Archivo de la etiqueta: transformaciones nilpotentes

Álgebra Lineal II: Matrices y transformaciones nilpotentes

Por Elizabeth Chalnique Ríos Alvarado

Introducción

Hemos estudiado varias clases importantes de matrices y transformaciones lineales: diagonales, triangulares superiores, simétricas, ortogonales, normales, etc. Es momento de aprender sobre otro tipo fundamental de matrices y transformaciones lineales: las transformaciones nilpotentes. Nos hemos encontrado con estas matrices ocasionalmente a lo largo del primer curso de álgebra lineal y de éste. Ahora las trataremos de manera más sistemática.

Matrices y transformaciones nilpotentes

En la última unidad estuvimos trabajando únicamente en R o en C. Los resultados que presentaremos a continuación son válidos para espacios vectoriales sobre cualquier campo F.

Definición. Sea A una matriz en Mn(F). Diremos que A es nilpotente si Am=On para algún entero positivo m. Al menor entero positivo m para el cual suceda esto le llamamos el índice de A.

Ejemplo 1. La matriz A=(3913) es nilpotente. En efecto, tenemos que A2=(0000). Como A10, entonces el índice de A es igual a dos.

Tenemos una definición correspondiente para transformaciones lineales.

Definición. Sea V un espacio vectorial sobre un campo F y sea T:VV una transformación lineal. Diremos que que T es nilpotente si Tm es la transformación lineal cero para algún entero positivo m. Al menor entero positivo m para el cual suceda esto le llamamos el índice de T.

Recuerda que por definición Tm es la transformación T compuesta consigo misma m veces.

Ejemplo 2. Si estamos trabajando en el espacio V=Rn[x] de polinomios reales de grado a lo más n, entonces la transformación derivada D:VV para la cual D(p)=p es una transformación lineal nilpotente. En efecto, tras aplicarla n+1 veces a cualquier polinomio de grado a lo más n obtenemos al polinomio 0. Su índice es exactamente n+1 pues derivar n veces no anula al polinomio xn de V.

Si estuviéramos trabajando en el espacio vectorial R[x] de todos los polinomios reales, entonces la transformación derivada ya no sería nilpotente. En efecto, para cualquier m siempre existe un polinomio tal que al derivarlo m veces no se anula.

Bloques de Jordan de eigenvalor cero

Hay una familia importante de matrices nilpotentes.

Definición. Sea F un campo. El bloque de Jordan de eigenvalor 0 y tamaño k es la matriz J0,k en Mk(F) cuyas entradas son todas cero, a excepción de las que están inmediatamente arriba de la diagonal superior, las cuales son unos. En símbolos, J0,k=[aij] con aij={1si j=i+10en otro caso.

También podemos expresarlo de la siguiente manera:

J0,k=(0100000100000000000100000), en donde estamos pensando que la matriz es de k×k.

Ejemplo 3. A continuación tenemos la matriz J0,4:

J0,4=(0100001000010000)

Esta es una matriz nilpotente. En efecto, haciendo las cuentas de matrices correspondientes tenemos que:

J0,42=(0100001000010000)(0100001000010000)=(0010000100000000)

Luego que

J0,43=J0,4J0,42=(0100001000010000)(0010000100000000)=(0001000000000000)

Y finalmente que

J0,44=J0,4J0,43=(0100001000010000)(0001000000000000)=(0000000000000000)

De esta manera, hay una potencia de J0,4 que se hace igual a cero. Como la mínima potencia es 4, entonces J0,4 es nilpotente de índice 4. Observa cómo la diagonal de unos «se va recorriendo hacia arriba a la derecha».

Todos los bloques de Jordan son nilpotentes

El siguiente resultado generaliza el ejemplo anterior y nos da una mejor demostración, interpretando a la matriz como transformación lineal.

Teorema. La matriz J0,k es nilpotente de índice k.

Demostración. Veamos qué hace la matriz J0,k cuando la multiplicamos por un vector: J0,k(x1x2x3xk1xk)=(0100000100000000000100000)(x1x2x3xk1xk)=(x2x3x4xk0).

En otras palabras, la matriz J0,k «recorre» las entradas del vector hacia arriba «empujando» con ceros desde abajo. Al hacer esto k veces, claramente llegamos al vector 0, así, J0,kk está asociada a la transformación lineal cero y por lo tanto es la matriz Ok. Y J0,kk1 no es la matriz cero pues al aplicarla en ek, el k-ésimo vector de la base canónica de Fk tenemos por las mismas ideas de arriba que J0,kk1en=e1.

◻

Una caracterización de matrices y transformaciones nilpotentes

El siguiente resultado nos da algunas equivalencias para que una transformación sea nilpotente.

Proposición. Sea AMn(F) una matriz. Todo lo siguiente es equivalente:

  1. A es nilpotente.
  2. El polinomio mínimo de A es de la forma μA(X)=Xk.
  3. El polinomio característico de A es χA(X)=Xn.

Demostración. 1)2). Si A es nilpotente, entonces hay un entero m tal que Am=On. Entonces, el polinomio p(X)=Xm anula a la matriz A. Pero el polinomio mínimo divide a cualquier polinomio que anule a A, entonces μA(X)|Xm, de donde μA(X) debe ser también de la forma Xk. De hecho, no puede suceder que k<m pues en dicho caso como el polinomio mínimo anula a la matriz, tendríamos que Ak=On, pero esto es imposible pues m es el menor entero tal que Am=On. Así, en este caso k es justo el índice de A.

2)3). Supongamos que el polinomio mínimo de A es de la forma μA(X)=Xk. Como el polinomio mínimo anula a la matriz tenemos que Ak=On. Tomemos un escalar λ en F fijo. Tenemos que:

λkIn=λkInAk=(λInA)(λk1In+λk2A++λAk2+Ak1)

Al tomar determinante de ambos lados y usando en la derecha la multiplicatividad del determinante, tenemos:

det(λkIn)=det(λInA)det(λk1In+λk2A++λAk2+Ak1).

Del lado izquierdo tenemos det(λkIn)=λnk. Del lado derecho tenemos χA(λ) multiplicado por otra expresión polinomial en λ, digamos P(λ). Como esto se vale para todo escalar λ, se vale polinomialmente que Xnk=χA(X)P(X). Así, χA(X)|Xnk y como el polinomio característico es de grado exactamente n, obtenemos que χA(X)=Xn.

3)1). Si el polinomio característico de A es χA(X)=Xn, entonces por el teorema de Cayley-Hamilton tenemos que An=On, de donde A es nilpotente.

◻

Como consecuencia del teorema anterior, obtenemos los siguientes resultados.

Corolario. Si A es una matriz nilpotente en Mn(F), entonces An=On y por lo tanto el índice de A es menor o igual a n. Análogamente, si T:VV es nilpotente y dim(V)=n, entonces el índice de T es menor o igual a n.

Corolario. Si A es una matriz nilpotente en Mn(F), entonces su traza, su determinante y cualquier eigenvalor son todos iguales a cero.

Más adelante…

En esta entrada definimos a las matrices y transformaciones nilpotentes. También enunciamos algunas de sus propiedades. En la siguiente entrada enunciaremos nuestra primer versión del teorema de Jordan, en donde nos enfocaremos únicamente en lo que nos dice para las matrices nilpotentes. Esto servirá más adelante como uno de los peldaños que usaremos para demostrar el teorema de Jordan en general.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra una matriz nilpotente de índice 2 en M7(R). En general, para cualquier entero positivo n y cualquier entero k con 1kn, da una forma de construir una matriz nilpotente de índice n en Mn(R).
  2. Encuentra una matriz con determinante cero y que no sea una matriz nilpotente. Encuentra una matriz con traza cero y que no sea una matriz nilpotente.
  3. Sea V un espacio vectorial de dimensión finita n. Demuestra que las siguientes afirmaciones son equivalentes:
    1. Una transformación T:VV es nilpotente de índice k.
    2. Alguna forma matricial de T es nilpotente de índice k.
    3. Todas las formas matriciales de T son nilpotentes de índice k.
    4. Tn es la transformación lineal 0.
  4. Demuestra los dos corolarios al final de la entrada. Como sugerencia para el segundo, recuerda que la traza, determinante y los eigenvalores de una matriz están muy relacionados con su polinomio característico.
  5. Prueba que la única matriz nilpotente diagonalizable en Mn(F) es On.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Introducción a forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta última unidad usaremos las herramientas desarrolladas hasta ahora para enunciar y demostrar uno de los teoremas más hermosos y útiles en álgebra lineal: el teorema de la forma canónica de Jordan. A grandes rasgos, lo que nos dice este teorema es que cualquier matriz prácticamente se puede diagonalizar. En esta primera entrada hablaremos un poco de qué puedes esperar en el transcurso de la unidad, aunque en un orden algo distinto que te ayudará a entender mejor la motivación de presentar la teoría cómo vendrá en las siguientes notas.

Bloques de Jordan

Un bloque de Jordan de tamaño k y eigenvalor λ es una matriz en Mk(F) que se obtiene de comenzar con λIk y agregar encima de la diagonal principal puros unos. Queda algo así:

Jλ,k=(λ10000λ10000λ00000λ10000λ).

Puedes notar que esto es prácticamente una matriz diagonal, a excepción de la diagonal de unos que queda por encima de la diagonal principal. Esto debería sugerirte que los bloques de Jordan son casi tan amigables como las matrices diagonales. Como veremos en las siguientes entradas, es muy fácil calcularles su traza, determinante, polinomio característico, polinomio mínimo, eigenvalores, eigenvectores, etc.

A partir de los bloques de Jordan podemos formar matrices de bloques de Jordan pegando varios bloques de Jordan en una diagonal para obtener una matriz del siguiente estilo:

(1)(Jλ1,k10000Jλ2,k20000Jλ3,k30000Jλd,kd).

Aquí pusimos muchos ceros, pero en el fondo cada uno de estos ceros son una matriz de ceros. Por ejemplo, si tenemos los tres bloques de Jordan J3,2, J2,1 y J5,3 y pegamos estos bloques, obtenemos la siguiente matriz de bloques:

(310000030000002000000510000051000005).

Recuerda que las líneas que dibujamos en una matriz de bloques son simplemente ayuda visual. Estas matrices también son prácticamente diagonales y, como te imaginarás, también es fácil encontrar muchas de sus propiedades.

Teorema de la forma canónica de Jordan

Si recuerdas, una de las motivaciones fuertes para que nos interesara diagonalizar una matriz A es que la matriz diagonal D semejante comparte muchas propiedades con A, pero D es mucho más fácil de entender. A veces no podremos encontrar una matriz diagonal semejante a A, pero lo que nos dice el teorema de formas canónicas de Jordan es que prácticamente siempre podremos encontrar una matriz de bloques de Jordan semejante a A.

Teorema. Sea AMn(F) una matriz tal que su polinomio característico χA(X) se divide sobre F. Entonces, A es similar a una matriz de bloques de Jordan, es decir, una matriz como en \refeq{eq:Jordan}.

En realidad, cuando enunciemos el teorema lo haremos de manera más formal, y hasta diremos en qué sentido la forma canónica de Jordan es única.

¿Por qué decimos que entonces prácticamente siempre podemos diagonalizar una matriz? En cursos más avanzados se muestra que sin importar en qué campo F estemos trabajando, siempre podemos extender el campo F lo suficiente como para que cualquier polinomio se divida sobre una extensión G de F. En este campo extendido, cualquier matriz en Mn(F) se puede diagonalizar.

Transformaciones y matrices nilpotentes

Para demostrar el teorema de Jordan, primero tendremos que enunciarlo y demostrarlo para una clase muy especial de matrices: las nilpotentes. Ya hemos hablado un poco de estas matrices en ejercicios particulares y algunos problemas de la tarea moral. Pero si se te pasó, una matriz A en Mn(F) es nilpotente cuando se puede encontrar un expontente m tal que Am=On. De manera similar, si T es una transformación lineal, diremos que es nilpotente cuando Tm=Z para algún exponente m, donde Z es la transformación lineal trivial que manda todo elemento al 0. Recuerda que aquí el exponente indica cuántas veces se compone T consigo mismo. Como te imaginarás, T será nilpotente si y sólo si alguna de sus formas matriciales lo es.

Las matrices nilpotentes servirán como nuestros cimientos para demostrar el teorema de la forma canónica de Jordán. Es sencillo ver que los bloques de Jordan de la forma J0,k son nilpotentes. También es sencillo ver que cualquier matriz de bloques de Jordan con puros eigenvalores iguales a cero es nilpotente. Nuestra primera versión del teorema de la forma canónica de Jordán nos dará algo así como un «regreso» de esta afirmación. El siguiente teorema es una versión «light» de lo que demostraremos.

Teorema. Sea AMn(F) una matriz nilpotente. Entonces, A es similar a una matriz de bloques de Jordan, todos ellos con eigenvalor 0.

La demostración será muy bonita, y hará uso de la teoría de dualidad de Álgebra Lineal I. Una vez que demostremos esta versión, la combinaremos con el teorema de Cayley-Hamilton de la Unidad 1 para obtener el teorema general.

Aplicaciones del teorema de Jordan

Si conocemos la forma canónica de Jordan de una matriz, podemos encontrar a partir de ella fácilmente muchas propiedades, como la traza, determinante, etc. Además de estas aplicaciones «de cálculo de propiedades», el teorema de la forma canónica de Jordán nos permitirá decir exactamente cuándo dos matrices son similares. En particular, veremos que cualquier matriz A es similar a su transpuesta.

Tarea moral

En esta ocasión la tarea moral consistirá en un repaso de contenido anterior tanto de Álgebra Lineal I como Álgebra Lineal II, para que cuentes con todas las herramientas necesarias para aprovechar esta última unidad.

  1. Haz un repaso de la teoría de Matrices de bloques, para recordar a qué se refiere esta notación y cómo se pueden hacer operaciones cuando las matrices están escritas por bloques.
  2. Revisa la entrada de Matrices de cambio de base, para recordar por qué dos matrices similares en el fondo representan a la misma transformación lineal, pero en distintas bases.
  3. Repasa la teoría básica de dualidad en espacios vectoriales. Puedes comenzar con la entrada de Introducción a espacio dual. Concretamente, tendrás que recordar por lo menos hasta la teoría de Ortogonalidad y espacio ortogonal.
  4. Recuerda todo lo que podemos decir de las transformaciones triangularizables, revisando la entrada de Triangularizar y descomposición de Schur, y compara los resultados de ahí con lo que esperamos obtener sobre forma canónica de Jordan. ¿Cuál teorema dice algo más fuerte?
  5. Vuelve a leer todo el contenido relacionado con el teorema de Cayley-Hamilton para recordar no sólo qué dice, sino cómo está relacionado con los eigenespacios asociados a una transformación lineal. Puedes empezar con la entrada de Introducción al teorema de Cayley-Hamilton.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»