matriz $A$ de $n\times n$ hacen un paralelepípedo $n$-dimensional cuyo volumen $n$-dimensional es justo $\det{A}$.

Más adelante…

En esta entrada conocimos el concepto de determinante de matrices, vimos cómo calcularlo para matrices de distintos tamaños y revisamos cómo se interpreta cuando consideramos las matrices como transformaciones de flechas en el plano. En la siguiente entrada enunciaremos y aprenderemos a usar algunas de las propiedades que cumplen los determinantes.

Tarea moral

  1. Calcula los determinantes de las siguientes matrices:
    • $\begin{pmatrix} 5 & 8 \\ 3 & 9 \end{pmatrix}, \begin{pmatrix} 10 & 11 \\ -1 & 9 \end{pmatrix}, \begin{pmatrix} 31 & 38 \\ 13 & -29 \end{pmatrix}$
    • $\begin{pmatrix} 1 & 5 & 2 \\ 3 & -1 & 8 \\ 0 & 2 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 8 & 4 \\ 0 & 5 & -3 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$
    • $\begin{pmatrix} 5 & 7 & -1 & 2 \\ 3 & 0 & 1 & 0 \\ 2 & -2 & 2 & -2 \\ 5 & 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$
  2. Demuestra que para una matriz $A$ y un entero positivo $n$ se cumple que $\det(A^n)=\det(A)^n$.
  3. Sea $A$ una matriz de $3\times 3$. Muestra que $\det(A)=\det(A^T)$.
  4. Sea $A$ una matriz invertible de $2\times 2$. Demuestra que $\det(A)=\det(A^{-1})^{-1}$.
  5. ¿Qué le sucede al determinante de una matriz $A$ cuando intercambias dos filas? Haz algunos experimentos para hacer una conjetura, y demuéstrala.

Entradas relacionadas

Álgebra Superior I: Operaciones de suma y producto escalar con vectores y matrices

Por Eduardo García Caballero

Introducción

Anteriormente definimos qué son los vectores y las matrices con entradas reales. Así mismo, mencionamos que existen distintas operaciones que los involucran. En esta entrada conocerás dos de estas operaciones: la suma de vectores/matrices y el producto escalar.

Suma de vectores

Una de las operaciones más sencillas que involucra a los vectores es su suma. Para sumar dos vectores con entradas reales, debemos asegurarnos de que ambos tengan la misma cantidad de entradas. De este modo, podemos ver que los vectores $(1,0,3)$ y $(-2,\sqrt{5})$ no pueden ser sumados, pero los vectores $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ sí.

Para denotar la suma de dos vectores utilizaremos el símbolo $+$ en medio de ellos. Por ejemplo, la suma de $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ la escribimos como
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3).
\]

El resultado de esta operación lo obtendremos sumando entrada a entrada los dos vectores originales. Es decir, la primera entrada del nuevo vector será igual a la suma de las primeras entradas de los vectores originales; su segunda entrada será igual a la suma de las segundas entradas de los vectores originales; y así sucesivamente (observemos que, de este modo, el vector resultante tiene el mismo tamaño que los vectores originales). Así, el resultado de sumar $(7,\tfrac{1}{2},-5)$ y $(\pi,4,3)$ es
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{1}{2}+4,-5+3).
\]

Además, ya te habrás dado cuenta de que podemos reducir algunas operaciones de cada entrada del vector (esto por la definición de igualdad de vectores que vimos en la entrada anterior). Así, obtenemos que
\[
(7+\pi,\tfrac{1}{2}+4,-5+3) = (7+\pi, \tfrac{9}{2},-2),
\]
y, al ser la igualdad transitiva, llegamos a que
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{9}{2},-2).
\]

El ejemplo que discutimos aquí es para vectores con tres entradas, pero pudimos hacer exactamente lo mismo con vectores de dos entradas, de cuatro o de más.

Producto escalar de vectores

Otra operación que realizaremos de manera frecuente es el producto escalar. Para efectuar esta operación, requeriremos un número real y un vector, y los denotamos escribiendo primero el número y de manera seguida al vector. De este modo, el producto escalar del número real $4$ y el vector $(3,\sqrt{2},5)$ lo denotaremos por
\[
4(3,\sqrt{2},5).
\]

El resultado es esta operación consiste consiste en multiplicar cada una de las entradas de nuestro vector por el número real escogido. Así, podemos ver que
\[
4(3,\sqrt{2},5) = (4(3), 4(\sqrt{2}), 4(5)),
\]
y, al igual que pasa con la suma, en cada entrada tenemos ahora operaciones en los números reales que podemos simplificar, de modo que
\[
(4(3), 4(\sqrt{2}), 4(5)) = (12,4\sqrt{2},20),
\]
y, por lo tanto,
\[
4(3,\sqrt{2},5) = (12,4\sqrt{2},20).
\]

Al número real por el cual multiplicamos el vector lo denominaremos escalar.

Repaso de propiedades de la suma y producto de números reales

Antes de pasar a ver algunas de las propiedades que cumplen las operaciones vistas anteriormente, será conveniente que repasemos algunas de las propiedades que cumplen los números reales (seguramente estas propiedades las recuerdas de tu curso de Cálculo Diferencial e Integral I). Recordemos que si $a$, $b$ y $c$ son números reales, entonces se cumplen las siguientes propiedades:

Suma:

  • Es asociativa: $(a+b)+c = a+(b+c)$.
  • Es conmutativa: $a+b = b+a$.
  • Tiene neutro: el $0$ es un número real y cumple que $a+0 = 0+a = a$.
  • Tiene inversos: para cada $a$ existe un número real, denotado $-a$, es cual cumple que $a+(-a) = (-a)+a = 0$.

Producto:

  • Es asociativo: $(ab)c = a(bc)$.
  • Es conmutativo: $ab = ba$.
  • Tiene neutro: el $1$ es un número real y cumple que $a(1) = (1)a = a$.
  • Tiene inversos: si $a$ es distinto a $0$, entonces existe un número real, denotado $a^{-1}$, el cual cumple que $a(a^{-1}) = (a^{-1})a = 1$.

Suma y producto:

  • El producto se distribuye sobre la suma: $a(b+c) = ab + ac$ y también $(a+b)c = ac + bc$.

Propiedades de suma y el producto escalar de vectores

En esta sección trabajaremos con vectores en $\mathbb{R}^3$, pero las deducciones son muy parecidas para vectores de cualquier otro tamaño (¿podrías intentarlas para vectores de $\mathbb{R}^4?$).

Primeramente, veamos un ejemplo. Observemos que si $u = (4,6,-2)$ y $v = (1,\tfrac{1}{3},2)$, entonces
\begin{align*}
(4,6,-2) + (1,\tfrac{1}{3}, 2)
&= (4+1,6+\tfrac{1}{3}, -2+2) \\
&= (1+4, \tfrac{1}{3}+6, 2+(-2)) \\
&= (1,\tfrac{1}{3}, 2) + (4,6,-2),
\end{align*}
es decir, $u + v = v+u$. La razón por la cual podemos intercambiar los sumandos en la segunda igualdad es porque las sumas en cada una de las entradas ya son sumas de números reales. Así, la conmutatividad de la suma de reales nos ayudó a ver la conmutatividad de una suma de vectores.

Como puedes ver, para llegar al resultado anterior no nos basamos en ningún valor de $u$ o $v$ en particular. ¡De hecho ni siquiera fue necesario hacer las operaciones! Nos basamos únicamente en las definiciones de igualdad y suma, y en las propiedades de los números reales. Por esta razón, este argumento lo podemos hacer general.

Observemos que cualesquiera vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ cumplen que
\begin{align*}
u+v
&= (u_1,u_2,u_3)+(v_1,v_2,v_3) \\
&= (u_1+v_1,u_2+v_2,u_3+v_3) \\
&= (v_1+u_1,v_2+u_2,v_3+u_3) \\
&= (v_1,v_2,v_3)+(u_1,u_2,u_3) \\
&= v+u.
\end{align*}

Otra propiedad bastante interesante tiene que ver con un vector especial que conocimos anteriormente. Recordarás que en la entrada anterior definimos al vector cero. Como su nombre lo sugiere, este vector juega el papel de elemento neutro de la suma. Recordemos que el vector cero en $\mathbb{R}^3$ es $0=(0,0,0)$. Observemos que si $u = (8,\pi,-10)$, entonces
\[
u+0 = (8,\pi,-10) + (0,0,0) = (8+0,\pi+0,-10+0) = (8,\pi,-10) = u.
\]
Aunque pudiera parecer que en este caso sí simplificamos el resultado de la operación, en realidad otra vez hicimos únicamente uso de las definiciones de igualdad y suma de vectores, y esta vez la propiedad de que el $0$ (número real) es neutro para la suma de números reales.

Entonces, podemos ver que para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que
\[
u+0 = (u_1,u_2,u_3) + (0,0,0) = (u_1+0,u_2+0,u_3+0) = (u_1,u_2,u_3) = u.
\]

Otras dos propiedades que cumple la suma de vectores, y que cuya deducción se deja como ejercicio al lector, son las siguientes:

  • Para cualesquiera vectores $u = (u_1,u_2,u_3)$, $v=(v_1,v_2,v_3)$ y $w=(w_1,w_2,w_3)$ se cumple que $(u+v)+w = u+(v+w)$.
  • Para cualquier vector $u = (u_1,u_2,u_3)$ existe un vector $v$ que cumple $u+v = 0$ (Recuerda que aquí $0$ denota al vector $(0,0,0)$. Basta con decir cuál es el vector $v$ que cumple esa propiedad). Más aún, podemos demostrar que $v$ es único para cada $u$. Por esta razón, al único vector $v$ que cumple esta propiedad lo denotaremos $-u$.

Por otra parte, revisemos algunas de las propiedades que cumplen en conjunto la suma de vectores y el producto escalar de vectores.

Veamos que para el escalar (número real) $r$ y para los vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ se cumple que
\begin{align*}
r(u+v)
&= r((u_1,u_2,u_3) + (v_1,v_2,v_3)) \\
&= r(u_1+v_1, u_2+v_2, u_3+v_3) \\
&= (r(u_1+v_1), r(u_2+v_2), r(u_3+v_3)) \\
&= (ru_1+rv_1, ru_2+rv_2, ru_3+rv_3) \\
&= (ru_1,ru_2+ru_3) + (rv_1,rv_2,rv_3) \\
&= r(u_1,u_2,u_3) + r(v_1,v_2,v_3) \\
&= ru + rv.
\end{align*}

(¿Qué se está usando en cada igualdad? ¿Una definición? ¿Una propiedad de los números reales?)

Asimismo, para cuales quiera $r$ y $s$ escalares, y para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que $(r+s)u = ru + su$. ¿Puedes ver cómo se deduce esta propiedad?

Aunque estas dos propiedades son muy parecidas, realmente dicen cosas distintas: $r(u+v)$ indica que el producto escalar se distribuye sobre la suma de vectores, mientras que $(r+s)u$ indica que el producto escalar se distribuye sobre la suma de escalares (números reales).

Una última propiedad de la suma de vectores y producto de vectores es la siguiente: si $r$ y $s$ son escalares, y $u=(u_1,u_2,u_3)$ es un vector, entonces
\begin{align*}
r(s(u))
&= r(s(u_1,u_2,u_3)) \\
&= r(su_1, su_2, su_3) \\
&= (r(su_1), r(su_2), r(su_3)) \\
&= ((rs)u_1, (rs)u_2, (rs)u_3) \\
&= (rs)(u_1,u_2,u_3) \\
&= (rs)u.
\end{align*}
Aún cuando pudiera parecer trivial, esta última propiedad es muy interesante, pues observemos que $r(su)$ involucra únicamente productos escalares, mientras que en $(rs)u$ aparecen tanto el producto de números reales como el producto escalar.

Conocer estas propiedades nos permitirá manipular con facilidad las operaciones entre vectores. Así, por ejemplo, para saber cuál es el resultado de $((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)$, no tendremos que recurrir a efectuar cada operación por definición: podemos optar por manipular la expresión para obtener
\begin{align*}
((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)
&= (1,4,-1) + (5(0,3,4) + 5(1,1,-5)) \\
&= (1,4,-1) + 5((0,3,4) + (1,1,-5)) \\
&= (1,4,-1) + 5(1,4,-1) \\
&= 1(1,4,-1) + 5(1,4,-1) \\
&= (1+5)(1,4,-1) \\
&= 6(1,4,-1) \\
&= (6,24,-6).
\end{align*}

¿Puedes ver qué propiedad(es) usamos en cada paso?

Suma de matrices

La suma de matrices con entradas reales es muy parecida a la suma de vectores. Al igual que con los vectores, tenemos que asegurarnos que las dos matrices que deseamos sumar tengan el mismo tamaño, es decir, que tengan el mismo número de filas y el mismo de columnas. La suma de matrices también la denotaremos utilizando el símbolo $+$ y de igual manera la realizaremos entrada a entrada, según la fila y columna que estemos calculando.

Así, por ejemplo, la suma de
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
\]
es
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
8+(-3) & 0+1 & \sqrt{5}+\sqrt{5} \\
-2+4 & 10+\pi & 0+(-2)
\end{pmatrix},
\]
lo cual queda simplificado como,
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
5 & 1 & 2\sqrt{5} \\
2 & 10+\pi & -2
\end{pmatrix}.
\]

Producto escalar de matrices

A igual que pasa con la suma, también podemos definir el producto escalar de matrices. Como seguramente ya lo habrás imaginado, esta operación se parece mucho al producto escalar de vectores.

Esta operación involucra a un número real y a una matriz. La denotamos colocando al número real seguido de la matriz, y consiste en multiplicar cada entrada de la matriz por dicho número real.

Por ejemplo, el producto escalar de $-3$ y la matriz
\[
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
\]
es
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
(-3)(8) & (-3)3 \\
(-3)(\frac{1}{2}) & (-3)(\pi) \\
(-3)(\frac{1}{3}) & (-3)4
\end{pmatrix},
\]
es decir,
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
-24 & -9 \\
-\tfrac{3}{2} & -3\pi \\
-1 & -12
\end{pmatrix}.
\]

Propiedades de suma y producto escalar de matrices

Veamos algunas propiedades que cumplen la suma y el producto escalar de matrices. Para esto, trabajaremos con matrices con tamaño $2 \times 3$, pero verás que las deducciones para matrices de cualquier otro tamaño son muy parecidas.

Recordemos que la matriz cero de tamaño $2 \times 3$ es
\[
\mathcal{O} = \mathcal{O}_{2 \times 3} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

Observemos que para cualquier matriz
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\]
se cumple que
\begin{align*}
A + \mathcal{O}
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+0 & a_{12}+0 & a_{13}+0 \\
a_{21}+0 & a_{22}+0 & a_{23}+0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&= A.
\end{align*}

Por otra parte, dada una matriz $A$, como cada entrada $a_{ij}$ de la matriz es un número real, entonces tienen un respectivo inverso aditivo, es decir, un número $(-a_{ij})$ que cumple que $a_{ij}+(-a_{ij}) = 0$. Así, si definimos
\[
B=
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}.
\]
Entonces, observemos que
\begin{align*}
A + B
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{2_3}
\end{pmatrix}
+
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+(-a_{11}) & a_{12}+(-a_{12}) & a_{13}+(-a_{13}) \\
a_{21}+(-a_{21}) & a_{22}+(-a_{22}) & a_{23}+(-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\mathcal{O}.
\end{align*}

La matriz $B$ la definimos basándonos en la matriz $A$. Entonces, para cada matriz existe una matriz $B$ que cumple que $A + B = \mathcal{O}$. Como te podrás dar cuenta, la matriz $B$ que cumple esta propiedad es única (¿por qué se cumple esto?); por esta razón, a la $B$ que cumple esta propiedad la denotamos como $-A$.

Seguramente notarás que estas dos propiedades se parecen mucho a las que cumple la suma de vectores. ¿Podrías también probar las siguientes propiedades?

Para cuales quiera matrices $A$, $B$ y $C$ de tamaño $2\times 3$ se cumple que

  • $(A+B)+C = A+(B+C)$.
  • $A+B = B+A$.

Por otra parte, el producto escalar de matrices también se comporta de manera similar al producto escalar de vectores.

Si $r$ y $s$ son escalares y
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix},
\]
entonces
\begin{align*}
(r+s)A
&=
(r+s)
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(r+s)a_{11} & (r+s)a_{12} & (r+s)a_{13} \\
(r+s)a_{21} & (r+s)a_{22} & (r+s)a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11}+sa_{11} & ra_{12}+sa_{12} & ra_{13}+sa_{13} \\
ra_{21}+sa_{21} & ra_{22}+sa_{12} & ra_{23}+sa_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
+
\begin{pmatrix}
sa_{11} & sa_{12} & sa_{13} \\
sa_{21} & sa_{22} & sa_{23}
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
s
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
rA + sA.

\end{align*}

Dejamos como ejercicio para el lector probar también las siguientes propiedades:

Para cualquiesquiera escalares $r$ y $s$, y cualesquiera matrices $A$ y $B$ de tamaño $2\times 3$, se cumple que

  • $r(A+B) = rA + rB$.
  • $r(sA) = (rs)A$.

Más adelante…

En esta entrada conocimos las suma y el producto escalar de vectores/matrices, y revisamos algunas propiedades que estas operaciones cumple. Emplear sus propiedades nos permitirá calcular de manera más sencilla sus resultados, además de que se integrarán con operaciones que definiremos en entradas futuras.

En la siguiente entrada conoceremos una nueva operación, la cual involucra al mismo tiempo matrices y vectores.

Tarea moral

  1. Sea $A=\begin{pmatrix} 1 & 2 \\ 3 & 4\end{pmatrix}$. Encuentra explícitamente el resultado de la operación $A+2A+3A+4A+5A+6A+7A$. Como sugerencia, si usas apropiadamente las propiedades que hemos discutido, sólo tendrás que hacer un producto escalar.
  2. ¿Podrías desarrollar las pruebas de las propiedades de suma y producto escalar para vectores en $\mathbb{R}^4$? ¿Podrías hacerlo para suma y producto escalar de matrices de $3 \times 2$?
  3. Como vimos en esta entrada, para cada vector $u$ existe un vector $v$ que cumple que $u+v = 0$. ¿Puedes ver por qué $v$ es único?
  4. En los reales está el escalar $-1$. Demuestra que el producto escalar $(-1)v$ es precisamente el inverso aditivo $-v$ de $v$. Enuncia y demuestra un resultado similar para matrices.
  5. Podemos definir la resta de vectores (o de matrices) de la siguiente manera: $u-v=u+(-v)$. Determina si esta operación es asociativa, conmutativa, si tiene neutro y/o inversos.

Entradas relacionadas

Álgebra Superior I: Los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$

Por Eduardo García Caballero

Introducción

A lo largo de esta unidad nos hemos enfocado en estudiar los vectores, las operaciones entre estos y sus propiedades. Sin embargo, hasta ahora solo hemos ocupado una definición provisional de vectores —listas ordenadas con entradas reales—, pero no hemos dado una definición formal de estos. En esta entrada definiremos qué es un espacio vectorial y exploraremos algunas de las propiedades de dos ejemplos importantes de espacios vectoriales: $\mathbb{R}^2$ y $\mathbb{R}^3$-

Las propiedades de espacio vectorial

En entradas anteriores demostramos que los pares ordenados con entradas reales (es decir, los elementos de $\mathbb{R}^2$), en conjunto con la suma entrada a entrada y el producto escalar, cumplen las siguientes propiedades:

1. La suma es asociativa:
\begin{align*}
(u+v)+w &= ((u_1,u_2) + (v_1,v_2)) + (w_1,w_2) \\
&= (u_1,u_2) + ((v_1,v_2) + (w_1,w_2)) \\
&= u+(v+w).\end{align*}

2. La suma es conmutativa:
\begin{align*}u+v &= (u_1,u_2) + (v_1,v_2) \\&= (v_1,v_2) + (u_1,u_2) \\&= v+u.\end{align*}

3. Existe un elemento neutro para la suma:
\begin{align*}
u + 0 &= (u_1,u_2) + (0,0) \\&= (0,0) + (u_1,u_2) \\&= (u_1,u_2) \\&= u.
\end{align*}

4. Para cada par ordenado existe un elemento inverso:
\begin{align*}
u + (-u) &= (u_1,u_2) + (-u_1,-u_2) \\&= (-u_1,-u_2) + (u_1,u_2) \\&= (0,0) \\&= 0.
\end{align*}

5. La suma escalar se distribuye bajo el producto:
\begin{align*}
(r+s)u &= (r+s)(u_1,u_2) \\&= r(u_1,u_2) + s(u_1,u_2) \\&= ru + su.
\end{align*}

6. La suma de pares ordenados se distribuye bajo el producto escalar:
\begin{align*}
r(u + v) &= r((u_1,u_2) + (v_1,v_2)) \\&= r(u_1,u_2) + r(v_1,v_2) \\&= ru + rv.
\end{align*}

7. El producto escalar es compatible con el producto de reales:
\[
(rs)u = (rs)(u_1,u_2) = r(s(u_1,u_2)) = r(su).
\]

8. Existe un elemento neutro para el producto escalar, que justo es el neutro del producto de reales:
\[
1u = 1(u_1,u_2) = (u_1,u_2) = u.
\]

Cuando una colección de objetos matemáticos, en conjunto con una operación de suma y otra operación de producto, cumple las ocho propiedades anteriormente mencionadas, decimos que dicha colección forma un espacio vectorial. Teniendo esto en consideración, los objetos matemáticos que pertenecen a la colección que forma el espacio vectorial los llamaremos vectores.

Así, podemos ver que los pares ordenados con entradas reales, en conjunto con la suma entrada a entrada y el producto escalar, forman un espacio vectorial, al cual solemos denominar $\mathbb{R}^2$. De este modo, los vectores del espacio vectorial $\mathbb{R}^2$ son exactamente los pares ordenados con entradas reales.

Como recordarás, anteriormente también demostramos que las ternas ordenadas con entradas reales, en conjunto con su respectiva suma entrada a entrada y producto escalar, cumplen las ocho propiedades antes mencionadas (¿puedes verificarlo?). Esto nos indica que $\mathbb{R}^3$ también es un espacio vectorial, y sus vectores son las ternas ordenadas con entradas reales. En general, el que un objeto matemático se pueda considerar o no como vector dependerá de si este es elemento de un espacio vectorial.

Como seguramente sospecharás, para valores de $n$ distintos de 2 y de 3 también se cumple que $\mathbb{R}^n$ forma un espacio vectorial. Sin embargo los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$ son muy importantes pues podemos visualizarlos como el plano y el espacio, logrando así describir muchas de sus propiedades. Por esta razón, en esta entrada exploraremos algunas de las principales propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$.

Observación. Basándonos en la definición, el hecho de que una colección de elementos se pueda considerar o no como espacio vectorial depende también a las operaciones de suma y producto. Por esta razón, es común (y probablemente más conveniente) encontrar denotado el espacio vectorial $\mathbb{R}^2$ como $(\mathbb{R}^2,+,\cdot)$. Más aún, a veces será importante destacar a los elementos escalares y neutros, encontrando el mismo espacio denotado como $(\mathbb{R}^2, \mathbb{R}, +, \cdot, 0, 1)$. Esto lo veremos de manera más frecuente cuando trabajamos con más de un espacio vectorial, sin embargo, cuando el contexto nos permite saber con qué operaciones (y elementos) se está trabajando, podemos omitir ser explícitos y denotar el espacio vectorial simplemente como $\mathbb{R}^2$ o $\mathbb{R}^3$.

Combinaciones lineales

Como vimos en entradas anteriores, la suma de vectores en $\mathbb{R}^2$ la podemos visualizar en el plano como el resultado de poner una flecha seguida de otra, mientras que el producto escalar lo podemos ver como redimensionar y/o cambiar de dirección una flecha.

En el caso de $\mathbb{R}^3$, la intuición es la misma, pero esta vez en el espacio.

Si tenemos varios vectores, podemos sumar múltiplos escalares de ellos para obtener otros vectores. Esto nos lleva a la siguiente definición.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos una combinación lineal de estos vectores como el resultado de la operación
\[
r_1v_1 + r_2v_2 + \cdots + r_nv_n,
\]
donde $r_1, \ldots, r_n$ son escalares.

Ejemplo. En $\mathbb{R}^2$, las siguientes son combinaciones lineales:
\begin{align*}
4(9,-5) + 7(-1,0) + 3(-4,2) &= (17,-14), \\[10pt]
5(1,0) + 4(-1,-1) &= (1,-4), \\[10pt]
-1(1,0) + 0(-1,-1) &= (-1,0), \\[10pt]
5(3,2) &= (15,10).
\end{align*}
De este modo podemos decir que $(17,-14)$ es combinación lineal de los vectores $(9,-5)$, $(-1,0)$ y $(-4,2)$; los vectores $(1,-4)$ y $(-1,0)$ son ambos combinación lineal de los vectores $(1,0)$ y $(-1,-1)$; y $(15,10)$ es combinación lineal de $(3,2)$.

Las combinaciones lineales también tienen un significado geométrico. Por ejemplo, la siguiente figura muestra cómo se vería que $(1,-4)$ es combinación lineal de $(1,0)$ y $(-1,-1)$:

$\triangle$

Ejemplo. En el caso de $\mathbb{R}^3$, observamos que $(7,13,-22)$ es combinación lineal de los vectores $(8,1,-5)$, $(1,0,2)$ y $(9,-3,2)$, pues
\[
4(8,1,-5) + 2(1,0,2) + (-3)(9,-3,2) = (7,13,-22).
\]

$\triangle$

Espacio generado

La figura de la sección anterior nos sugiere cómo entender a una combinación lineal de ciertos vectores dados. Sin embargo, una pregunta natural que surge de esto es cómo se ve la colección de todas las posibles combinaciones lineales de una colección de vectores dados.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos al espacio generado por ellos como el conjunto de todas sus posibles combinaciones lineales. Al espacio generado por estos vectores podemos encontrarlo denotado como $\operatorname{span}(v_1, \ldots, v_n)$ o $\langle v_1, \ldots, v_n \rangle$ (aunque esta última notación a veces se suele dejar para otra operación del álgebra lineal).

¿Cómo puede verse el espacio generado por algunos vectores? Puede demostrarse que en el caso de $\mathbb{R}^2$ tenemos los siguientes casos.

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de 0 y todos los vectores se encuentran alineados. La recta será precisamente aquella formada por los múltiplos escalares de $u$.
  • Todo $\mathbb{R}^2$: esto sucede si al menos dos vectores $u$ y $v$ de nuestro conjunto no son cero y además no están alineados. Intenta convencerte que en efecto en este caso puedes llegar a cualquier vector del plano sumando un múltiplo de $u$ y uno de $v$.

En $\mathbb{R}^3$, puede mostrarse que el espacio generado se ve como alguna de las siguientes posibilidades:

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de $0$ y todos los vectores se encuentran alineados con $u$. La recta consiste precisamente de los reescalamientos de $u$.
  • Un plano: esto sucede si al menos dos vectores $u$ y $v$ no son cero y no están alineados, y además todos los demás están en el plano generado por $u$ y $v$ estos dos vectores.
  • Todo $\mathbb{R}^3$: esto sucede si hay tres vectores $u$, $v$ y $w$ que cumplan que ninguno es el vector cero, no hay dos de ellos alineados, y además el tercero no está en el plano generado por los otros dos.

Muchas veces no sólo nos interesa conocer la forma del espacio generado, sino también obtener una expresión que nos permita conocer qué vectores pertenecen a este. Una forma en la que podemos hacer esto es mediante ecuaciones.

Ejemplo. Por ejemplo, observemos que el espacio generado el vector $(3,2)$ en $\mathbb{R}^2$ corresponde a los vectores $(x,y)$ que son de la forma
\[
(x,y) = r(2,3),
\]
donde $r \in \mathbb{R}$ es algún escalar. Esto se cumple si y sólo si
\[
(x,y) = (2r,3r),
\]
lo cual a su vez se cumple si y sólo si $x$ y $y$ satisfacen el sistema de ecuaciones
\[
\begin{cases}
x = 2r \\
y = 3r
\end{cases}.
\]
Si despejamos $r$ en ambas ecuaciones y las igualamos, llegamos a que
\[
\frac{x}{2} = \frac{y}{3},
\]
de donde podemos expresar la ecuación de la recta en su forma homogénea:
\[
\frac{1}{2}x – \frac{1}{3}y = 0;
\]
o bien en como función de $y$:
\[
y = \frac{3}{2}x.
\]

$\triangle$

La estrategia anterior no funciona para todos los casos, y tenemos que ser un poco más cuidadosos.

Ejemplo. El espacio generado por $(0,4)$ corresponde a todos los vectores $(x,y)$ tales que existe $r \in \mathbb{R}$ que cumple
\begin{align*}
(x,y) &= r(0,4) \\
(x,y) &= (0,4r),
\end{align*}
es decir,
\[
\begin{cases}
x = 0 \\
y = 4r
\end{cases}.
\]
En este caso, la única recta que satisface ambas ecuaciones es la recta $x = 0$, la cual no podemos expresar como función de $y$.

En la siguiente entrada veremos otras estrategias para describir de manera analítica el espacio generado.

$\triangle$

El saber si un vector está o no en el espacio generado por otros es una pregunta que se puede resolver con un sistema de ecuaciones lineales.

Ejemplo. ¿Será que el vector $(4,1,2)$ está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$? Para que esto suceda, necesitamos que existan reales $r$ y $s$ tales que $r(2,3,1)+s(1,1,1)=(4,1,2)$. Haciendo las operaciones vectoriales, esto quiere decir que $(2r+s,3r+s,r+s)=(4,1,2)$, de donde tenemos el siguiente sistema de ecuaciones:

$$\left\{\begin{matrix} 2r+s &=4 \\ 3r+s&=1 \\ r+s &= 2.\end{matrix}\right.$$

Este sistema no tiene solución. Veamos por qué. Restando la primera igualdad a la segunda, obtendríamos $r=1-4=-3$. Restando la tercera igualdad a la primera, obtendríamos $r=2-4=-2$. Así, si hubiera solución tendríamos la contradicción $-2=r=-3$. De este modo no hay solución.

Así, el vector $(4,1,2)$ no está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$. Geométricamente, $(4,1,2)$ no está en el plano en $\mathbb{R}^3$ generado por los vectores $(2,3,1)$ y $(1,1,1)$.

$\triangle$

Si las preguntas de espacio generado tienen que ver con sistemas de ecuaciones lineales, entonces seguramente estarás pensando que todo lo que hemos aprendido de sistemas de ecuaciones lineales nos servirá. Tienes toda la razón. Veamos un ejemplo importante.

Ejemplo. Mostraremos que cualquier vector en $\mathbb{R}^2$ está en el espacio generado por los vectores $(1,2)$ y $(3,-1)$. Para ello, tomemos el vector $(x,y)$ que nosotros querramos. Nos gustaría (fijando $x$ y $y$) poder encontrar reales $r$ y $s$ tales que $r(1,2)+s(3,-1)=(x,y)$. Esto se traduce al sistema de ecuaciones

$$\left \{ \begin{matrix} r+3s&=x\\2r-s&=y. \end{matrix} \right.$$

En forma matricial, este sistema es $$\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Como la matriz $\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$ tiene determinante $1(-1)-(3)(2)=-7$, entonces es invertible. ¡Entonces el sistema siempre tiene solución única en $r$ y $s$ sin importar el valor de $x$ y $y$! Hemos con ello demostrado que cualquier vector $(x,y)$ es combinación lineal de $(1,2)$ y $(3,-1)$ y que entonces el espacio generado por ambos es todo $\mathbb{R}^2$.

$\triangle$

Independencia lineal

Mientras platicábamos en la sección anterior de las posibilidades que podía tener el espcio generado de un conjunto de vectores en $\mathbb{R}^2$ y $\mathbb{R}^3$, fuimos haciendo ciertas precisiones: «que ningún vector sea cero», «que nos vectores no estén alineados», «que ningún vector esté en los planos por los otros dos», etc. La intuición es que si pasaba lo contrario a alguna de estas cosas, entonces los vectores no podían generar «todo lo posible». Si sí se cumplían esas restricciones, entonces cierta cantidad de vectores sí tenía un espacio generado de la dimensión correspondiente (por ejemplo, $2$ vectores de $\mathbb{R}^3$ no cero y no alineados sí generan un plano, algo de dimensión $2$). Resulta que todas estas restricciones se pueden resumir en una definición muy importante.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), diremos que son linealmente independientes si es imposible escribir al vector $0$ como combinación lineal de ellos, a menos que todos los coeficientes de la combinación lineal sean iguales a $0$. En otras palabras, si sucede que $$r_1v_1 + r_2v_2 + \cdots + r_nv_n=0,$$ entonces forzosamente fue porque $r_1=r_2=\ldots=r_n=0$.

Puede mostrarse que si un conjunto de vectores es linealmente independiente, entonces ninguno de ellos se puede escribir como combinación lineal del resto de vectores en el conjunto. Así, la intuición de que «generan todo lo que pueden generar» se puede justificar como sigue: como el primero no es cero, genera una línea. Luego, como el segundo no es múltiplo del primero, entre los dos generarán un plano. Y si estamos en $\mathbb{R}^3$, un tercer vector quedará fuera de ese plano (por no ser combinación lineal de los anteriores) y entonces generarán entre los tres a todo el espacio.

La independencia lineal también se puede estudiar mediante sistemas de ecuaciones lineales.

Ejemplo. ¿Serán los vectores $(3,-1,-1)$, $(4,2,1)$ y $(0,-10,-7)$ linealmente independientes? Para determinar esto, queremos saber si existen escalares $r,s,t$ tales que $r(3,-1,-1)+s(4,2,1)+t(0,-10,-7)=(0,0,0)$ en donde al menos alguno de ellos no es el cero. Esto se traduce a entender las soluciones del siguiente sistema de ecuaciones:

$$\left\{ \begin{array} 33r + 4s &= 0 \\ -r +2s -10t &= 0 \\ -r + s -7t &= 0.\end{array} \right. $$

Podemos entender todas las soluciones usando reducción Gaussiana en la siguiente matriz:

$$\begin{pmatrix} 3 & 4 & 0 & 0 \\ -1 & 2 & -10 & 0 \\ -1 & 1 & -7 & 0 \end{pmatrix}.$$

Tras hacer esto, obtenemos la siguiente matriz:

$$\begin{pmatrix}1 & 0 & 4 & 0\\0 & 1 & -3 & 0\\0 & 0 & 0 & 0 \end{pmatrix}.$$

Así, este sistema de ecuaciones tiene a $t$ como variable libre, que puede valer lo que sea. De aquí, $s=3t$ y $r=-4t$ nos dan una solución. Así, este sistema tiene una infinidad de soluciones. Tomando por ejemplo $t=1$, tenemos $s=3$ y $r=-4$. Entonces hemos encontrado una combinación lineal de los vectores que nos da el vector $(0,0,0)$. Puedes verificar que, en efecto, $$(-4)(3,-1,-1)+3(4,2,1)+(0,-10,-7)=(0,0,0).$$

Concluimos que los vectores no son linealmente independientes.

$\triangle$

Si la única solución que hubiéramos obtenido es la $r=s=t=0$, entonces la conclusión hubiera sido que sí, que los vectores son linealmente independientes. También podemos usar lo que hemos aprendido de matrices y determinantes en algunos casos para poder decir cosas sobre la independencia lineal.

Ejemplo. Mostraremos que los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. ¿Qué sucede si una combinación lineal de ellos fuera el vector cero? Tendríamos que $r(2,3,1)+s(0,5,2)+t(0,0,1)=(0,0,0)$, que se traduce en el sistema de ecuaciones $$\left\{ \begin{array} 2r &= 0 \\ 3r + 5s &= 0 \\ r + 2s + t &= 0. \end{array}\right.$$

La matriz asociada a este sistema de ecuaciones es $\begin{pmatrix} 2 & 0 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & 1 \end{pmatrix}$, que por ser triangular inferior tiene determinante $2\cdot 5 \cdot 1 = 10\neq 0$. Así, es una matriz invertible, de modo que el sistema de ecuaciones tiene una única solución. Como $r=s=t$ sí es una solución, esta debe ser la única posible. Así, los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. Geométricamente, ninguno de ellos está en el plano hecho por los otros dos.

$\triangle$

Bases

Como vimos anteriormente, existen casos en los que el espacio generado por vectores en $\mathbb{R}^2$ (o $\mathbb{R}^3$) no genera a todo el plano (o al espacio). Por ejemplo, en ambos espacios vectoriales, el espacio generado por únicamente un vector es una recta. Esto también puede pasar aunque tengamos muchos vectores. Si todos ellos están alineados con el vector $0$, entonces su espacio generado sigue siendo una recta también. En la sección anterior platicamos que intuitivamente el problema es que los vectores no son linealmente independientes. Así, a veces unos vectores no generan todo el espacio que pueden generar.

Hay otras ocasiones en las que unos vectores sí generan todo el espacio que pueden generar, pero lo hacen de «manera redundante», en el sentido de que uno o más vectores se pueden poner de más de una forma como combinación lineal de los vectores dados.

Ejemplo. Si consideramos los vectores $(2,1)$, $(1,0)$ y $(2,3)$, observamos que el vector $(2,3)$ se puede escribir como
\[
0(2,1)+3(1,0) + 2(2,3) = (7,6)
\]
o
\[
3(2,2) + 1(1,0) + 0(2,3)= (7,6),
\]
siendo ambas combinaciones lineales del mismo conjunto de vectores.

$\triangle$

Uno de los tipos de conjuntos de vectores más importantes en el álgebra lineal son aquellos conocidos como bases, que evitan los dos problemas de arriba. Por un lado, sí generan a todo el espacio. Por otro lado, lo hacen sin tener redundancias.

Definición. Diremos que un conjunto de vectores es base de $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) si su espacio generado es todo $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) y además son linealmente independientes.

El ejemplo de base más inmediato es el conocido como base canónica.

Ejemplo. En el caso de $\mathbb{R}^2$, la base canónica es $(1,0)$ y $(0,1)$. En \mathbb{R}^3$ la base canónica es $(1,0,0)$, $(0,1,0)$ y $(0,0,1)$.

Partiendo de las definiciones dadas anteriormente, vamos que cualquier vector $(a,b)$ en $\mathbb{R}$ se puede escribir como $a(1,0) + b(0,1)$; y cualquier vector $(a,b,c)$ en $\mathbb{R}^3$ se puede escribir como $a(1,0,0) + b(0,1,0) + c(0,0,1)$.

Más aún, es claro que los vectores $(1,0)$ y $(0,1)$ no están alineados con el origen. Y también es claro que $(1,0,0),(0,1,0),(0,0,1)$ son linealmente idependientes, pues la combinación lineal $r(1,0,0)+s(0,1,0)+t(0,0,1)=(0,0,0)$ implica directamente $r=s=t=0$.

$\triangle$

Veamos otros ejemplos.

Ejemplo. Se tiene lo siguiente:

  • Los vectores $(3,4)$ y $(-2,0)$ son base de $\mathbb{R}^2$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^2$.
  • Los vectores $(8,5,-1)$, $(2,2,7)$ y $(-1,0,9)$ son base de $\mathbb{R}^3$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^3$.

¡Ya tienes todo lo necesario para demostrar las afirmaciones anteriores! Inténtalo y haz dibujos en $\mathbb{R}^2$ y $\mathbb{R}^3$ de dónde se encuentran estos vectores.

$\triangle$

Como podemos observar, las bases de un espacio vectorial no son únicas, sin embargo, las bases que mencionamos para $\mathbb{R}^2$ coinciden en tener dos vectores, mientras que las bases para $\mathbb{R}^3$ coinciden en tener tres vectores. ¿Será cierto que todas las bases para un mismo espacio vectorial tienen la misma cantidad de vectores?

Más adelante…

En esta entrada revisamos qué propiedades debe cumplir una colección de objetos matemáticos para que sea considerado un espacio vectorial, además de que analizamos con más detalle los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$.

Como seguramente sospecharás, para otros valores de $n$ también se cumple que $\mathbb{R}^n$, en conjunto con sus respectivas suma entrada a entrada y producto escalar, forman un espacio vectorial. Sin embargo, en contraste con los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$, este espacio es más difícil de visualizar. En la siguiente entrada generalizaremos para $\mathbb{R}^n$ varias de las propiedades que aprendimos en esta entrada.

Tarea moral

  1. Realiza lo siguiente:
    • De entre los siguientes vectores, encuentra dos que sean linealmente independientes: $(10,16),(-5,-8),(24,15),(10,16),(15,24),(-20,-32)$.
    • Encuentra un vector de $\mathbb{R}^2$ que genere a la recta $2x+3y=0$.
    • Determina qué es el espacio generado por los vectores $(1,2,3)$ y $(3,2,1)$ de $\mathbb{R}^3$.
    • Da un vector $(x,y,z)$ tal que $(4,0,1)$, $(2,1,0)$ y $(x,y,z)$ sean una base de $\mathbb{R}^3$.
  2. Demuestra que $(0,0)$ es el único vector $w$ en $\mathbb{R}^2$ tal que para todo vector $v$ de $\mathbb{R}^2$ se cumple que $v+w=v=w+v$.
  3. Prueba las siguientes dos afirmaciones:
    • Tres o más vectores en $\mathbb{R}^2$ nunca son linealmente independientes.
    • Dos o menos vectores en $\mathbb{R}^3$ nunca son un conjunto generador.
  4. Sean $u$ y $v$ vectores en $\mathbb{R}^2$ distintos del vector cero. Demuestra que $u$ y $v$ son linealmente independientes si y sólo si $v$ no está en la línea generada por $u$.
  5. Encuentra todas las bases de $\mathbb{R}^3$ en donde las entradas de cada uno de los vectores de cada base sean iguales a $0$ ó a $1$.

Entradas relacionadas

Álgebra Superior I: Cálculo de determinantes

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos el concepto de determinante de matrices cuadradas. Dimos la definición para matrices de $2\times 2$. Aunque no dimos la definición en general (pues corresponde a un curso de Álgebra Lineal I), dijimos cómo se pueden calcular los determinantes de manera recursiva. Pero, ¿hay otras herramientas para hacer el cálculo de determinantes más sencillo?

En esta entrada hablaremos de más propiedades de los determinantes. Comenzaremos viendo que si en una matriz tenemos dos filas o columnas iguales, el determinante se hace igual a cero. Luego, veremos que los determinantes son lineales (por renglón o columna), que están muy contectados con las operaciones elementales y platicaremos de algunos determinantes especiales.

Linealidad por filas o columnas

El determinante «abre sumas y saca escalares», pero hay que ser muy cuidadosos, pues no lo hace para toda una matriz, sino sólo renglón a renglón, o columna a columna. Enunciemos esto en las siguientes proposiciones.

Proposición. El determinante saca escalares renglón por renglón o columna por columna. Por ejemplo, pensemos en sacar escalares por renglón. Si $k$ es un número real y tenemos una matriz de la forma
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
ka_{i1} & ka_{i2} & \cdots & ka_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix},
\]
entonces
\[
\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
ka_{i1} & ka_{i2} & \cdots & ka_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
=
k\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}.
\]

No podemos dar la demostración muy formalmente, pues necesitamos de más herramientas. Pero puedes convencerte de que esta proposición es cierta pensando en lo que sucede cuando se calcula el determinante recursivamente en la fila $i$. En la matriz de la izquierda, usamos los coeficientes $ka_{i1},\ldots,ka_{in}$ para acompañar a los determinantes de las matrices de $(n-1)\times (n-1)$ que van saliendo. Pero entonces en cada término aparece $k$ y se puede factorizar. Lo que queda es $k$ veces el desarrollo recursivo de la matriz sin las $k$’s en el renglón $i$.

Ejemplo. Calculemos el determinante de la matriz $A=\begin{pmatrix} 2 & 2 & -1 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{pmatrix}$. En la primera columna hay un $0$, así que nos conviene usar esta columna para encontrar el determinante. Aplicando la regla recursiva, obtenemos que:

\begin{align*}
\det(A)=\begin{vmatrix} 2 & 2 & -1 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{vmatrix} &= (2) \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} – (0) \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} + (-3) \begin{vmatrix} 2 & -1 \\ 2 & 3 \end{vmatrix}\\
&=2(2\cdot 1 – 3 \cdot 2) – 0 (2 \cdot 1 – (-1)\cdot 2) – 3 (2\cdot 3 – (-1)\cdot 2)\\
&=2(-4)-0(4)-3(8)\\
&=-32.
\end{align*}

¿Qué sucedería si quisiéramos ahora el determinante de la matriz $B=\begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ -3 & 1 & 1\end{pmatrix}$? Podríamos hacer algo similar para desarrollar en la primera fila. Pero esta matriz está muy relacionada con la primera. La segunda columna de $B$ es $1/2$ veces la segunda columna de $A$. Por la propiedad que dijimos arriba, tendríamos entonces que $$\det(B)=\frac{1}{2}\det(A)=\frac{-32}{2}=-16.$$

$\triangle$

Ejemplo. Hay que tener mucho cuidado, pues el determinante no saca escalares con el producto escalar de matrices. Observa que si $A=\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, entonces $\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 2\cdot 1 – 1\cdot 1 = 1$. Sin embargo, $$\det(2A)=\begin{vmatrix} 4 & 2 \\ 2 & 2 \end{vmatrix}=4\cdot 2 – 2 \cdot 2 = 4\neq 2\det(A).$$

En vez de salir dos veces el determinante, salió cuatro veces el determinante. Esto tiene sentido de acuerdo a la propiedad anterior: sale un factor $2$ pues la primera fila es el doble, y sale otro factor $2$ porque la segunda fila también es el doble.

$\square$

Proposición. El determinante abre sumas renglón por renglón, o columa por columna. Por ejemplo, veamos el caso para columnas. Si tenemos una matriz de la forma
\[
\begin{pmatrix}
a_{11} & \cdots & a_{1i} + b_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2i} + b_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & a_{ni} + b_{ni} & \cdots & a_{nn}
\end{pmatrix},
\]
entonces este determinante es igual a
\begin{align*}
\operatorname{det}
\begin{pmatrix}
a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{pmatrix}
+
\operatorname{det}
\begin{pmatrix}
a_{11} & \cdots & b_{1i} & \cdots & a_{1n} \\
a_{21} & \cdots & b_{2i} & \cdots & a_{2n} \\
\vdots & & \vdots & & \vdots \\
a_{n1} & \cdots & b_{ni} & \cdots & a_{nn}
\end{pmatrix}.
\end{align*}

Una vez más, no podemos dar una demostración muy formal a estas alturas. Pero como en el caso de sacar escalares, también podemos argumentar un poco informalmente qué sucede. Si realizamos el cálculo de determinantes en la columna $i$, entonces cada término de la forma $a_{ji}+b_{ji}$ acompaña a un determinante $D_{ji}$ de una matriz de $(n-1)\times (n-1)$ que ya no incluye a esa columna. Por ley distributiva, cada sumando es entonces $(a_{ji}+b_{ji})D_{ji}=a_{ji}D_{ji}+b_{ji}D_{ji}$ (acompañado por un $+$ o un $-$). Agrupando en un lado los sumandos con $a_{ji}$’s y por otro los sumandos con $b_{ji}$’s obtenemos la identidad deseada.

Ejemplo. Las matrices $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$ y $\begin{pmatrix} 2 & 5 \\ 2 & 1 \end{pmatrix}$ tienen determinantes $1$ y $-8$ respectivamente (verifícalo). De acuerdo a la propiedad anterior, el determinante de la matriz $$\begin{pmatrix} 5 + 2 & 2 + 5 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 7 \\ 2 & 1 \end{pmatrix}$$

debería ser $1 + (-8) = -7$. Y sí, en efecto $7\cdot 1 – 2 \times 7 = -7$.

$\triangle$

Hay que tener mucho cuidado, pues en esta propiedad de la suma las dos matrices tienen que ser iguales en casi todas las filas (o columnas), excepto en una. En esa fila (o columna) es donde se da la suma. En general, no sucede que $\det(A+B)=\det(A)+\det(B)$.

Ejemplo. Puedes verificar que las matrices $A=\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix}$ y $B=\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{pmatrix}$ tienen ambas determinante $1$. Sin embargo, su suma es la matriz de puros ceros, que tiene determinante $0$. Así, $$\det(A)+\det(B)=2\neq 0 = \det(A+B).$$

$\triangle$

El determinante y operaciones elementales

El siguiente resultado nos dice qué sucede al determinante de una matriz cuando le aplicamos operaciones elementales.

Teorema. Sea $A$ una matriz cuadrada.

  • Si $B$ es una matriz que se obtiene de $A$ al reescalar un renglón con el escalar $\alpha$, entonces $\det(B)=\alpha\det(A)$.
  • Si $B$ es una matriz que se obtiene de $A$ al intercambiar dos renglones, entonces $\det(B)=-\det(A)$.
  • Si $B$ es una matriz que se obtiene de $A$ al hacer una transvección, entonces $\det(B)=\det(A)$.

No nos enfocaremos mucho en demostrar estas propiedades, pues se demuestran con más generalidad en el curso de Álgebra Lineal I. Sin embargo, a partir de ellas podemos encontrar un método de cálculo de determinantes haciendo reducción gaussiana.

Teorema. Sea $A$ una matriz cuadrada. Supongamos que para llevar $A$ a su forma escalonada reducida $A_{red}$ se aplicaron algunas transvecciones, $m$ intercambios de renglones y $k$ reescalamientos por escalares no cero $\alpha_1,\ldots,\alpha_k$ (en el orden apropiado). Entonces $$\det(A)=\frac{(-1)^m\det(A_{red})}{\alpha_1\alpha_2\cdots\alpha_k}.$$ En particular:

  • Si $A_{red}$ no es la identidad, entonces $\det(A_{red})=0$ y entonces $\det(A)=0$.
  • Si $A_{red}$ es la identidad, entonces $\det(A_{red})=1$ y entonces $$\det(A)=\frac{(-1)^m}{\alpha_1\alpha_2\cdots\alpha_k}.$$

Veamos un ejemplo.

Ejemplo. Calculemos el determinante de la matriz $A=\begin{pmatrix} 2 & 2 & -2 \\ 0 & 2 & 3 \\ -3 & 2 & 1\end{pmatrix}$ usando reducción gaussiana. Multiplicamos la primera fila por $\alpha_1=1/2$ y la sumamos tres veces a la última (transvección no cambia el determinante):

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \\ 0 & 5 & -2\end{pmatrix}$$

Multiplicamos por $\alpha_2=1/5$ la segunda fila y la intercambiamos con la tercera (va $m=1$).

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 2 & 3\end{pmatrix}.$$

Restamos dos veces la segunda fila a la tercera (transvección no cambia el determinante)

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5} \\ 0 & 0 & \frac{19}{5}\end{pmatrix},$$

y multiplicamos la tercera fila por $\alpha_3=5/19$:

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -\frac{2}{5}\\ 0 & 0 & 1\end{pmatrix}.$$

Hacemos transvecciones para hacer cero las entradas arriba de la diagonal principal (transvecciones no cambian el determinante): $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}.$$

Ya llegamos a la identidad. Los reescalamientos fueron por $1/2$, $1/5$ y $5/19$ y usamos en total $1$ intercambio. Así, $$\det(A)=\frac{(-1)^1}{(1/2)(1/5)(5/19)}=-38.$$

$\triangle$

Es recomendable que calcules el determinante del ejemplo anterior con la regla recursiva de expansión por menores para que verifiques que da lo mismo.

Algunos determinantes especiales

A continuación enunciamos otras propiedades que cumplen los determinantes. Todas estas puedes demostrarlas suponiendo propiedades que ya hemos enunciado.

Proposición. Para cualquier entero positivo $n$ se cumple que la matriz identidad $\mathcal{I}_n$ tiene como determinante $\operatorname{det}(\mathcal{I}_n) = 1$.

Este resultado es un caso particular de una proposición más general.

Proposición. El determinante de una matriz diagonal es igual al producto de los elementos de su diagonal; es decir,
\[
\operatorname{det}
\begin{pmatrix}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{pmatrix}
=
a_{11} a_{12} \cdots a_{nn}.
\]

Para probar esta proposición, puedes usar la regla recursiva para hacer la expansión por la última fila (o columna) y usar inducción.

Proposición. $\operatorname{det}(A^T) = \operatorname{det}(A)$.

Este resultado también sale inductivamente. Como los determinantes se pueden expandir por renglones o columnas, entonces puedes hacer una expansión en alguna fila de $A$ y será equivalente a hacer la expansión por columnas en $A^T$.

Proposición. Si $A$ es una matriz invertible, entonces $\operatorname{det}(A^{-1}) = \dfrac{1}{\operatorname{det}(A)}$.

Para demostrar este resultado, se puede usar la proposición del determinante de la identidad, y lo que vimos la entrada pasada sobre que $\det(AB)=\det(A)\det(B)$.

Los argumentos que hemos dado son un poco informales, pero quedará en los ejercicios de esta entrada que pienses en cómo justificarlos con más formalidad.

Ejemplos interesantes de cálculo de determinantes

Las propiedades anteriores nos permiten hacer el cálculo de determinantes de varias maneras (no sólo expansión por menores). A continuación presentamos dos ejemplos que usan varias de las técnicas discutidas arriba.

Ejemplo. Calculemos el siguiente determinante:

$$\begin{vmatrix} 1 & 5 & 3 \\ 2 & 9 & 1 \\ 5 & 4 & 3 \end{vmatrix}.$$

Como aplicar transvecciones no cambia el determinante, podemos restar la primera fila a la segunda, y luego cinco veces la primera fila a la tercera y el determinante no cambia. Así, este determinante es el mismo que

$$\begin{vmatrix} 1 & 5 & 3 \\ 0 & -1 & -5 \\ 0 & -21 & -12 \end{vmatrix}.$$

Multiplicar la segunda fila por $-1$ cambia el determinante en $-1$. Y luego multiplicar la tercera por $-1$ lo vuelve a cambiar en $-1$. Entonces haciendo ambas operaciones el determinante no cambia y obtenemos que el determinante es igual a

$$\begin{vmatrix} 1 & 5 & 3 \\ 0 & 1 & 5 \\ 0 & 21 & 12 \end{vmatrix}.$$

En esta matriz podemos expandir por la primera columna en donde hay dos ceros. Por ello, el determinante es

$$\begin{vmatrix} 1 & 5 \\ 21 & 12 \end{vmatrix}= (1\cdot 12) – (5 \cdot 21) = -93.$$

$\triangle$

Ejemplo. Calculemos el siguiente determinante:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}.$$

Hacer transvecciones no cambia el determinante, entonces podemos sumar todas las filas a la última sin alterar el determinante. Como $1+2+3+4=10$, obtenemos:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 10 & 10 & 10 & 10 \end{vmatrix}.$$

Ahora, la última fila tiene un factor $10$ que podemos factorizar:

$$10\cdot \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{vmatrix}.$$

Ahora, podemos restar la primera columna a todas las demás, sin cambiar el determinante:

$$10\cdot \begin{vmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & -1 \\ 3 & 1 & -2 & 1 \\ 1 & 0 & 0 & 0 \end{vmatrix}.$$

Luego, podemos sumar la segunda fila a la tercera sin cambiar el determinante:

$$10\cdot \begin{vmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & -1 \\ 5 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix}.$$

Expandiendo por la última fila:

$$-10\cdot \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{vmatrix}.$$

Expandiendo nuevamente por la última fila:

$$-10 \cdot 2 \cdot \begin{vmatrix} 2 & 3 \\ 2 & -1 \end{vmatrix}.$$

El determinante de $2\times 2$ que queda ya sale directo de la fórmula como $2\cdot (-1)-3\cdot 2 = -8$. Así, el determinante buscado es $(-10)\cdot 2 \cdot (-8)=160$.

$\triangle$

Más adelante…

Los determinantes son una propiedad fundamental de las matrices. En estas entradas apenas comenzamos a platicar un poco de ellos. Por un lado, son muy importantes algebraicamente pues ayudan a decidir cuándo una matriz es invertible. Se pueden utilizar para resolver sistemas de $n$ ecuaciones lineales en $n$ incógnitas con algo conocido como la regla de Cramer. Por otro lado, los determinantes también tienen una interpretación geométrica que es sumamente importante en geometría analítica y en cálculo integral de varias variables. En cursos posteriores en tu formación matemática te los seguirás encontrando.

Tarea moral

  1. Calcula el siguiente determinante: $$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{vmatrix}.$$ Intenta hacerlo de varias formas, aprovechando todas las herramientas que hemos discutido en esta entrada.
  2. También se pueden obtener determinantes en matrices en donde hay variables en vez de escalares. Encuentra el determinante de la matriz $$\begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}.$$
  3. Encuentra todas las matrices $A$ de $2\times 2$ que existen tales que $$\det(A+I_2)=\det(A)+1.$$
  4. Demuestra todas las propiedades de la sección de «Algunos determinantes especiales». Ahí mismo hay sugerencias de cómo puedes proceder.
  5. Revisa las entradas Álgebra Lineal I: Técnicas básicas de cálculo de determinantes y Seminario de Resolución de Problemas: Cálculo de determinantes para conocer todavía más estrategias y ejemplos de cálculo de determinantes.

Entradas relacionadas