Archivo de la etiqueta: lineal

Álgebra Lineal I: Teorema espectral para matrices simétricas reales

Introducción

En esta entrada demostramos el teorema espectral para matrices simétricas reales en sus dos formas. Como recordatorio, lo que probaremos es lo siguiente.

Teorema. Sea V un espacio euclideano y T:V\to V una transformación simétrica. Entonces, existe una base ortonormal de V que consiste de eigenvectores de T.

Teorema. Sea A una matriz simétrica en \mathbb{R}^n. Entonces, existe una matriz ortogonal P y una matriz diagonal D, ambas en \mathbb{R}^n, tales que

    \[A=P^{-1}DP.\]

Para ello, usaremos los tres resultados auxiliares que demostramos en la entrada de eigenvalores de matrices simétricas reales. Los enunciados precisos están en ese enlace. Los resumimos aquí de manera un poco informal.

  • Los eigenvalores complejos de matrices simétricas reales son números reales.
  • Si una transformación T es simétrica y W es un subespacio estable bajo T, entonces W^\bot también lo es. Además, T restringida a W o a W^\bot también es simétrica.
  • Es lo mismo que una matriz sea diagonalizable, a que exista una base formada eigenvectores de la matriz.

Además de demostrar el teorema espectral, al final de la entrada probaremos una de sus consecuencias más importantes. Veremos una clasificación de las matrices que inducen formas bilineales positivas.

Demostración de la primera versión del teorema espectral

Comenzamos mostrando la siguiente versión del teorema espectral.

Teorema. Sea V un espacio euclideano y T:V\to V una transformación simétrica. Entonces, existe una base ortonormal de V que consiste de eigenvectores de T.

Demostración. Como V es espacio Euclideano, entonces tiene cierta dimensión finita n. Haremos inducción fuerte sobre n. Si n=1, el polinomio característico de T es de grado 1 y con coeficientes reales, así que tiene una raíz \lambda real. Si v es un eigenvector de T para \lambda, entonces \frac{v}{\norm{v}} también es eigenvector de T y conforma una base ortonormal para V.

Supongamos que el resultado es cierto para todo espacio Euclideano de dimensión menor a n y tomemos V espacio Euclideano de dimensión n. Por el teorema fundamental del álgebra, el polinomio característico de T tiene por lo menos una raíz \lambda en \mathbb{C}. Como T es simétrica, cualquier matriz A que represente a T también, y \lambda sería una raíz del polinomio característico de A. Por el resultado que vimos en la entrada anterior, \lambda es real.

Consideremos el kernel W de la transformación \lambda \text{id} - T. Si W es de dimensión n, entonces W=V, y por lo tanto T(v)=\lambda v para todo vector v en V, es decir, todo vector no cero de V es eigenvector de T. De esta forma, cualquier base ortonormal de V satisface la conclusión. De esta forma, podemos suponer que W\neq V y que por lo tanto 1\leq \dim W \leq n-1, y como

    \[V=W\oplus W^\bot,\]

se obtiene que 1\leq \dim W^\bot \leq n-1. Sea B una base ortonormal de W, que por lo tanto está formada por eigenvectores de T con eigenvalor \lambda.

Como la restricción T_1 de T a W^\bot es una transformación simétrica, podemos aplicar la hipótesis inductiva y encontrar una base ortonormal B' de eigenvectores de T_1 (y por lo tanto de T) para W^\bot.

Usando de nuevo que

    \[V=W\oplus W^\bot,\]

tenemos que B\cup B' es una base de V formada por eigenvectores de T.

El producto interior de dos elementos distintos de B, o de dos elementos distintos de B' es cero, pues individualmente son bases ortonormales. El producto de un elemento de B y uno de B' es cero pues un elemento está en W y el otro en W^\bot. Además, todos los elementos de B\cup B' tiene norma 1, pues vienen de bases ortogonales. Esto muestra que B\cup B' es una base ortonormal de V que consiste de eigenvectores de T.

\square

Demostración de la segunda versión del teorema espectral

Veamos ahora la demostración del teorema espectral en su enunciado con matrices.

Teorema. Sea A una matriz simétrica en \mathbb{R}^n. Entonces, existe una matriz ortogonal P y una matriz diagonal D, ambas en \mathbb{R}^n, tales que

    \[A=P^{-1}DP.\]

Demostración. Como A es una matriz simétrica, la transformación T:F^n\to F^n dada por T(X)=AX es simétrica. Aplicando la primer versión del teorema espectral, existe una base ortonormal de F^n que consiste de eigenvectores de T. Digamos que estos eigenvectores son C_1,\ldots,C_n. Por definición de T, estos eigenvectores de T son exactamente eigenvectores de A.

Anteriormente demostramos que si construimos a una matriz B usando a C_1,\ldots,C_n como columnas y tomamos la matriz diagonal D cuyas entradas son los eigenvalores correspondientes \lambda_1,\ldots,\lambda_n, entonces

    \[A=BDB^{-1}.\]

Afirmamos que la matriz B es ortogonal. En efecto, la fila j de la matriz ^t B es precisamente C_j. De esta forma, la entrada (i,j) del producto {^tB} B es precisamente el producto punto de C_i con C_j. Como la familia C_1,\ldots,C_n es ortonormal, tenemos que dicho producto punto es uno si i=j y cero en otro caso. De aquí, se concluye que {^tB} B=I_n.

Si una matriz es ortogonal, entonces su inversa también. Esto es sencillo de demostrar y queda como tarea moral. Así, definiendo P=B^{-1}, tenemos la igualdad

    \[A=P^{-1}DP,\]

con D diagonal y P ortogonal, justo como lo afirma el teorema.

\square

Matrices positivas y positivas definidas

Una matriz A simétrica en M_n(\mathbb{R}) induce una forma bilineal simétrica en \mathbb{R}^n mediante la asignación

    \[(x,y) \mapsto {^t x} A y,\]

con forma cuadrática correspondiente

    \[x \mapsto {^t x} A x.\]

Definición. Una matriz A en M_n(\mathbb{R}) es positiva o positiva definida si su forma bilineal asociada es positiva o positiva definida respectivamente.

Una de las aplicaciones del teorema espectral es que nos permite dar una clasificación de las matrices simétricas positivas.

Teorema. Sea A una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. A es positiva.
  2. Todos los eigenvalores de A son no negativos.
  3. A=B^2 para alguna matriz simétrica B en M_n(\mathbb{R}).
  4. A= {^tC} C para alguna matriz C en M_n(\mathbb{R}).

Demostración. (1) implica (2). Supongamos que A es positiva y tomemos \lambda un eigenvalor de A. Tomemos v un eigenvector de eigenvalor \lambda. Tenemos que:

    \begin{align*}\lambda \norm{v}^2 &=\lambda {^tv} v\\&= {^t v} (\lambda v)\\&={^t v} Av\\&\geq 0.  \end{align*}

Como \norm{v}^2\geq 0, debemos tener \lambda \geq 0.

(2) implica (3). Como A es matriz simétrica, por el teorema espectral tiene una diagonalización A=P^{-1}DP con P una matriz invertible y D una matriz diagonal cuyas entradas son los eigenvalores \lambda_1,\ldots,\lambda_n de A. Como los eigenvalores son no negativos, podemos considerar la matriz diagonal E cuyas entradas son los reales \sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}. Notemos que E^2=D, así que si definimos a la matriz B=P^{-1}EP, tenemos que

    \[B^2=P^{-1}E^2 P = P^{-1}DP = A.\]

Además, B es simétrica pues como E es diagonal y P es ortogonal, tenemos que

    \begin{align*}{^tB} &= {^t P} {^t E} {^t (P^{-1})}\\&= P^{-1} E P\\&= B.\end{align*}

(3) implica (4). Es inmediato, tomando C=B y usando que B es simétrica.

(4) implica (1). Si A= {^tC} C y tomamos un vector v en \mathbb{R}^n, tenemos que

    \begin{align*}{^t v} A v &= {^tv} {^tC} C v\\&= {^t(Cv)} (Cv)\\&=\norm{Cv}^2\\&\geq 0,\end{align*}

lo cual muestra que A es positiva.

\square

También hay una versión de este teorema para matrices simétricas positivas definidas. Enunciarlo y demostrarlo queda como tarea moral.

En una entrada final, se verá otra consecuencia linda del teorema espectral: el teorema de descomposición polar. Dice que cualquier matriz con entradas reales se puede escribir como el producto de una matriz ortogonal y una matriz simétrica positiva.

Más allá del teorema espectral

Durante el curso introdujimos varias de las nociones fundamentales de álgebra lineal. Con ellas logramos llegar a uno de los teoremas más bellos: el teorema espectral. Sin embargo, la teoría de álgebra lineal no termina aquí. Si en tu formación matemática profundizas en el área, verás otros temas y resultados fundamentales como los siguientes:

  • El teorema de Cayley-Hamiltón: toda matriz se anula en su polinomio característico.
  • La clasificación de matrices diagonalizables: una matriz es diagonalizable si y sólo si su polinomio característico se factoriza en el campo de la matriz, y la multiplicidad algebraica de sus eigenvalores corresponde con la multiplicidad geométrica.
  • El teorema de la forma canónica de Jordan: aunque una matriz no se pueda diagonalizar, siempre puede ser llevada a una forma estándar «bonita».
  • Productos interiores con imágenes en \mathbb{C}, a los que también se les conoce como formas hermitianas.
  • Los polinomios mínimos de matrices y transformaciones, que comparten varias propiedades con el polinomio característico, pero dan información un poco más detallada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que la inversa de una matriz ortogonal es ortogonal.
  • Encuentra una base ortonormal de \mathbb{R}^3 conformada por eigenvectores de la matriz \begin{pmatrix}10 & 0 & -7\\ 0 & 3 & 0 \\ -7 & 0 & 10\end{pmatrix}.
  • Determina si la matriz anterior es positiva y/o positiva definida.
  • Enuncia y demuestra un teorema de clasificación de matrices simétricas positivas definidas.
  • Muestra que la matriz

        \[\begin{pmatrix}5 & 1 & 7\\1 & 10 & -7\\7 & -7 & 18\end{pmatrix}\]

    es positiva.

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema. Considera los vectores

v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)

en \mathbb{R}^4. Prueba que para cualquier elección de x\in\mathbb{R}, los vectores v_1,v_2,v_3 son linealmente independientes.

Solución. Sea A la matriz cuyas columnas son v_1,v_2,v_3, es decir,

A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.

Sabemos que v_1,v_2,v_3 son linealmente independiente si y sólo si \text{dim(span}(v_1,v_2,v_3))=3, ya que \text{rank}(A)=3, y eso es equivalente (por la clase del lunes) a demostrar que A tiene una submatriz de 3\times 3 invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,

lo que implica que es invertible, y por lo tanto v_1,v_2, v_3 son vectores linealmente independientes.

\square

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre \mathbb{R} o sobre \mathbb{C}. Como \mathbb{R}\subset \mathbb{C}, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en \mathbb{R} se cumplen en \mathbb{C}. En este caso particular, si las soluciones de una matriz en M_{m,n}(\mathbb{R}) son soluciones de la misma matriz pero vista como elemento en M_{m,n}(\mathbb{C}). El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea A\in M_{m,n}(F) y sea F_1 un campo contenido en F. Consideremos el sistema lineal AX=0. Si el sistema tiene una solución no trivial en F_1^n, entonces tiene una solución no trivial en F^n.

Demostración. Dado que el sistema tiene una solución no trivial en F_1^n, r:=\text{rank}(A) < n vista como elemento en M_{m,n}(F_1). Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a A como elemento de M_{m,n}(F_1) o de M_{m,n}(F). Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de F^n de dimensión n-r>0. Por lo tanto, el sistema AX=0 tiene una solución no trivial en F^n.

\square

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. Sea S_a el siguiente sistema lineal:

\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.

Encuentra los valores de a para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como AX=b donde

A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.

Notemos que

\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,

entonces si a\neq 1/8, A es invertible, y por lo tanto \text{rank}(A)=3, mientras que si a=1/8, A no es invertible y \text{rank}(A)=2 ya que la submatriz es invertible

\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.

Además, si la matriz (A,b) es igual a

\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, \text{rank}(A,b)=3.

Aplicando el Teorema de Rouché-Capelli, para a=1/8, el sistema AX=b no tiene soluciones. También podemos concluir que como \text{rank}(A)=3 para todo a\neq 1/8, el sistema tiene exactamente una solución. (Y AX=b nunca tiene infinitas soluciones).

\square

Problema. Sean a,b,c números reales dados. Resuelve el sistema lineal

\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.

Solución. La matriz del sistema es

A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.

No es difícil ver que \text{det}(A)=4abc. Si abc\neq 0, usando la regla de Cramer, la única solución al sistema está dada por

x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}

y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},

resolviendo los determinantes obtenemos que

x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.

Ahora, si abc=0, entonces A no es invertible (\text{rank}(A)<3). El sistema es consistente si y sólo si \text{rank}(A)=\text{rank}(A,b).

Sin pérdida de generalidad, decimos que a=0 (pues abc=0). Esto reduce el sistema a

\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.

El sistema es consistente si b=c y distintos de cero. En este caso, tenemos que b(2x+y+z)=1 y b(y+z)=1, implicando x=0, y+z=1/b. De manera similar, obtenemos las posibles soluciones si b=0 o si c=0.

Resumiendo:

  • Si abc\neq 0, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) a=0 y b=c \neq 0; caso 2) b=0 y a=c\neq 0; caso 3) c=0 y a=b\neq 0, tenemos infinitas soluciones descritas como, para todo w\in \mathbb{R}: caso 1) (0,w,1/b-w); caso 2) (w,0,1/a-w); caso 3) (w,1/a-w,0).
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para a,b,c, el sistema no es consistente.

\square

Álgebra Lineal I: Propiedades de determinantes

Introducción

Para esta entrada enunciaremos y demostraremos algunas de las propiedades más importantes de los determinantes tanto para transformaciones lineales como para matrices. Estas propiedades de determinantes y en general el concepto de determinante tiene numerosas aplicaciones en otras áreas de las matemáticas como el cálculo de volúmenes n-dimensionales o el wronskiano en ecuaciones diferenciales, sólo por mencionar algunos, por eso es importante analizar a detalle el determinante de los distintos tipos de matrices y transformaciones lineales que conocemos.

Como recordatorio, veamos qué hemos hecho antes de esta entrada. Primero, transformaciones multilineales. De ellas, nos enfocamos en las que son alternantes y antisimétricas. Definimos el determinante para un conjunto de vectores con respecto a una base, y vimos que, en cierto sentido, son las únicas formas n-lineal alternantes en un espacio vectorial de dimensión n. Gracias a esto, pudimos mostrar que los determinantes para transformaciones lineales están bien definidos, y con ellos motivar la definición de determinante para matrices.

El determinante es homogéneo

La primera de las propiedades de determinantes que enunciaremos tiene que ver con «sacar escalares» del determinante.

Teorema. Sea A una matriz en M_n(F).

  1. Si multiplicamos un renglón o una columna de A por un escalar \lambda, entonces su determinante se multiplica por \lambda.
  2. Se tiene que \det(\lambda A)=\lambda^n A.

Demostración. 1. Sea A_j la matriz obtenida me multiplicar el j-ésimo renglón por \lambda. Siguiendo la definición de determinante vista en la entrada de ayer (determinantes de matrices) vemos que

    \begin{align*}\det A_j&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots \lambda a_{j\sigma(j)}\dots a_{n\sigma(n)}\\&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda a_{1\sigma(1)}\dots a_{n\sigma(n)}\\&= \lambda \det A.\end{align*}

La demostración para la j-ésima columna queda como tarea moral.

2. Sea \lamda A=[\lambda a_{ij}], entonces por definición tenemos

    \begin{align*}\det (\lambda A)&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)(\lambda a_{1\sigma(1)})\dots (\lambda a_{n\sigma(n)})\\&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda^n a_{1\sigma(1)}\dots a_{n\sigma(n)}\\&=\lambda^n \cdot \det A\end{align*}

De manera alternativa, podemos aplicar el primer inciso n veces, una por cada renglón.

\square

Aquí arriba hicimos la prueba explícita a partir de la definición. Una forma alternativa de proceder es notar que el determinante de una matriz es precisamente el determinante \det (de vectores) con respecto a la base canónica de F^n evaluada en los renglones de A. Al multiplicar uno de los renglones por \lambda, el vector entrada de \det se multiplica por \lambda. El resultado se sigue inmediatamente de que \det es una forma n-lineal.

El determinante es multiplicativo

Quizás de entre las propiedades de determinantes, la más importante es que es multiplicativo. Mostraremos esto a continuación.

Teorema. Sea V un espacio vectorial de dimensión finita y transformaciones lineales T_1:V\to V, T_2:V\to V. Se tiene que

    \[\det(T_1\circ T_2) = \det T_1\cdot \det T_2.\]

Demostración. Sea (v_1,\dots , v_n) una base cualquiera de V. Del resultado visto en la entrada anterior y la definición de determinante, se sigue que

    \begin{align*}\det (T_1 \circ T_2)&= \det _{(v_1,\dots , v_n)}(T_1(T_2(v_1)),\dots , T_1(T_2(v_n)))\\&=\det T_1 \cdot \det_{(v_1,\dots , v_n)}(T_2(v_1), \dots , T_2(v_n))\\&= \det T_1 \cdot \det T_2.\end{align*}

\square

Observa cómo la demostración es prácticamente inmediata, y no tenemos que hacer ningún cálculo explícito en términos de coordenadas. La demostración de que el determinante es multiplicativo para las matrices también es muy limpia.

Teorema. Sean A y B matrices en M_n(F). Se tiene que

    \[\det(AB)=\det A \cdot \det B.\]

Demostración. Sean V=F^n, T_1:V\to V la transformación lineal definida por x\mapsto Ax y similarmente T_2:V\to V la transformación lineal definida por x\mapsto Bx. Sabemos que A, B, AB son las matrices asociadas a T_1, T_2, T_1\circ T_2 con respecto a la base canónica, respectivamente.

Recordemos que para una transformación lineal T en V, \det T = \det A_T, para una matriz que la represente en cualquier base. Entonces

    \begin{align*}\det(AB)&=\det A_{T_1\circ T_2}\\&= \det T_1\circ T_2\\&=\det T_1 \cdot \det T_2\\&=\det A_{T_1} \cdot \det A_{T_2} \\&= \det A \cdot \det B.\end{align*}

\square

Nota que hubiera sido muy complicado demostrar que el determinante es multiplicativo a partir de su definición en términos de permutaciones.

El determinante detecta matrices invertibles

Otra de las propiedades fundamentales del determinante es que nos ayuda a detectar cuándo una matriz es invertible. Esto nos permite agregar una equivalencia más a la lista de equivalencias de matrices invertibles que ya teníamos.

Teorema. Una matriz A en M_n(F) es invertible si y sólo si \det A\neq 0.

Demostración. Supongamos que A es invertible, entonces existe B\in M_n(F) tal que AB=I_n=BA.
Así,

1=\det I_n = \det (AB) = \det A \cdot \det B.

Como el lado izquierdo es 1, ambos factores del lado derecho son distintos de 1. Por lo tanto \det A \neq 0. Nota que además esta parte de la prueba nos dice que \det A^{-1}=(\det A)^{-1}.

Ahora supongamos que \det A \neq 0. Sea (e_1, \dots , e_n) la base canónica de F^n y C_1,\dots , C_n las columnas de A. Como \det_{(e_1,\ldots,e_n)} es una forma lineal alternante, sabemos que si C_1,\ldots,C_n fueran linealmente dependientes, la evaluación daría cero. Ya que la columna C_i es la imagen bajo A de e_i, entonces

\det A =\det _{(e_1,\dots , e_n)}(C_1, \dots , C_n) \neq 0.

Por lo tanto los vectores C_1, \dots , C_n son linealmente independientes y así \text{rank}(A)=n. Se sigue que A es una matriz invertible.

\square

Determinante de transformación y matriz transpuesta

Una cosa que no es totalmente evidente a partir de la definición de determinante para matrices es que el determinante no cambia si transponemos una matriz o una transformación lineal. Esta es la última de las propiedades de determinantes que probaremos ahora.

Teorema. Sea A una matriz en M_n(F). Se tiene que

    \[\det({^tA})=\det A.\]

Demostración. Por definición

\det({^tA})=\displaystyle\sum_{\sigma \in S_n}\text{sign}(\sigma^{-1})a_{\sigma^{-1}(1)1 \dots a_{\sigma^{-1}(n)n}}.

Luego, para cualquier permutación \sigma se tiene

    \[a_{\sigma(1)1}\dots a_{\sigma(n)n}=a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}\]

pues a_{i\sigma^{-1}(i)}=a_{\sigma(j)j}, donde j=\sigma^{-1}(i).
También vale la pena notar que

    \[\text{sign}(\sigma^{-1})=\text{sign}(\sigma)^{-1}=\text{sign}(\sigma).\]

De lo anterior se sigue que

    \begin{align*}\det({^tA})&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma^{-1})a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}\\&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots a_{n\sigma(n)}\\&=\det A.\end{align*}

\square

Teorema. Sea V un espacio vectorial de dimensión finita T:V\to V una transformación lineal. Se tiene que

    \[\det(^t T) = \det T.\]

Demostración. Sea A la matriz asociada a T, entonces ^tA es la matriz asociada a ^tT. Luego

    \[\det (^tT)=\det (^tA)=\det A = \det T.\]

\square

Veamos un ejemplo de un problema en el que podemos aplicar algunas de las propiedades anteriores.

Problema. Sea A\in M_n(F) una matriz antisimétrica para algún n impar. Demuestra que \det(A)=0.

Demostración. Como A=-A^t, entonces \det A = \det (- {^tA}), pero \det A = \det ({^tA}).
Se sigue que

    \begin{align*}\det ({^tA}) &= \det  (-{^tA})\\&=(-1)^n \det ({^tA})\\&=-\det ({^tA}).\end{align*}

Concluimos \det (^tA)=0

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que al multiplicar una columna de una matriz por \lambda, entonces su determinante se multiplica por \lambda.
  • Demuestra que si una matriz tiene dos columnas iguales, entonces su determinante es igual a cero.
  • Analiza cómo es el determinante de una matriz antisimétrica A\in M_n(F) con n par.
  • Formaliza la frase «el determinante detecta transformaciones invertibles» en un enunciado matemático. Demuéstralo.

Álgebra Lineal I: Determinantes de vectores e independencia lineal

Introducción

En este cuarto y último bloque del curso comenzamos hablando de transformaciones multilineales y de permutaciones. Luego, nos enfocamos en las transformaciones multilineales antisimétricas y alternantes. Con la teoría que hemos desarrollado hasta ahora, estamos listos para definir determinantes de vectores, de transformaciones lineales y de matrices.

En esta entrada comenzaremos con la definición de determinantes de vectores. En la siguiente entrada hablaremos acerca de determinantes de matrices y de transformaciones lineales. Después de definir determinantes, probaremos varias de las propiedades que satisfacen. Posteriormente, hablaremos de varias técnicas que nos permitirán calcular una amplia variedad de determinantes para tipos especiales de matrices.

Determinantes de vectores

Para empezar, definiremos qué es el determinante de un conjunto de vectores en un espacio de dimensión finita con respecto a una base.

Definición. Sea B=(b_1,\ldots,b_n) una base de un espacio vectorial V de dimensión finita n y x_1,\ldots,x_n vectores de V. Cada uno de los x_i se puede escribir como

    \[x_i=\sum_{j=1}^n a_{ji}b_j.\]

El determinante de x_1,\ldots,x_n con respecto a (b_1,\ldots,b_n) es

    \[\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},\]

y lo denotamos por \det_{(b_1,\ldots,b_n)} (x_1,\ldots,x_n).

Observa que estamos sumando tantos términos como elementos en S_n. Como existen n! permutaciones de un conjunto de n elementos, entonces la suma de la derecha tiene n! sumandos.

Ejemplo. Consideremos la base b_1=1, b_2=1+x y b_3=1+x+x^2 del espacio vectorial \mathbb{R}_2[x] de polinomios con coeficientes reales y grado a lo más 2. Tomemos los polinomios v_1=1, v_2=2x y v_3=3x^2. Vamos a calcular el determinante de v_1, v_2, v_3 con respecto a la base (b_1,b_2,b_3).

Para hacer eso, lo primero que tenemos que hacer es expresar a v_1, v_2, v_3 en términos de la base. Hacemos esto a continuación:

    \begin{align*}v_1&= 1\cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3\\v_2&= -2\cdot b_1 + 2 \cdot b_2 + 0 \cdot b_3\\v_3&= 0 \cdot b_1 - 3 \cdot b_2 +3 b_3.\end{align*}

De aquí, obtenemos

    \begin{align*}a_{11}&=1, a_{21}=0, a_{31}=0,\\a_{12}&=-2, a_{22}=2, a_{32}=0,\\a_{13}&=0, a_{23}=-3, a_{33}=3.\end{align*}

Si queremos calcular el determinante, tenemos que considerar las 3!=3\cdot 2 \cdot 1 = 6 permutaciones en S_3. Estas permutaciones son

    \begin{align*}\sigma_1 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 2 & 3\end{pmatrix}\\\sigma_2 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 3 & 2\end{pmatrix}\\\sigma_3 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 1 & 3\end{pmatrix}\\\sigma_4 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 1\end{pmatrix}\\\sigma_5 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 2 & 1\end{pmatrix}\\\sigma_6 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 1 & 2\end{pmatrix}.\end{align*}

Los signos de \sigma_1,\ldots,\sigma_6 son, como puedes verificar, 1, -1, -1, 1, -1 y 1, respectivamente.

El sumando correspondiente a \sigma_1 es

(1)   \begin{align*}\text{sign}(\sigma_1) &a_{1\sigma_1(1)}a_{2\sigma_1(2)}a_{3\sigma_1(3)}\\&= 1 \cdot a_{11}a_{22}a_{33}\\&=1\cdot 1\cdot 2 \cdot 3 = 6.\end{align*}

El sumando correspondiente a \sigma_2 es

(2)   \begin{align*}\text{sign}(\sigma_2) &a_{1\sigma_2(1)}a_{2\sigma_2(2)}a_{3\sigma_2(3)}\\&= (-1) \cdot a_{11}a_{23}a_{32}\\&=(-1) \cdot 1\cdot (-3) \cdot 0 = 0.\end{align*}

Continuando de esta manera, se puede ver que los sumandos correspondientes a \sigma_1,\ldots,\sigma_6 son

    \[+6,-0,-0,+0,-0,+0,\]

respectivamente de modo que el determinante es 6.

\square

La expresión de determinante puede parecer algo complicada, pero a través de ella podemos demostrar fácilmente algunos resultados. Consideremos como ejemplo el siguiente resultado.

Proposición. Sea B=(b_1,\ldots,b_n) una base de un espacio vectorial V de dimensión finita n. El determinante de B con respecto a sí mismo es 1.

Demostración. Cuando escribimos a b_i en términos de la base b, tenemos que

    \[b_i=\sum_{j=1}^n a_{ji} b_j.\]

Como la expresión en una base es única, debemos tener a_{ii}=1 y a_{ji}=0 si j\neq i. Ahora, veamos qué le sucede al determinante

    \[\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.\]

Si \sigma es una permutación tal que \sigma(i)\neq i para alguna i, entonces en el producto del sumando correspondiente a \sigma aparece a_{i\sigma(i)}=0, de modo que ese sumando es cero. En otras palabras, el único sumando no cero es cuando \sigma es la permutación identidad.

Como el signo de la identidad es 1 y cada a_{ii} es 1, tenemos que el determinante es

    \begin{align*}\sum_{\sigma \in S_n} \text{sign}&(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)} \\&=a_{11}\cdot\ldots\cdot a_{nn}\\ &= 1\cdot\ldots\cdot 1 \\&  = 1.\end{align*}

\square

El determinante es una forma n-lineal alternante

La razón por la cual hablamos de transformaciones n-lineales antisimétricas y alternantes antes de hablar de determinantes es que, en cierto sentido, los determinantes de vectores son las únicas transformaciones de este tipo. Los siguientes resultados formalizan esta intuición.

Teorema. Sea B=(b_1,\ldots,b_n) una base de un espacio vectorial V sobre F. Entonces la transformación \det_{(b_1,\ldots,b_n)}:V^d \to F es una forma n-lineal y alternante.

Demostración. La observación clave para demostrar este resultado es que \det_{(b_1,\ldots,b_n)} se puede reescribir en términos de la base dual b_1^\ast, \ldots, b_n^\ast. En efecto, recuerda que b_i^\ast es la forma lineal que «lee» la coordenada de un vector v escrito en la base B. De esta forma,

    \begin{align*}\det_{(b_1,\ldots,b_n)}&(v_1,\ldots,v_n)\\&=\sum_{\sigma\in S_n}\left(\text{sign}(\sigma) \prod_{j=1}^n b_j^\ast(v_{\sigma(j)})\right)\\\end{align*}

Para cada permutación \sigma, el sumando correspondiente es una forma n-lineal, pues es producto de n formas lineales evaluadas en los distintos vectores. Así que \det_{(b_1,\ldots,b_n)} es suma de formas n-lineales y por lo tanto es forma n-lineal.

Para mostrar que el determinante es alternante, tenemos que mostrar que es igual a 0 cuando algún par de sus entradas son iguales. Supongamos que i\neq j y que v_i=v_j. Tomemos \tau a la transposición que intercambia a i y a j. Cuando se compone una permutación con una transposición, su signo cambia. Así, para cualquier permutación \sigma, tenemos que \sigma\tau tiene signo diferente.

Además, para cualquier \sigma tenemos que

    \[a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\]

y

    \[a_{1\sigma\tau(1)}\cdot\ldots\cdot a_{n\sigma\tau(n)}\]

son iguales, pues v_i=v_j. Combinando ambas ideas, podemos emparejar a cada sumando del determinante con otro con el cual sume cero. Esto muestra que el determinante es 0.

\square

Usando la teoría que desarrollamos en la entrada anterior, tenemos el siguiente corolario.

Corolario. La forma n-lineal \det_{(b_1,\ldots,b_n)} es antisimétrica.

Los determinantes de vectores son las «únicas» formas n-lineales alternantes

Ya vimos que el determinante es una forma n-lineal alternante. Veamos ahora por qué decimos que es «la única». El siguiente resultado dice que cualquier otra forma n-lineal alternante varía de \det_{(b_1,\ldots,b_n)} únicamente por un factor multiplicativo.

Teorema. Sea B=(b_1,\ldots,b_n) una base de un espacio vectorial V. Si f:V^n \to F es cualquier forma n-lineal y alternante, entonces

    \[f=f(b_1,\ldots,b_n)\det_{(b_1,\ldots,b_n)}.\]

Demostración. Para mostrar la igualdad del teorema, que es una igualdad de transformaciones, tenemos que ver que es cierta al evaluar en cualesquiera vectores x_1,\ldots,x_n. Escribamos a cada x_i en términos de la base B:

    \[x_i=\sum_{j=1}^n a_{ij}v_j.\]

Usando la n-linealidad de f en cada una de las entradas, tenemos que

    \begin{align*}f(x_1,\ldots,x_n)&=\sum_{i=1}^n a_{1i} f(b_i,x_2,\ldots,x_n)\\&=\sum_{i,j=1}^n a_{1i}a_{2i} f(b_i,b_j,x_3,\ldots,x_n)\\&=\ldots\\&=\sum_{i_1,\ldots,i_n = 1}^n a_{1i_1}\ldots a_{ni_n} f(b_{i_1},\ldots,b_{i_n}).\end{align*}

Aquí hay muchos términos, pero la mayoría de ellos son 0. En efecto, si b_{i_k}=b_{i_l}, como f es alternante tendríamos que ese sumando es 0. Así, los únicos sumandos que pueden ser no cero son cuando la elección de subíndices es una permutación, es decir cuando existe \sigma en S_n tal que para i_k=\sigma(k).

Por lo tanto, podemos simplificar la expresión anterior a

    \[f(x_1,\ldots,x_n)=\sum_{\sigma \in S_n}a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_{\sigma(1)},\ldots,b_{\sigma(n)}).\]

Como f es alternante, entonces es antisimétrica. De este modo, podemos continuar la igualdad anterior como

    \begin{align*}&=\sum_{\sigma \in S_n} \text{sign}(\sigma) a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_1,\ldots,b_n)\\&=f(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots, x_n). \end{align*}

Esto es justo lo que queríamos probar.

\square

Los determinantes de vectores caracterizan bases

Como consecuencia del último teorema de la sección anterior, los determinantes de vectores caracterizan totalmente a los conjuntos de vectores que son bases. A continuación enunciamos esto formalmente.

Corolario. En un espacio vectorial V de dimensión n son equivalentes las siguientes tres afirmaciones para vectores x_1,\ldots,x_n de V:

  1. El determinante de x_1,\ldots,x_n con respecto a toda base es distinto de 0.
  2. El determinante de x_1,\ldots,x_n con respecto a alguna base es distinto de 0.
  3. x_1,\ldots,x_n es una base de V.

Demostración. La afirmación (1) es más fuerte que la (2) y por lo tanto la implica.

Ahora, probemos que la afirmación (2) implica la afirmación (3). Como x_1,\ldots,x_n son n vectores y n es la dimensión de V, para mostrar que forman una base basta mostrar que son linealmente independientes. Anteriormente, vimos que cualquier forma alternante manda vectores linealmente dependientes a 0. Como la hipótesis de (2) es que existe alguna forma alternante que no se anula en x_1,\ldots, x_n, entonces deben ser linealmente independientes y por lo tanto formar una base.

Finalmente, probemos que (3) implica (1). Tomemos B=(b_1,\ldots,b_n) otra base de V. Como \det_{(x_1,\ldots,x_n)} es una forma n-lineal, podemos aplicar el teorema anterior y evaluar en x_1,\ldots,x_n para concluir que

    \begin{align*}\det_{(x_1,\ldots,x_n)}&(x_1,\ldots,x_n)&\\&=\det_{(x_1,\ldots,x_n)}(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots,x_n).\end{align*}

El término de la izquierda es igual a 1, de modo que ambos factores a la derecha deben ser distintos de 0.

\square

Ejemplo. En el ejemplo que dimos de polinomios vimos que el determinante de 1, 2x y 3x^2 con respecto a la base 1, 1+x y 1+x+x^2 es igual a 6. De acuerdo al teorema anterior, esto implica que 1, 2x y 3x^2 es un conjunto linealmente independiente de polinomios, y de hecho una base.

Además, el teorema anterior también implica que sin importar que otra base B de \mathbb{R}_2[x] tomemos, el determinante de 1, 2x y 3x^2 con respecto a B también será distinto de 0.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Cuántos sumandos tendrá el determinante de 5 vectores en un espacio vectorial de dimensión 5 con respecto a cualquier base? Da el número de manera explícita.
  • Verifica que en el primer ejemplo de determinantes de esta entrada, en efecto los sumandos correspondientes a \sigma_1,\ldots,\sigma_6 son los que se enuncian.
  • Encuentra el determinante de los vectores (3,1) y (2,4) con respecto a la base ((5,1), (2,3)) de \mathbb{R}^2.
  • Muestra que los vectores (1,4,5,2), (0,3,2,1), (0,0,-1,4) y (0,0,0,1) son linealmente independientes calculando por definición su determinante con respecto a la base canónica de \mathbb{R}^4.
  • Usa un argumento de determinantes para mostrar que los vectores (1,4,3), (2,-2,9), (7,8,27) de \mathbb{R}^3 no son linealmente independientes. Sugerencia. Calcula su determinante con respecto a la base canónica.

Álgebra Lineal I: Transformaciones multilineales antisimétricas y alternantes

Introducción

En la entrada anterior hablamos de la importancia que tiene poder diagonalizar una matriz: nos ayuda a elevarla a potencias y a encontrar varias de sus propiedades fácilmente. En esa entrada discutimos a grandes rasgos el caso de matrices en M_2(\mathbb{R}). Dijimos que para dimensiones más altas, lo primero que tenemos que hacer es generalizar la noción de determinante de una manera que nos permita probar varias de sus propiedades fácilmente. Es por eso que introdujimos a las funciones multilineales y dimos una introducción a permutaciones. Tras definir las clases de transformaciones multilineales alternantes y antisimétricas, podremos finalmente hablar de determinantes.

Antes de entrar con el tema, haremos un pequeño recordatorio. Para d un entero positivo y V, W espacios vectoriales sobre un mismo campo, una transformación d-lineal es una transformación multilineal de V^d a W, es decir, una tal que al fijar cualesquiera d-1 coordenadas, la función que queda en la entrada restante es lineal.

Con [n] nos referimos al conjunto \{1,2,\ldots,n\}. Una permutación en S_n es una función biyectiva \sigma:[n]\to [n]. Una permutación invierte a la pareja i<j si \sigma(i)>\sigma(j). Si una permutación \sigma invierte una cantidad impar de parejas, decimos que es impar y que tiene signo \text{sign}(\sigma)=-1. Si invierte a una cantidad par de parejas (tal vez cero), entonces es par y tiene signo \text{sign}(\sigma)=1.

Transformaciones n-lineales antisimétricas y alternantes

Tomemos d un entero positivo, V, W espacios vectoriales sobre el mismo campo y \sigma una permutación en S_d. Si T:V^d\to W es una transformación d-lineal, entonces la función (\sigma T):V^d\to W dada por

    \[(\sigma T)(v_1,\ldots,v_d)=T(v_{\sigma(1)},v_{\sigma(2)},\ldots,v_{\sigma(d)})\]

también lo es. Esto es ya que sólo se cambia el lugar al que se lleva cada vector. Como T es lineal en cualquier entrada (al fijar las demás), entonces \sigma T también.

Definición. Decimos que T es antisimétrica si \sigma T = \text{sign}(\sigma) T para cualquier permutación \sigma en S_d. En otras palabras, T es antisimétrica si \sigma T=T para las permutaciones pares y \sigma T = -T para las permutaciones impares.

Definición. Decimos que T es alternante si T(v_1,\ldots,v_d)=0 cuando hay dos v_i que sean iguales.

Ejemplo. Consideremos la función T:(\mathbb{R}^2)^2\to\mathbb{R} dada por

    \[T((a,b),(c,d))=ad-bc.\]

Afirmamos que ésta es una transformación 2-lineal alternante y antisimétrica. La parte de mostrar que es 2-lineal es sencilla y se queda como tarea moral.

Veamos primero que es una función alternante. Tenemos que mostrar que si (a,b)=(c,d), entonces T((a,b),(c,d))=0. Para ello, basta usar la definición:

    \[T((a,b),(a,b))=ab-ab=0.\]

Ahora veamos que es una función antisimétrica. Afortunadamente, sólo hay dos permutaciones en S_2, la identidad \text{id} y la permutación \sigma que intercambia a 1 y 2. La primera tiene signo 1 y la segunda signo -1.

Para la identidad, tenemos (\text{id}T)((a,b),(c,d))=\sigma((a,b),(c,d)), así que (\text{id}T)=T=\text{sign}(\text{id})T, como queremos.

Para \sigma, tenemos que \sigma T es aplicar T pero «con las entradas intercambiadas». De este modo:

    \begin{align*}(\sigma T)((a,b),(c,d))&=T((c,d),(a,b))\\&=cb-da\\&=-(ad-bc)\\&=-T((a,b),(c,d)).\end{align*}

Esto muestra que (\sigma T) = -T = \text{sign}(\sigma)T.

\square

Equivalencia entre alternancia y antisimetría

Resulta que ambas definiciones son prácticamente la misma. Las transformaciones alternantes siempre son antisimétricas. Lo único que necesitamos para que las transformaciones antisimétricas sean alternantes es que en el campo F en el que estamos trabajando la ecuación 2x=0 sólo tenga la solución x=0. Esto no pasa, por ejemplo, en \matbb{Z}_2. Pero sí pasa en \mathbb{Q}, \mathbb{R} y \mathbb{C}.

Proposición. Sean V y W espacios vectoriales sobre un campo donde 2x=0 sólo tiene la solución x=0. Sea d un entero positivo. Una transformación d-lineal T:V^d\to W es antisimétrica si y sólo si es alternante.

Demostración. Supongamos primero que T es antisimétrica. Mostremos que es alternante. Para ello, supongamos que para i\neq j tenemos que x_i=x_j.

Tomemos la permutación \sigma:[d]\to [d] tal que \sigma(i)=j, \sigma(j)=i y \sigma(k)=k para todo k distinto de i y j. A esta permutación se le llama la transposición (i,j). Es fácil mostrar (y queda como tarea moral), que cualquier transposición tiene signo -1.

Usando la hipótesis de que T es antisimétrica con la transposición (i,j), tenemos que

    \begin{align*}T(x_1,&\ldots, x_i,\ldots,x_j,\ldots,x_n)\\&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n)\\&=-T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n),\end{align*}

en donde en la segunda igualdad estamos usando que x_i=x_j. De este modo,

    \[2T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0,\]

y por la hipótesis sobre el campo, tenemos que

    \[T(x_1,\ldots, x_i,\ldots,x_j,\ldots,x_n)=0.\]

Así, cuando dos entradas son iguales, la imagen es 0, de modo que la transformación es alternante.

Hagamos el otro lado de la demostración. Observa que este otro lado no usará la hipótesis del campo. Supongamos que T es alternante.

Como toda permutación es producto de transposiciones y el signo de un producto de permutaciones es el producto de los signos de los factores, basta con mostrar la afirmación para transposiciones. Tomemos entonces \sigma la transposición (i,j). Tenemos que mostrar que \sigma T = \text{sign}(\sigma) T = -T.

Usemos que T es alternante. Pondremos en las entradas i y j a la suma de vectores x_i+x_j, de modo que

    \[T(x_1,\ldots,x_i+x_j,\ldots,x_i+x_j,\ldots,x_n)=0.\]

Usando la n-linealidad de T en las entradas i y j para abrir el término a la izquierda, tenemos que

    \begin{align*}0=T(x_1&,\ldots,x_i,\ldots,x_i,\ldots,x_n) + \\&T(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)+\\&T(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)+\\&T(x_1,\ldots,x_j,\ldots,x_j,\ldots,x_n).\end{align*}

Usando de nuevo que T es alternante, el primero y último sumando son cero. Así,

    \begin{align*}T(x_1&,\ldots, x_i,\ldots,x_j,\ldots,x_n)\\&=-T(x_1,\ldots, x_j,\ldots,x_i,\ldots,x_n).\end{align*}

En otras palabras, al intercambiar las entradas i y j se cambia el signo de T, que precisamente quiere decir que (\sigma T) = \text{sign}(\sigma)T.

\square

Las transformaciones alternantes se anulan en linealmente dependientes

Una propiedad bastante importante de las transformaciones alternantes es que ayudan a detectar a conjuntos de vectores linealmente dependientes.

Teorema. Sea T:V^d\to W una transformación d-lineal y alternante. Supongamos que v_1,\ldots,v_d son linealmente dependientes. Entonces

    \[T(v_1,v_2,\ldots,v_d)=0.\]

Demostración. Como los vectores son linealmente independientes, hay uno que está generado por los demás. Sin perder generalidad, podemos suponer que es v_d y que tenemos

    \[v_d=\alpha_1v_1+\ldots+\alpha_{d-1}v_{d-1}\]

para ciertos escalares \alpha_1,\ldots, \alpha_{d-1}.

Usando la d-linealidad de T, tenemos que

    \begin{align*}T\left(v_1,v_2,\ldots,v_{d-1},v_d\right)&=T\left(v_1,\ldots,v_{d-1},\sum_{i=1}^{d-1} \alpha_i v_i\right)\\&=\sum_{i=1}^{d-1} \alpha_i T(v_1,\ldots,v_{d-1}, v_i).\end{align*}

Usando que T es alternante, cada uno de los sumandos del lado derecho es 0, pues en el i-ésimo sumando tenemos que aparece dos veces el vector v_i entre las entradas de T. Esto muestra que

    \[T(v_1,\ldots,v_d)=0,\]

como queríamos mostrar.

\square

Introducción a definiciones de determinantes

En la siguiente entrada daremos tres definiciones de determinante. Una es para un conjunto de vectores. Otra es para transformaciones lineales. La última es para matrices. Todas ellas se motivan entre sí, y las propiedades de una nos ayudan a probar propiedades de otras. En esa entrada daremos las definiciones formales. Por ahora sólo hablaremos de ellas de manera intuitiva.

Para definir el determinante para un conjunto de vectores, empezamos con un espacio vectorial V de dimensión n y tomamos una base B=(b_1,\ldots,b_n). Definiremos el determinante con respecto a B de un conjunto de vectores (v_1,v_2,\ldots,v_n) , al cual denotaremos por \det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)de V de la manera siguiente.

A cada vector v_i lo ponemos como combinación lineal de elementos de la base:

    \[v_i=\sum_{j=1}^n a_{ji}b_j.\]

El determinante

    \[\det_{(b_1,\ldots,b_n)}(v_1,\ldots,v_n)\]

es

    \[\sum_{\sigma \in S(n)} \text{sign}(\sigma) a_{1\sigma(1)} \cdot a_{2\sigma(1)}\cdot \ldots\cdot a_{n\sigma(n)}.\]

Observa que esta suma tiene tantos sumandos como elementos en S_n, es decir, como permutaciones de [n]. Hay n! permutaciones, así que esta suma tiene muchos términos incluso si n no es tan grande.

Veremos que para cualquier base B, el determinante con respecto a B es una forma d-lineal alternante, y que de hecho las únicas formas d-lineales alternantes en V «son determinantes», salvo una constante multiplicativa.

Luego, para una transformación T:V\to V definiremos al determinante de T como el determinante

    \[\det_{(b_1,\ldots,b_n)}(T(b_1),\ldots,T(b_n)),\]

y veremos que esta definición no depende de la elección de base.

Finalmente, para una matriz A en M_n(F), definiremos su determinante como el determinante de la transformación T_A:F^n\to F^n tal que T_A(X)=AX. Veremos que se recupera una fórmula parecida a la de determinante para un conjunto de vectores.

Los teoremas que veremos en la siguiente entrada nos ayudarán a mostrar más adelante de manera muy sencilla que el determinante para funciones o para matrices es multiplicativo, es decir, que para T:V\to V, S:V\to V y para matrices A,B en M_n(F) se tiene que

    \begin{align*}\det(T\circ S)&=\det(T)\cdot \det(S)\\\det(AB)&=\det(A)\cdot \det(B).\end{align*}

También mostraremos que los determinantes nos ayudan a caracterizar conjuntos linealmente independientes, matrices invertibles y transformaciones biyectivas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que la función T:(\mathbb{R}^2)^2\to\mathbb{R} dada por

        \[T((a,b),(c,d))=ad-bc\]

    es 2-lineal. Para esto, tienes que fijar (a,b) y ver que es lineal en la segunda entrada, y luego fijar (c,d) y ver que es lineal en la primera.
  • Muestra que las transposiciones tienen signo -1. Ojo: sólo se intercambia el par (i,j), pero puede ser que eso haga que otros pares se inviertan.
  • Muestra que cualquier permutación se puede expresar como producto de transposiciones.
  • Muestra que la suma de dos transformaciones n-lineales es una transformación n-lineal. Muestra que al multiplicar por un escalar una transformación n-lineal, también se obtiene una transformación n-lineal.
  • ¿Es cierto que la suma de transformaciones n-lineales alternantes es alternante?

Al final del libro Essential Linear Algebra with Applications de Titu Andreescu hay un apéndice en el que se habla de permutaciones. Ahí puedes aprender o repasar este tema.