Archivo de la etiqueta: valores propios distintos

Ecuaciones Diferenciales I: Teoría cualitativa de los sistemas lineales homogéneos – Valores propios reales y distintos

Las matemáticas son el juez supremo;
de sus decisiones no hay apelación.
– Tobias Dantzig

Introducción

Ahora que conocemos algunas de las propiedades cualitativas más importantes a analizar de los sistemas autónomos compuestos por dos ecuaciones diferenciales, dedicaremos las siguientes entradas a estudiar exclusivamente los sistemas lineales homogéneos, logrando hacer una conexión entre la unidad 3 y la unidad 4 del curso.

Esta y las siguientes entradas serán el complemento cualitativo del método de valores y vectores propios para resolver sistemas lineales homogéneos, con la restricción de que los sistemas que estudiaremos estarán compuestos por dos ecuaciones diferenciales ya que son el tipo de sistemas en los que conjuntamente podemos hacer una descripción geométrica en $\mathbb{R}^{2}$, concretamente en el plano fase o plano $XY$.

En la primera entrada de esta unidad mostramos los casos posibles de acuerdo al valor que pueden tomar los valores propios, dichos casos pueden ser

Valores propios reales y distintos:

  • $\lambda_{1} < \lambda_{2} < 0$.
  • $\lambda_{1} > \lambda_{2} > 0$.
  • $\lambda_{1} < 0$ y $\lambda_{2} > 0$.

Valores propios complejos:

  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha = 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$.

Valores propios repetidos:

  • $\lambda_{1} = \lambda_{2} < 0$.
  • $\lambda_{1} = \lambda_{2} > 0$.

Valores propios nulos:

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

Dedicaremos esta entrada al caso exclusivo en el que los valores propios son reales y distintos.

Sistemas lineales

El sistema lineal autónomo que estudiaremos es

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx+dy \label{1} \tag{1}
\end{align*}

Si se definen las matrices

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

entonces el sistema se puede escribir como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

Por otro lado, si consideramos la función vectorial

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y)) \label{3} \tag{3}$$

en donde,

$$F_{1}(x, y) = ax + by \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = cx + dy \label{4} \tag{4}$$

entonces el sistema autónomo (\ref{1}) se puede escribir, alternativamente, como

$$Y^{\prime} = F(x, y) \label{5} \tag{5}$$

Veremos que el plano fase del sistema depende casi por completo de los valores propios de la matriz $\mathbf{A}$ y habrá diferencias notables si los valores propios de $\mathbf{A}$ cambian de signo o se vuelven imaginarios.

Sean $\lambda_{1}$ y $\lambda_{2}$ los dos valores propios reales de $\mathbf{A}$, tal que $\lambda_{1} \neq \lambda_{2}$, recordemos que la solución general para este caso es de la forma

$$\mathbf{Y}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} + c_{2}e^{\lambda_{2} t} \mathbf{K}_{2} \label{6} \tag{6}$$

En donde $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ son los vectores propios de $\mathbf{A}$ y $c_{1}$ y $c_{2}$ son constantes arbitrarias que se determinan a partir de las condiciones iniciales del problema.

Comencemos por estudiar el caso en el que los valores propios son negativos.

Valores propios negativos

Caso 1: $\lambda_{1} < \lambda_{2} < 0$.

Sean $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ los vectores propios de $\mathbf{A}$ con valores propios $\lambda_{1}$ y $\lambda_{2}$, respectivamente. La solución general está dada por (\ref{6}), sin embargo es conveniente hacer un análisis por separado de las soluciones linealmente independientes

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} \hspace{1cm} y \hspace{1cm} \mathbf{Y}_{2}(t) = c_{2}e^{\lambda_{2} t} \mathbf{K}_{2}$$

Comencemos por trazar en el plano $XY$, o plano fase, cuatro semirrectas, dos de ellas $l_{1}$ y $l_{2}$ siendo paralelas a $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$, respectivamente, mientras que las semirrectas $l^{\prime}_{1}$ y $l^{\prime}_{2}$ paralelas a $-\mathbf{K}_{1}$ y $-\mathbf{K}_{2}$, respectivamente.

Consideremos primero la solución

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} \label{7} \tag{7}$$

Esta solución es siempre proporcional a $\mathbf{K}_{1}$ y la constante de proporcionalidad $c_{1}e^{\lambda_{1} t}$ varía de $\pm \infty$ a cero, dependiendo de si $c_{1}$ es positiva o negativa. Por lo tanto, la trayectoria de esta solución es la semirrecta $l_{1}$ para $c_{1} > 0$, y la semirrecta $l^{\prime}_{1}$ para $c_{1} < 0$. Análogamente, la trayectoria de la solución

$$\mathbf{Y}_{2}(t) = c_{2}e^{\lambda_{2} t} \mathbf{K}_{2} \label{8} \tag{8}$$

es la semirrecta $l_{2}$ para $c_{2} > 0$ y la semirrecta $l^{\prime}_{2}$ para $c_{2} < 0$.

Consideremos ahora la solución general (\ref{6}).

$$\mathbf{Y}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} + c_{2}e^{\lambda_{2} t} \mathbf{K}_{2}$$

Notemos que toda solución $\mathbf{Y}(t)$ tiende al punto $(0, 0)$ cuando $t \rightarrow \infty$. Por lo tanto, toda trayectoria de (\ref{1}) tiende al origen cuando $t$ tiende a infinito.

Observemos que $e^{\lambda_{2} t} \mathbf{K}_{2}$ es muy pequeño comparado con $e^{\lambda_{1} t} \mathbf{K}_{1}$ cuando $t$ es grande (recordemos que $\lambda_{1} < \lambda_{2} < 0$). Por lo tanto, para $c_{1} \neq 0$, $\mathbf{Y}(t)$ se aproxima cada vez más a $c_{1} e^{\lambda_{1} t} \mathbf{K}_{1}$ conforme $t \rightarrow \infty $, esto implica que la tangente a la trayectoria de $\mathbf{Y}(t)$ tiende a $l_{1}$ si $c_{1}$ es positiva y a $l^{\prime}_{1}$, si $c_{1}$ es negativa.

Con todas estas características el plano fase de (\ref{1}), para el caso en el que los valores propios son negativos, tiene la forma que se presenta en la siguiente figura.

Plano fase para valores propios negativos.

Observamos que todas las trayectorias, con excepción de una sola recta, tienden al origen. En este caso se dice que el punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}) es un nodo atractor y su estabilidad es asintóticamente estable.

Una última observación es que la trayectoria de toda solución $\mathbf{Y}(t)$ de (\ref{1}) tiende al origen cuando $t$ tiende a infinito, sin embargo ese punto no pertenece a la trayectoria de ninguna solución no trivial $\mathbf{Y}(t)$.

Veamos ahora que ocurre cuando los valores propios son positivos.

Valores propios positivos

Caso 2: $0 < \lambda_{1} < \lambda_{2}$.

Para este caso se hace análogamente el mismo análisis que en el caso anterior, de modo que el plano fase es exactamente el mismo, excepto que el sentido de las trayectorias es el opuesto. El plano fase se muestra a continuación.

Plano fase para valores propios positivos.

Como las soluciones se alejan del punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}), se dice que dicho punto es un nodo repulsor e inestable.

Antes de realizar algunos ejemplos concluyamos con el caso en el que un valor propio es negativo, mientras que el otro es positivo.

Valores propios con signos opuestos

Caso 3: $\lambda_{1} < 0 < \lambda_{2}$.

Sean nuevamente $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ los vectores propios de $\mathbf{A}$ con valores propios $\lambda_{1}$ y $\lambda_{2}$, respectivamente.

De forma similar que en los casos anteriores, comencemos por trazar en el plano $XY$ cuatro semirrectas, dos de ellas $l_{1}$ y $l_{2}$ siendo paralelas a $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$, respectivamente, mientras que las semirrectas $l^{\prime}_{1}$ y $l^{\prime}_{2}$ paralelas a $-\mathbf{K}_{1}$ y $-\mathbf{K}_{2}$, respectivamente.

Consideremos nuevamente las soluciones linealmente independientes por separado.

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1} \hspace{1cm} y \hspace{1cm} \mathbf{Y}_{2}(t) = c_{2}e^{\lambda_{2} t} \mathbf{K}_{2}$$

En el caso de la solución

$$\mathbf{Y}_{1}(t) = c_{1}e^{\lambda_{1} t} \mathbf{K}_{1}$$

la trayectoria es $l_{1}$ para $c_{1} > 0$ y $l^{\prime}_{1}$ para $c_{1} < 0$, mientras que la trayectoria de la solución

$$\mathbf{Y}_{2}(t) = c_{2} e^{\lambda_{2} t} \mathbf{K}_{2}$$

es $l_{2}$ para $c_{2} > 0$ y $l^{\prime}_{2}$ para $c_{2} < 0$.

Notemos que la solución $c_{1} e^{\lambda_{1} t} \mathbf{K}_{1}$ tiende al origen $(0, 0)$ cuando $t \rightarrow \infty$, mientras que la solución $c_{2} e^{\lambda_{2} t} \mathbf{K}_{2}$ con $c_{2} \neq 0$ es no acotada conforme $t \rightarrow \infty$.

Por otro lado, observemos que $e^{\lambda_{1} t} \mathbf{K}_{1}$ es muy pequeño comparado con $e^{\lambda_{2} t} \mathbf{K}_{2}$ cuando $t$ crece mucho. Por lo tanto, toda solución $\mathbf{Y}(t)$ de (\ref{1}) con $c_{2} \neq 0$ es no acotada cuando $t$ tiende a infinito y su trayectoria tiende a $l_{2}$ o a $l^{\prime}_{2}$. De forma similar notamos que $e^{\lambda_{2} t} \mathbf{K}_{2}$ es muy pequeño comparado con $e^{\lambda_{1} t} \mathbf{K}_{1}$ cuando $t$ crece mucho con signo negativo. Por lo tanto, la trayectoria de cualquier solución $\mathbf{Y}(t)$ de (\ref{1}) con $c_{1} \neq 0$ tiende a $l_{1}$ o a $l^{\prime}_{1}$ cuando $t$ tiende a menos infinito.

Por lo tanto, en el caso en el que los valores propios tienen signos opuestos, el plano fase, con las características mencionadas, tiene la siguiente forma.

Plano fase para valores propios con signos opuestos.

Es posible observar que el plano fase se asemeja a una silla de montar cerca del origen, por esta razón se dice que el punto de equilibrio $Y_{0} = (0, 0)$ de (\ref{1}) es un punto silla y es inestable.

Para concluir con la entrada realicemos un ejemplo por cada caso analizado. En los ejemplos de esta y las próximas entradas estaremos usando las herramientas antes proporcionadas para visualizar el plano fase y el campo vectorial asociado. Puedes usarlas tu mismo para comprobar los resultados o visualizar otros sistemas.

Caso 1: $\lambda_{1} < \lambda_{2} < 0$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-5 & 1 \\ 1 & -5
\end{pmatrix} \mathbf{Y}$$

Solución: Primero resolvamos el sistema analíticamente. Determinemos los valores propios.

$$\begin{vmatrix}
-5 -\lambda & 1 \\ 1 & -5 -\lambda
\end{vmatrix} = (-5 -\lambda)^{2} -1 = \lambda^{2} + 10 \lambda + 24 = (\lambda + 6)(\lambda + 4) = 0$$

Las raíces son $\lambda_{1} = -6$ y $\lambda_{2} = -4$. Determinemos los vectores propios. La primer ecuación a resolver es

$$(\mathbf{A} + 6 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Inmediatamente vemos que $k_{1} = -k_{2}$. Sea $k_{2} = 1$, entonces $k_{1} = -1$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

Para el segundo vector propio resolvemos la ecuación

$$(\mathbf{A} + 4 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-1 & 1 \\ 1 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

En este caso $k_{1} = k_{2}$. Sea $k_{1} = 1 = k_{2}$, entonces el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Por lo tanto, la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} e^{-6t} \begin{pmatrix}
-1 \\ 1
\end{pmatrix} + c_{2} e^{-4t} \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

Separemos la soluciones en las funciones $x(t)$ y $y(t)$.

\begin{align*}
x(t) &= -c_{1}e^{-6t} + c_{2}e^{-4t} \\
y(t) &= c_{1}e^{-6t} + c_{2}e^{-4t}
\end{align*}

Analicemos las soluciones cualitativamente.

Lo primero que sabemos es que el punto de equilibrio $Y_{0} = (0, 0)$ es un nodo atractor estable lo que implica que todas las soluciones tienden al origen, pero nunca llegan a él ya que dicho punto no pertenece a ninguna solución.

Las rectas paralelas a los vectores propios $\mathbf{K}_{1}$ y $\mathbf{K}_{2}$ están definidas por las funciones $y(x) = -x$ y $y(x) = x$, respectivamente. La forma de comprobarlo es considerando las soluciones linealmente independientes por separado.

$$\mathbf{Y}_{1}(t) = c_{1} e^{-6t} \begin{pmatrix}
-1 \\ 1
\end{pmatrix}$$

y

$$\mathbf{Y}_{2}(t) = c_{2} e^{-4t} \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

En el caso de la solución $\mathbf{Y}_{1}(t)$ las soluciones son

\begin{align*}
x(t) &= -c_{1}e^{-6t} \\
y(t) &= c_{1}e^{-6t}
\end{align*}

De donde es claro que $y = -x = c_{1}e^{-6t}$. De forma similar, de la segunda solución $\mathbf{Y}_{2}(t)$ se obtienen las soluciones

\begin{align*}
x(t) &= c_{2}e^{-4t} \\
y(t) &= c_{2}e^{-4t}
\end{align*}

De donde $y = x = c_{2}e^{-4t} $.

Todas las trayectorias se trazarán de acuerdo a la función paramétrica

$$f(t) = (-c_{1}e^{-6t} + c_{2}e^{-4t}, c_{1}e^{-6t} + c_{2}e^{-4t})$$

Tracemos como ejemplo $4$ trayectorias correspondientes a los siguientes casos:

  • $c_{1} = 1$, $c_{2} = 1 \hspace{1.3cm} \rightarrow \hspace{1cm} f(t) = (-e^{-6t} + e^{-4t}, e^{-6t} + e^{-4t})$
  • $c_{1} = 1$, $c_{2} = -1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (-e^{-6t} -e^{-4t}, e^{-6t} -e^{-4t})$
  • $c_{1} = -1$, $c_{2} = 1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (e^{-6t} + e^{-4t}, -e^{-6t} + e^{-4t})$
  • $c_{1} = -1$, $c_{2} = -1 \hspace{0.7cm} \rightarrow \hspace{1cm} f(t) = (e^{-6t} -e^{-4t}, -e^{-6t} -e^{-4t})$

La gráfica en el plano $XY$ de las cuatro trayectorias anteriores, cerca del origen, se muestra a continuación.

$4$ trayectorias particulares del sistema.

Por supuesto hay infinitas trayectorias, una para cada posible par de valores $c_{1}$ y $c_{2}$.

En la parte izquierda de la siguiente figura se encuentra el plano fase del sistema con algunas trayectorias, los vectores propios de $\mathbf{A}$ y las rectas paralelas a dichos vectores. En el lado derecho se encuentra el sistema que estamos analizando y el valor de los eigenvalores y eigenvectores.

Plano fase del sistema.

En la figura anterior también se encuentran los datos $\Delta = 24$ y $\tau = -10$, estos valores corresponden al valor del determinante y la traza de $\mathbf{A}$, respectivamente. Por el momento no tenemos que preocuparnos por estos valores, sin embargo más adelante veremos que nos serán de mucha utilidad cuando estudiemos el llamado plano traza – determinante.

Para concluir con el ejemplo determinemos el campo vectorial asociado. La función $F(x, y)$ en este caso es

$$F(x, y) = (-5x + y, x -5y)$$

El campo vectorial asociado junto con algunas trayectorias se muestra a continuación.

Trayectorias y campo vectorial.

$\square$

Caso 2: $0 < \lambda_{1} < \lambda_{2}$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ -2 & 5
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
4 -\lambda & -1 \\ -2 & 5 -\lambda
\end{vmatrix} = (4 -\lambda)(5 -\lambda) -2 = \lambda^{2} -9 \lambda + 18 = (\lambda -3)(\lambda -6) = 0$$

Las raíces son $\lambda_{1} = 3$ y $\lambda_{2} = 6$. Determinemos los vectores propios. La primer ecuación a resolver es

$$(\mathbf{A} -3 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
1 & -1 \\ -2 & 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Resolviendo el sistema se obtiene que $k_{1} = k_{2}$, elegimos convenientemente $k_{1} = -2 = k_{2}$, tal que el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-2 \\ -2
\end{pmatrix}$$

Para obtener el segundo vector propio resolvemos la ecuación

$$(\mathbf{A} -6 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
-2 & -1 \\ -2 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

En este caso se obtiene que $-2k_{1} = k_{2}$. Elegimos $k_{1} = 1$, entonces $k_{2} = -2$ y así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ -2
\end{pmatrix}$$

Por lo tanto, la solución general es

$$\mathbf{Y}(t) = c_{1} e^{3t} \begin{pmatrix}
-2 \\ -2
\end{pmatrix} + c_{2} e^{6t} \begin{pmatrix}
1 \\ -2
\end{pmatrix}$$

Escribamos la solución en términos de las funciones $x(t)$ y $y(t)$.

\begin{align*}
x(t) &= -2c_{1}e^{3t} + c_{2}e^{6t} \\
y(t) &= -2c_{1}e^{3t} -2c_{2}e^{6t}
\end{align*}

Comencemos por determinar las funciones que definen las rectas paralelas a los vectores propios, para ello consideremos por separado las soluciones linealmente independientes

$$\mathbf{Y}_{1}(t) = c_{1} e^{3t} \begin{pmatrix}
-2 \\ -2
\end{pmatrix}$$

y

$$\mathbf{Y}_{2}(t) = c_{2} e^{6t} \begin{pmatrix}
1 \\ -2
\end{pmatrix}$$

De la solución $\mathbf{Y}_{1}(t)$ tenemos las soluciones

\begin{align*}
x(t) &= -2c_{1}e^{3t} \\
y(t) &= -2c_{1}e^{3t}
\end{align*}

De donde vemos que $y = x = -2c_{1}e^{3t}$, por tanto la recta paralela a $\mathbf{K}_{1}$ se define por la función $y(x) = x$. Por otro lado, de la solución $\mathbf{Y}_{2}(t)$ se tiene las soluciones

\begin{align*}
x(t) &= c_{2}e^{6t} \\
y(t) &= -2c_{2}e^{6t}
\end{align*}

En este caso vemos que $y = -2x = -2c_{2}e^{6t}$, por tanto la recta paralela al vector propio $\mathbf{K}_{2}$ esta definida por la función $y(x) = -2x$.

La función paramétrica que nos permite trazar las trayectorias es

$$f(t) = (-2c_{1}e^{3t} + c_{2}e^{6t}, -2c_{1}e^{3t} -2c_{2}e^{6t})$$

Si lo deseas intenta graficar algunas trayectorias para algunos valores de $c_{1}$ y $c_{2}$ como lo hicimos en el ejemplo anterior.

El plano fase del sistema indicando algunas trayectorias, los vectores propios y las rectas paralelas a estos vectores, se muestra a continuación.

Plano fase del sistema.

Se puede observar que las trayectorias son un poco similares a las del ejemplo anterior con la diferencia de que el sentido es el opuesto, de forma que el punto de equilibrio $Y_{0} = (0, 0)$ es nodo repulsor inestable.

El campo vectorial asociado está dado por la función vectorial

$$F(x, y) = (4x -y, -2x + 5y)$$

El campo vectorial con algunas trayectorias se muestra a continuación.

Trayectorias y campo vectorial.

$\square$

Concluyamos con un ejemplo del tercer caso.

Caso 3: $\lambda_{1} < 0 < \lambda_{2}$.

Ejemplo: Resolver el siguiente sistema lineal y hacer un análisis cualitativo de las soluciones.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
3 & -1 \\ 5 & -3
\end{pmatrix} \mathbf{Y}$$

Solución: Determinemos los valores propios.

$$\begin{vmatrix}
3 -\lambda & -1 \\ 5 & -3 -\lambda
\end{vmatrix} = (3 -\lambda )( -3 -\lambda ) + 5 = \lambda {2} -4 = (\lambda -2)(\lambda + 2) = 0$$

Las raíces son$\lambda_{1} = -2$ y $\lambda_{2} = 2$. Determinemos los vectores propios. Para el primer vector resolvamos la ecuación

$$(\mathbf{A} + 2 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
5 & -1 \\ 5 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Vemos que $5k_{1} = k_{2}$. Sea $k_{1} = -1$, tal que $k_{2} = -5$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
-1 \\ -5
\end{pmatrix}$$

Para obtener el segundo vector propio resolvemos

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \mathbf{0}$$

o bien,

$$\begin{pmatrix}
1 & -1 \\ 5 & -5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Tenemos que $k_{1} = k_{2}$. Sea $k_{1} = 5 = k_{2}$, entonces el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
5 \\ 5
\end{pmatrix}$$

Por lo tanto, la solución general es

$$\mathbf{Y}(t) = c_{1} e^{-2t} \begin{pmatrix}
-1 \\ -5
\end{pmatrix} + c_{2} e^{2t} \begin{pmatrix}
5 \\ 5
\end{pmatrix}$$

o bien,

\begin{align*}
x(t) &= -c_{1} e^{-2t} + 5c_{2} e^{2t} \\
y(t) &= -5c_{1}e^{-2t} + 5c_{2}e^{2t}
\end{align*}

Las soluciones linealmente independientes son

$$\mathbf{Y}_{1}(t) = c_{1} e^{-2t} \begin{pmatrix}
-1 \\ -5
\end{pmatrix}$$

y

$$\mathbf{Y}_{2}(t) = c_{2} e^{2t} \begin{pmatrix}
5 \\ 5
\end{pmatrix}$$

cuyas soluciones en términos de las funciones $x(t)$ y $y(t)$ son, respectivamente

\begin{align*}
x(t) &= -c_{1} e^{-2t} \\
y(t) &= -5c_{1}e^{-2t}
\end{align*}

y

\begin{align*}
x(t) &= 5c_{2} e^{2t} \\
y(t) &= 5c_{2}e^{2t}
\end{align*}

La recta paralela al vector propio $\mathbf{K}_{1}$ está definida por la función $y(x) = 5x$, mientras que la recta paralela al vector propio $\mathbf{K}_{2}$ está definida por la función $y(x) = x$.

Las trayectorias son trazadas de acuerdo a la función paramétrica

$$f(t) = (-c_{1} e^{-2t} + 5c_{2} e^{2t}, -5c_{1} e^{-2t} + 5c_{2} e^{2t})$$

Consideremos nuevamente los siguientes casos:

  • $c_{1} = 1$, $c_{2} = 1 \hspace{1.3cm} \rightarrow \hspace{1cm} f(t) = (-e^{-2t} + 5e^{2t}, -5e^{-2t} + 5e^{2t})$
  • $c_{1} = 1$, $c_{2} = -1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (-e^{-2t} -5e^{2t}, -5e^{-2t} -5e^{2t})$
  • $c_{1} = -1$, $c_{2} = 1 \hspace{1cm} \rightarrow \hspace{1cm} f(t) = (e^{-2t} + 5e^{2t}, 5e^{-2t} + 5e^{2t})$
  • $c_{1} = -1$, $c_{2} = -1 \hspace{0.7cm} \rightarrow \hspace{1cm} f(t) = (e^{-2t} -5e^{2t}, 5e^{-2t} -5e^{2t})$

La gráfica en el plano $XY$ de las cuatro trayectorias anteriores, cerca del origen, se muestra a continuación.

$4$ trayectorias particulares del sistema.

Observemos cuidadosamente que ocurre en los casos límite.

Consideremos la función

$$f(t) = (x(t), y(t)) = (-e^{-2t} + 5e^{2t}, -5e^{-2t} + 5e^{2t})$$

Conforme $t$ crece el término $-e^{-2t}$ se hace muy pequeño comparado con el término $5e^{2t}$, de manera que si $t \rightarrow \infty$, entonces $x(t) \rightarrow 5e^{2t}$, de forma similar el término $-5e^{-2t}$ se hace muy pequeño en comparación con el término $5e^{2t}$, es decir, si $t \rightarrow \infty$, entonces $y(t) \rightarrow 5e^{2t}$. Esto nos permite notar que si $t \rightarrow \infty$, entonces $y \rightarrow x$. Por el contrario, si $t \rightarrow -\infty$, entonces $y \rightarrow 5x$. En la gráfica anterior vemos este comportamiento para la trayectoria verde.

Intenta hacer este mismo análisis para las tres trayectorias restantes de la gráfica anterior y logra notar que en los casos límites las trayectorias tienden a las rectas paralelas a los vectores propios.

En la siguiente figura se muestra el plano fase indicando algunas trayectorias, los vectores propios y las rectas paralelas a estos vectores.

Plano fase del sistema.

Efectivamente, el punto de equilibrio $Y_{0} = (0, 0)$ es un punto silla y es inestable.

Finalmente apreciemos el campo vectorial asociado, definido por la función vectorial

$$F(x, y) = (3x -y, 5x -3y)$$

Trayectorias y campo vectorial.

$\square$

Con esto concluimos esta entrada. En la siguiente entrada veremos que ocurre si los valores y vectores propios son complejos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales y hacer un análisis cualitativo de las soluciones.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -2 \\ 3 & -4
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 2 \\ 1 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & -2 \\ 2 & -2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & -1 \\ 8 & -6
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 1 \\ 1 & 2
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 \\ 4 & 3
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Concluimos con el caso en el que los valores propios de la matriz $\mathbf{A}$ son reales y distintos.

En la siguiente entrada haremos un análisis muy similar a como lo hicimos en esta entrada, pero en el caso en el que los valores propios de la matriz $\mathbf{A}$ son complejos. Veremos que en este caso existen soluciones que son periódicas.

Entradas relacionadas

Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios distintos

No debería haber algo como matemáticas aburridas.
– Edsger Dijkstra

Introducción

En la entrada anterior presentamos un breve repaso sobre valores y vectores propios de matrices y vimos cómo es que estas herramientas nos pueden ayudar a resolver sistemas de ecuaciones diferenciales de primer orden homogéneas con coeficientes constantes.

En dicha entrada vimos que para obtener los valores propios es necesario determinar la ecuación característica de la matriz, ésta ecuación resulta ser un polinomio de grado igual al número de ecuaciones que conformen al sistema lineal, así que si se trata de un sistema de $n$ ecuaciones, entonces el polinomio característico sera un polinomio de grado $n$, lo que significa que al resolver para la incógnita obtendremos $n$ raíces, es decir, $n$ valores propios. Ahora bien, sabemos que existen al menos tres casos que pueden ocurrir con dichas raíces y es que pueden ser reales y todas diferentes, pueden ser algunas repetidas o pueden ser incluso números complejos, para cada caso tendremos una forma particular de la solución general a tal sistema lineal.

Lo que desarrollaremos en las siguientes entradas será justamente estos tres casos. En esta entrada comenzaremos con el caso en el que los valores propios del sistema lineal son todos reales y distintos.

Recordemos que estamos intentando resolver un sistema lineal homogéneo con coeficientes constantes.

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

Entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

Valores propios reales distintos

Con lo visto en la entrada anterior sabemos que si una matriz $\mathbf{A}$ de $n \times n$ tiene $n$ valores propios reales y distintos $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, entonces siempre se puede encontrar un conjunto de $n$ vectores propios linealmente independientes $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.

Por otro lado, con el último teorema visto en la entrada anterior sabemos que si

$$\mathbf{Y}_{1} = \mathbf{K}_{1}e^{\lambda_{1}t}, \hspace{1cm} \mathbf{Y}_{2} = \mathbf{K}_{2}e^{\lambda_{2}t}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n} = \mathbf{K}_{n}e^{\lambda_{n}t}$$

es un conjunto fundamental de soluciones de (\ref{3}) en el intervalo $(-\infty, \infty)$, entonces la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} e^{\lambda_{1}t} + c_{2} \mathbf{K}_{2} e^{\lambda_{2}t} + \cdots + c_{n} \mathbf{K}_{n} e^{\lambda_{n}t} \label{4} \tag{4}$$

Donde $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son los valores propios y $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son los vectores propios asociados a cada valor propio. Notemos que en este teorema no se incluye la hipótesis de que los valores propios sean distintos. En esta entrada estamos interesados en resolver sistemas lineales en donde las raíces del polinomio característico sean todos reales y distintos, es decir, el caso en el que los valores propios del sistemas son distintos entre sí.

El siguiente resultado muestra cómo debe ser la solución general de un sistema lineal (\ref{3}) en el caso en el que los valores propios son reales y distintos.

Teorema: Sean $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, $n$ valores propios reales y distintos de la matriz de componentes constantes (\ref{2}) del sistema homogéneo (\ref{3}) y sean $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ los vectores propios correspondientes, entonces la solución general en el intervalo $(-\infty, \infty)$ está dada por

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1}e^{\lambda_{1}t} + c_{2} \mathbf{K}_{2}e^{\lambda_{2}t} + \cdots + c_{n} \mathbf{K}_{n}e^{\lambda_{n}t} \label{5} \tag{5}$$

La demostración es inmediata aplicando los resultados antes mencionados que son parte de dos teoremas vistos en la entrada anterior. De tarea moral Intenta escribir la demostración formalmente.

La diferencia entre (\ref{4}) y (\ref{5}) es que en ésta última solución ocurre que $\lambda_{i} \neq \lambda_{j}$ para $i \neq j$.

Este primer caso en realidad es muy sencillo así que concluiremos la entrada con tres ejemplos.

En la entrada en la que desarrollamos el método de eliminación de variables vimos que la solución general del sistema

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
t +1 \\ t + 1
\end{pmatrix} \label{6} \tag{6}$$

es

$$\mathbf{Y} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} -\begin{pmatrix}
\dfrac{1}{3} \\ \dfrac{1}{3}
\end{pmatrix}t + \begin{pmatrix}
\dfrac{1}{9} \\ \dfrac{16}{9}
\end{pmatrix} \label{7} \tag{7}$$

Lo que significa que la solución del caso homogéneo de (\ref{6})

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y} \label{8} \tag{8}$$

es

$$\mathbf{Y} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} \label{9} \tag{9}$$

Veamos si aplicando este método obtenemos el mismo resultado.

Recordemos que el polinomio característico se obtiene de calcular el determinante

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{10} \tag{10}$$

Una vez obtenido el polinomio se buscan las raíces para determinar los valores propios. Para cada valor propio se busca un vector $\mathbf{K} \neq \mathbf{0}$, tal que satisfaga la relación

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0} \label{11} \tag{11}$$

Los vectores obtenidos corresponderán a los vectores propios del sistema.

Finalmente se sustituyen estos resultados en la solución (\ref{5}), siempre y cuando los valores propios sean reales y distintos.

Ejemplo: Resolver el sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

Solución: En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix}$$

Determinemos la ecuación característica de acuerdo a (\ref{10}).

$$\begin{vmatrix}
4 -\lambda & -1 \\ 2 & 1 -2
\end{vmatrix} = (4 -\lambda)(1 -\lambda) + 2 = 0$$

El polinomio característico es

$$\lambda^{2} -5 \lambda + 6 = 0$$

Resolviendo para $\lambda$ se obtiene que las raíces son $\lambda_{1} = 2$ y $\lambda_{2} = 3$, son reales y distintas. Para cada valor propio determinemos los vectores propios de acuerdo a (\ref{11}).

Caso 1: $\lambda_{1} = 2$.

$$\begin{pmatrix}
4 -2 & -1 \\ 2 & 1 -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
2 & -1 \\ 2 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
2k_{1} -k_{2} &= 0 \\
2k_{1} &= k_{2}
\end{align*}

Elegimos $k_{1} = 1$, entonces $k_{2} = 2$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 2
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
4 -3 & -1 \\ 2 & 1 -3
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
1 & -1 \\ 2 & -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
k_{1} -k_{2} &= 0 \\
k_{1} &= k_{2}
\end{align*}

Elegimos $k_{1} = 1$, entonces $k_{2} = 1$, así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

De acuerdo a (\ref{5}), la solución general es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1}e^{\lambda_{1}t} + c_{2} \mathbf{K}_{2}e^{\lambda_{2}t} $$

Sustituyendo los valores obtenidos tenemos que la solución general del sistema lineal homogéneo es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Vemos que efectivamente corresponde a la solución (\ref{9}) obtenida con el método de eliminación de variables.

$\square$

Resolvamos ahora un problema con valores iniciales.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 12 \\ 3 & 1
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Solución: La matriz $\mathbf{A}$ está dada por

$$\mathbf{A} = \begin{pmatrix}
1 & 12 \\ 3 & 1
\end{pmatrix}$$

La ecuación característica es

$$\begin{vmatrix}
1 -\lambda & 12 \\ 3 & 1 -\lambda
\end{vmatrix} = (1 -\lambda)^{2} -36 = 0$$

El polinomio característico es

\begin{align*}
\lambda^{2} -2 \lambda -35 &= 0 \\
(\lambda -7) (\lambda + 5) &= 0
\end{align*}

De donde es claro que $\lambda_{1} = 7$ y $\lambda_{2} = -5$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = 7$.

$$\begin{pmatrix}
1 -7 & 12 \\ 3 & 1 -7
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
-6 & 12 \\ 3 & -6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
-6 k_{1} + 12 k_{2} &= 0 \\
3 k_{1} -6 k_{2} &= 0
\end{align*}

De donde $k_{1} = 2k_{2}$. Elegimos $k_{2} = 1$, de manera que $k_{1} = 2$. Así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ 1
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -5$.

$$\begin{pmatrix}
1 + 5 & 12 \\ 3 & 1 + 5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
6 & 12 \\ 3 & 6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
6 k_{1} + 12 k_{2} &= 0 \\
3 k_{1} + 6 k_{2} &= 0
\end{align*}

De donde $k_{1} = -2k_{2}$. Elegimos $k_{2} = 1$, de manera que $k_{1} = -2$. Así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
-2 \\ 1
\end{pmatrix}$$

Sustituyendo estos resultados en la solución general (\ref{5}), se obtiene

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{7t} + c_{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{-5t}$$

Apliquemos los valores iniciales para determinar el valor de las constantes $c_{1}$ y $c_{2}$.

$$\mathbf{Y}(0) = c_{1} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{0} + c_{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{0}$$

Reescribiendo.

$$\begin{pmatrix}
0 \\ 1
\end{pmatrix} = \begin{pmatrix}
2c_{1} \\ c_{1}
\end{pmatrix} + \begin{pmatrix}
-2c_{2} \\ c_{2}
\end{pmatrix} = \begin{pmatrix}
2c_{1} -2c_{2} \\ c_{1} + c_{2}
\end{pmatrix} $$

Las ecuaciones que se obtienen son

\begin{align*}
2c_{1} -2c_{2} &= 0 \\
c_{1} + c_{2} &= 1
\end{align*}

Resolviendo el sistema se obtiene que $c_{1} = \dfrac{1}{2}$ y $c_{2} = \dfrac{1}{2}$. Por lo tanto, la solución particular del sistema lineal es

$$\mathbf{Y}(t) = \dfrac{1}{2} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{7t} + \dfrac{1}{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{-5t} = \begin{pmatrix}
e^{7t} -e^{-5t} \\ \dfrac{1}{2}e^{7t} + \dfrac{1}{2}e^{-5t}
\end{pmatrix}$$

$\square$

Para concluir con esta entrada, resolvamos un sistema lineal en el que la matriz $\mathbf{A}$ es de $4 \times 4$.

Ejemplo: Determinar la solución general del siguiente sistema lineal homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-1 & -1 & 1 & 1 \\
-3 & -4 & -3 & 6 \\
0 & -3 & -2 & 3 \\
-3 & -5 & -3 & 7
\end{pmatrix} \mathbf{Y}$$

Solución: La ecuación característica se obtiene de hacer el siguiente determinante.

$$\begin{vmatrix}
-1 -\lambda & -1 & 1 & 1 \\
-3 & -4 -\lambda & -3 & 6 \\
0 & -3 & -2 -\lambda & 3 \\
-3 & -5 & -3 & 7 -\lambda
\end{vmatrix} = 0$$

No es de nuestro interés mostrar todos los pasos del determinante, incluso es conveniente hacer uso de algún método computacional para resolverlo. El resultado que se obtiene de calcular el determinante es

$$\lambda^{4} -5 \lambda^{2} + 4 = 0$$

Muestra que el polinomio característico se puede descomponer de la siguiente forma.

$$(\lambda + 2)(\lambda + 1)(\lambda -1)(\lambda -2) = 0$$

En esta forma es claro que los valores propios del sistema son

$$\lambda_{1} = -2, \hspace{1cm} \lambda_{2} = -1, \hspace{1cm} \lambda_{3} = 1, \hspace{1cm} y \hspace{1cm} \lambda_{4} = 2$$

Todos reales y distintos. Determinemos los vectores propios para cada valor propio.

Caso 1: $\lambda_{1} = -2$.

Buscamos un vector $\mathbf{K}_{1} \neq \mathbf{0}$, tal que

$$(\mathbf{A} + 2 \mathbf{I}) \mathbf{K}_{1} = \mathbf{0}$$

Sustituimos.

$$\begin{pmatrix}
-1 + 2 & -1 & 1 & 1 \\
-3 & -4 + 2 & -3 & 6 \\
0 & -3 & -2 + 2 & 3 \\
-3 & -5 & -3 & 7 + 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 1 & 1 \\
-3 & -2 & -3 & 6 \\
0 & -3 & 0 & 3 \\
-3 & -5 & -3 & 9
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

Nuevamente es conveniente resolver el sistema usando algún método computacional, al hacerlo obtendremos que los valores correspondientes de las incógnitas son

$$k_{1} = 1, \hspace{1cm} k_{2} = 0, \hspace{1cm} k_{3} = -1, \hspace{1cm} y \hspace{1cm} k_{4} = 0$$

De manera que el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -1$

Sustituimos en la ecuación vectorial

$$(\mathbf{A} + 1 \mathbf{I}) \mathbf{K}_{2} = \mathbf{0}$$

$$\begin{pmatrix}
-1 + 1 & -1 & 1 & 1 \\
-3 & -4 + 1 & -3 & 6 \\
0 & -3 & -2 + 1 & 3 \\
-3 & -5 & -3 & 7 + 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 & -1 & 1 & 1 \\
-3 & -3 & -3 & 6 \\
0 & -3 & -1 & 3 \\
-3 & -5 & -3 & 8
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

Resolviendo el sistema obtenemos que el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix}$$

Caso 3: $\lambda_{3} = 1$

Sustituimos en la ecuación

$$(\mathbf{A} -1 \mathbf{I}) \mathbf{K}_{3} = \mathbf{0}$$

$$\begin{pmatrix}
-1 -1 & -1 & 1 & 1 \\
-3 & -4 -1 & -3 & 6 \\
0 & -3 & -2 -1 & 3 \\
-3 & -5 & -3 & 7 -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
-2 & -1 & 1 & 1 \\
-3 & -5 & -3 & 6 \\
0 & -3 & -3 & 3 \\
-3 & -5 & -3 & 6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

El resultado de resolver el sistema corresponde al tercer vector propio

$$\mathbf{K}_{3} = \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix}$$

Caso 4. $\lambda_{4} = 2$

Para concluir sustituimos en la ecuación

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K}_{4} = \mathbf{0}$$

$$\begin{pmatrix}
-1 -2 & -1 & 1 & 1 \\
-3 & -4 -2 & -3 & 6 \\
0 & -3 & -2 -2 & 3 \\
-3 & -5 & -3 & 7 -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
-3 & -1 & 1 & 1 \\
-3 & -6 & -3 & 6 \\
0 & -3 & -4 & 3 \\
-3 & -5 & -3 & 5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

El cuarto y último vector propio es

$$\mathbf{K}_{4} = \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix}$$

Con estos resultados obtenemos que el conjunto fundamental de soluciones esta conformado por los siguientes vectores linealmente independientes.

$$S = \left\{ e^{-2t} \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix}, e^{-t} \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix}, e^{t} \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix}, 2^{2t} \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix} \right\}$$

Y por lo tanto, la solución general del sistema lineal es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix} e^{-2t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix} e^{-t} + c_{3} \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix} e^{t} + c_{4} \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix}e^{2t}$$

$\square$

Con esto hemos concluido esta entrada. Nos falta ver el caso en el que los valores propios son números complejos y el caso en el que hay valores propios repetidos, ambos casos resultan ser un poco más complicados e interesantes que este.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Demostrar formalmente el Teorema enunciado en esta entrada.
  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & -3 \\ 2 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -3 \\ -2 & 2
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ 5
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 1 & -2 \\ -1 & 2 & 1 \\ 4 & 1 & -3
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 4 \\ -7
    \end{pmatrix}$
  1. Considerar el siguiente sistema lineal homogéneo.

    $\mathbf{Y}^{\prime} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{Y} = \mathbf{AY}$
  • Demostrar que la solución general del sistema lineal es

    $\mathbf{Y}(t) = c_{1} e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
  • Determinar la matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$ del sistema lineal.
  • Una vez obtenida la matriz fundamental de soluciones determinar la exponencial de la matriz $\mathbf{A} t$ usando la expresión

    $e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0)$

    Comparar el resultado con el obtenido usando la definición. ¿Notas alguna diferencia?.

Más adelante…

En esta entrada desarrollamos el método de valores y vectores propios para resolver sistemas lineales homogéneos en el caso en el que los valores propios son todos reales y distintos.

En la siguiente entrada continuaremos con la segunda situación correspondiente al caso en el que los valores propios del sistema son números complejos. En este caso la forma de las soluciones serán distintas.

Entradas relacionadas