Archivo de la etiqueta: circuncentro

Geometría Moderna I: Circunferencias tritangentes

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión estudiaremos algunas propiedades de las circunferencias tritangentes de un triángulo, esto nos permitirá entre otras cosas, derivar formulas para el área del triángulo.

Definición 1. El incírculo (I,r) y los tres excírculos (Ia,ra), (Ib,rb) y (Ic,rc) de un triángulo a veces son referidos como las circunferencias tritangentes del triángulo, sus centros como centros tritangentes y sus radios, radios tritangentes.

Centros tritangentes

Teorema 1. El segmento que une dos centros tritangentes de un triángulo es el diámetro de una circunferencia que contiene dos de los vértices del triángulo, los cuales no son colineales con los centros tritangentes considerados.

Demostración. Sean ABC, Γ su circuncírculo, I, Ia, Ib y Ic sus centros tritangentes.

Consideremos la circunferencia Γ(IIb) cuyo diámetro es IIb, como las bisectrices internas y externas de A, AI y AIb son perpendiculares entonces AΓ(IIb), de manera análoga vemos que CΓ(IIb).

Figura 1

Como AC es cuerda de Γ(IIb), entonces su mediatriz interseca a IIb en el centro P de Γ(IIb). Ya que AC es cuerda de Γ, entonces su mediatriz interseca al circuncírculo de ABC en el punto medio del arco CA que no contiene a B.

Como IIb es bisectriz de B entonces IIb interseca al circuncírculo de ABC en el punto medio del arco CA que no contiene a B.

Por lo tanto, el centro P de Γ(IIb) pertenece al circuncírculo de ABC.

Ahora consideremos la circunferencia Γ(IaIc), cuyo diámetro es IaIc, como las bisectrices interna y externa de A, son perpendiculares entonces AΓ(IaIc), con un razonamiento análogo vemos que CΓ(IaIc).

Considera el punto diametralmente opuesto a P, P en el circuncírculo de ABC entonces PBP es ángulo recto y como BP es la bisectriz interna de B entonces BP es la bisectriz externa de B.

Como AC es cuerda de Γ(IaIc) entonces su mediatriz PP interseca a IaIc en su punto medio.

Por lo tanto, el punto medio, P, del arco AC, es el punto medio del diámetro, IaIc, de Γ(IaIc).

Del mismo modo podemos ver que Γ(IIc), Γ(IbIa) pasan por los vértices A, B y que Γ(IIa), Γ(IbIc) pasan por los vertices C, B.

◼

Puntos de contacto

Notación. Nos referiremos a los puntos de tangencia de los círculos tritangentes (I,r), (Ia,ra), (Ib,rb) y (Ic,rc) con el lado BC de un triángulo ABC como X, Xa, Xb y Xc respectivamente. Usaremos las letras Y y Z para los lados AC y AB respectivamente.

Emplearemos la letra s para referirnos al semiperímetro a+b+c2 de un triángulo ABC donde BC=a, AC=b  y AB=c.

Proposición 1. La distancia desde el vértice de un triángulo al punto de tangencia de su circuncírculo en uno de sus lados adyacentes es igual al semiperímetro menos la longitud del lado opuesto.

Demostración. Sea ABC y (I,r) su circuncírculo. Como las tangentes desde un punto exterior a una circunferencia son iguales entonces AZ=AY, BZ=BX y CX=CY.

Figura 2

Por otra parte, AZ+BZ+BX+CX+CY+AY=c+a+b=2s.

Por lo tanto, AZ+BX+CX=s.

Y así, AY=AZ=sa.

Similarmente, BZ=BX=sb y CX=CY=sc.

◼

Proposición 2. La distancia desde el vértice de un triángulo al punto de tangencia del excírculo opuesto, a uno de los lados adyacentes al vértice considerado es igual al semiperímetro del triángulo.

Demostración. Sea ABC y (Ia,ra), (Ib,rb) y (Ic,rc) sus excentros (figura 2). Como las tangentes desde un punto exterior a una circunferencia son iguales entonces
AZa=AYa, BXb=BZb y CXc=CYc.

Por otro lado,
AZa+AYa=AB+BZa+AC+CYa
=AB+AC+BXa+CXa=AB+AC+BC=2s.

Por lo tanto, AZa=AYa=s.

Igualmente, BXb=BYb=CXc=CYc=s.

◼

Corolario 1. AZc=AYc=sb, y AYb=AZb=sc.

Demostración. En la figura 2 tenemos lo siguiente:
AYc=CYcAC=sAC,
AZb=BZbAB=sAB.

Similarmente,
BZc=BXc=sa, BXa=BZa=sc,
CXa=CYa=sb, CYb=CXb=sa.

◼

Puntos isotómicos

Definición 2. Si dos puntos en uno de los lados de un triángulo equidistan al punto medio del lado considerado decimos que son puntos isotómicos.

Proposición 3. El punto de tangencia del incírculo con uno de los lados de un triángulo y el punto de tangencia del excírculo relativo al lado considerado, son puntos isotómicos.

Demostración. Por la proposición 1 y el corolario 1, tenemos que BX=sb=CXa (figura 2).

Esto implica que el punto medio de XXa es el punto medio de BC, por lo tanto, X y Xa son puntos isotómicos.

Análogamente vemos que Z, Zc e Y, Yb son pares de puntos isotómicos.

◼

Proposición 4. Los dos puntos de contacto de un lado de un triángulo con los dos excírculos opuestos a los vértices que pasan por ese lado son isotómicos, además la distancia entre estos dos puntos es igual a la suma de los otros dos lados.

Demostración. En la figura 2, tenemos lo siguiente:
BXc=CXcBC=sa, CXb=BXbBC=sa.

Por lo tanto, el punto medio de XcXb coincide con el punto medio de BC.

Por otro lado, XcXb=BXc+a+CXb=a+2(sa)=2sa=c+b.

Igualmente, YaYc=a+c, ZaZb=a+b.

◼

Radios tritangentes y área del triangulo

Proposición 5. El área de un triángulo es igual al producto del semiperímetro por el inradio.

Demostración. De la figura 2,
(ABC)=(AIB)+(BIC)+(AIC)=cr2+ar2+br2=sr.

◼

Proposición 6. El área de un triángulo es igual al producto de un exradio por la diferencia entre el semiperímetro y el lado relativo al excírculo considerado.

Demostración. En la figura 2,
(ABC)=(AIaB)+(AIaC)(BIaC)
=cra2+bra2ara2=ra2(2s2a)=ra(sa).

◼

Corolario 2. El reciproco del inradio es igual a la suma de los recíprocos de los exradios.

Demostración. De las proposiciones 5 y 6 se sigue que
1ra+1rb+1rc=(sa)+(sb)+(sc)(ABC)=s(ABC)=1r.

◼

Proposición 7. El área de un triángulo es igual al producto de sus lados sobre cuatro veces su circunradio.

Demostración. Sean ABC, (O,R) su circuncírculo, D el pie de la altura por A, y A el punto diametralmente opuesto a A.

Figura 3

ABD=AAC, pues abarcan el mismo arco y ACA=π2 es recto ya que AA es diámetro, así que ABDAAC, por criterio de semejanza AA.

Esto es, ABAA=ADAC.

Se sigue que, bc=2RAD y abc=a2RAD=4R(ABC).

Por lo tanto, abc4R=(ABC).

◼

Formula de Herón y teorema de Carnot

Teorema 2, fórmula de Herón. Podemos calcular el área de un triángulo mediante la fórmula
(ABC)=s(sa)(sb)(sc).

Demostración. Como YCI y IACYa son suplementarios, por criterio de semejanza AAA YCIYaIaC,
por lo tanto, YaIaYC=YaCYI,
es decir, rasc=sbr.

También AYIAYaIa,
por lo tanto, YaIaYI=AYaAY,  
es decir, rar=ssa,
entonces rssa=(sb)(sc)r

Por la proposición 5, (ABC)=rs,
por lo tanto, (ABC)=(sa)(sb)(sc)(ABC)s,
así que (ABC)2=s(sa)(sb)(sc).

En conclusión, (ABC)=s(sa)(sb)(sc).

◼

Teorema 3, de Carnot. La suma de las distancias desde el circuncentro a los lados del triángulo es igual a la suma del circunradio y el inradio.

Demostración. Sea ABC un triángulo acutángulo, (O,R) su circuncírculo y D, E, F las proyecciones de O en BC, AC y AB respectivamente.

Figura 4

Aplicando el teorema de Ptolomeo a ◻AFOE, ◻FBDO y ◻ODCE tenemos:
AF×OE+AE×OF=OA×EF,
BF×OD+BD×OF=OB×DF,
CE×OD+CD×OE=OC×DE.

Por otra parte, como O está en la mediatriz de BC, AC y AB entonces D, E y F son los respectivos puntos medios y podemos aplicar el teorema del segmento medio. Si nombramos OD=x, OE=y, OF=z, entonces:

cy2+bz2=Ra2,
cx2+az2=Rb2,
bx2+ay2=Rc2.

Sumamos las tres expresiones,

x(c+b)+y(a+c)+z(a+b)=R(a+b+c)
x(2sa)+y(2sb)+z(2sc)=R2s
2s(x+y+z)(ax+by+cz)=R2s
2s(x+y+z)2(ABC)=R2s.

De la proposición 5 tenemos (ABC)=rs,
por lo tanto, 2s(x+y+z)2rs=R2s.

Como resultado, x+y+z=R+r.

◼

Más adelante…

Con la ayuda de las formulas para el calculo del área de un triángulo vistas en esta entrada, en la próxima entrada mostraremos algunas desigualdades geométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que:
    i) la bisectriz interna del ángulo de un triángulo es perpendicular al segmento que une los puntos donde las otras bisectrices internas intersecan al circuncírculo del triangulo,
    ii) la bisectriz externa del ángulo de un triángulo es paralela al segmento que une los puntos donde las bisectrices externas (internas) de los otros dos ángulos intersecan al circuncírculo del triángulo.
  2. Demuestra que: 
    i) la suma de los catetos de un triángulo rectángulo menos la hipotenusa es igual al diámetro de su incírculo,
    ii) el área de un triángulo rectángulo es igual al producto de los segmentos en los cuales la hipotenusa es dividida por el punto de tangencia de su incírculo.
  3. Muestra que en la figura 2 se tienen las siguientes igualdades:
    i) XXa=bc, YYb=ac, ZZc=ab,
    ii) ZZa=YYa=a, XXb=ZZb=b, YYc=XXc=c,
    iii) YbYc=ZbZc=a, XaXc=ZaZc=b, XaXb=YaYb=c.
  4. Prueba que:
    i) el producto de los cuatro radios tritangentes de un triángulo es igual al cuadrado del área del triángulo (ABC)2=rrarbrc
    ii) el reciproco del inradio de un triángulo es igual a la suma de los recíprocos de las alturas del triangulo, 1r=1ha+1hb+1hc,
    iii) en la figura 2, AZ×BX×CYr=(ABC).
  5. Demuestra que la razón entre el área de un triangulo y el area del triángulo formado por los puntos de contacto de su circuncírculo con sus lados es igual a la razón entre el inradio y el circundiámetro. En la figura 2, (XYZ)(ABC)=r2R.
  6. Muestra que en el teorema de Carnot, cuando A es obtuso (figura 4), entonces y+zx=R+r.
  7. Sean ABC, α=BAC, β=CBA, γ=ACB, R el circunradio y r el inradio, muestra que:
    i) sinα2=(sb)(sc)bc, sinβ2=(sa)(sc)ac, sinγ2=(sa)(sb)ab
    ii) cosα+cosβ+cosγ=1+rR.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 73-79, 87-91.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 11-13.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 86-89, 97-98.
  • Quora
  • Cut the Knot

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Cuadrángulo ortocéntrico

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada veremos que los cuatro triángulos que se forman con los vértices de un cuadrángulo ortocéntrico, tienen la misma circunferencia de los nueve puntos y derivaremos algunas otras propiedades.

Cuadrángulo ortocéntrico

Definición. Un cuadrángulo ortocéntrico es el conjunto de puntos formado por los vértices de un triángulo y su ortocentro.

Nos referiremos a los cuatro triángulos que se pueden formar con los cuatro puntos de un cuadrángulo ortocéntrico como grupo ortocéntrico de triángulos.

Teorema 1. Cualquier punto de un cuadrángulo ortocéntrico es el ortocentro del triángulo formado por los otros tres puntos y los triángulos de este grupo ortocéntrico tienen el mismo triangulo órtico.

Demostración. Sea ABC y H su ortocentro.

Figura 1

Notemos que el ortocentro de BHC es A pues ABHC, AHBC y ACHB.

De manera análoga podemos ver que B es el ortocentro de AHC y C es el ortocentro de AHB.

Por otro lado, los pares de rectas perpendiculares AH, BC; BH, AC y CH, AB, se intersecan en D, E y F, respectivamente.

Por lo tanto, estos tres puntos son fijos, así el triángulo órtico es el mismo para los cuatro triángulos ABC, HAB, HAC y HBC.

◼

Corolario 1. Las circunferencias de los nueve puntos de un grupo ortocéntrico de triángulos coinciden y sus circunradios son iguales.

Demostración. Como el circuncírculo del triángulo órtico de un triángulo dado es la circunferencia de los nueve puntos, por el teorema 1, los triángulos de un grupo ortocéntrico tienen la misma circunferencia de los nueve puntos.

En la entrada anterior vimos que el radio de la circunferencia de los nueve puntos es igual a la mitad del circunradio de su triángulo de referencia.

Por lo tanto, ABC, HAB, HAC y HBC tienen el mismo circunradio (figura 1).

◼

Circuncentros

Teorema 2. Los circuncentros de un grupo ortocéntrico de triángulos forman un cuadrángulo ortocéntrico.

Demostración. Por el teorema 2 de la entrada anterior, sabemos que el circuncentro de un triángulo es la reflexión de su ortocentro respecto de N, el centro de los nueve puntos.

Como los triángulos de un grupo ortocéntrico tienen el mismo centro de los nueve puntos, los circuncentros Oa, Ob, Oc y O de HBC, HAC, HAB y ABC son las reflexiones de A, B, C y H respectivamente respecto a N.

Figura 2

Dado que una reflexión es una homotecia de razón 1 entonces las figuras ABCH y OaObOcO son congruentes y por lo tanto OaObOcO es un cuadrángulo ortocéntrico.

◼

Corolario 2. Un grupo ortocéntrico de triángulos y el grupo ortocéntrico de triángulos formado por sus circuncentros tienen la misma circunferencia de los nueve puntos.

Demostración. Como las figuras ABCH y OaObOcO son simétricas respecto a N entonces también sus circunferencias de los nueve puntos son simétricas respecto a N.

Como N es el centro de una de estas circunferencias, entonces coinciden.

Observación. Notemos que como OaObOcO es un grupo ortocéntrico de triángulos, entonces la reflexión de sus ortocentros respecto al centro de los nueve puntos N será el conjunto de sus circuncentros.

Entonces A, B, C y H son los circuncentros de ObOcO, OaOcO, OaObO y OaObOc respectivamente.

◼

Problema. Construye un triángulo ABC dados el centro de los nueve puntos N y los circuncentros Ob y Oc de los triángulos CAH y ABH respectivamente donde H es el ortocentro de ABC.

Solución. Ob y Oc son los ortocentros de OaOcO y OaObO respectivamente y si los reflejamos respecto a N obtendremos a los circuncentros de sus respectivos triángulos, estos son los vértices B y C del triángulo requerido.

Ahora tenemos dos vértices y el centro de los nueve puntos, este problema lo resolvimos en la entrada anterior.

◼

Centroices

Teorema 3. Los cuatro centroides de un grupo ortocéntrico de triángulos forman un cuadrángulo ortocéntrico.

Demostración. Sea ABC y H su ortocentro.

Sabemos que el centro de los nueve puntos N de ABC divide internamente al segmento HG en razón 3:1, donde G es el centroide de ABC.

Figura 3

Como el grupo ortocéntrico de triángulos ABC, HBC, HAC, HAB tienen el mismo centro de los nueve puntos N, entonces sus respectivos centroides G, Ga, Gb, Gc están en homotecia con H, A, B, C respectivamente desde N y la razón de homotecia es 3.

Como dos figuras homotéticas son semejantes, entonces GGaGbGc es un cuadrángulo ortocéntrico.

◼

Corolario 3. La circunferencia de los nueve puntos de un grupo ortocéntrico de triángulos y la circunferencia de los nueve puntos del grupo ortocéntrico formado por sus centroides son concéntricas.

Demostración. Como las figuras HABC y GGaGbGc están en homotecia desde el centro de los nueve puntos N de ABC entonces sus respetivas circunferencias de los nueve puntos también están en homotecia desde N.

Como N es el centro de una de ellas, entonces son concéntricas.

◼

Corolario 4. Dado un cuadrángulo ortocéntrico, el cuadrángulo ortocéntrico formado por sus circuncentros y el cuadrángulo ortocéntrico formado por sus centroides tienen el mismo centro de los nueve puntos y además existe una homotecia entre ellos con centro en este punto.

Demostración. Por los corolarios 2 y 3, OOaObOc y GGaGbGc tienen el mismo centro de los nueve puntos que HABC y son homotéticos con este último precisamente desde N en razón 1 y 3 respectivamente.

Figura 4

Por lo tanto, existe una homotecia con centro en N y razón 3 que lleva a GGaGbGc en OOaObOc.

◼

Incentro y excentros

Teorema 4. El incentro y los excentros de un triángulo dado forman un cuadrángulo ortocéntrico y el circuncírculo del triángulo dado es la circunferencia de los nueve puntos de este grupo ortocéntrico de triángulos.

Demostración. Como las bisectrices interna y externa de los ángulos de un triángulo ABC son perpendiculares entre si entonces el incentro I es el ortocentro del triángulo formado por los excentros IaIbIc y el triángulo ABC es el triángulo órtico de IaIbIc.

Figura 5

Entonces, por el teorema 1 y corolario 1, IaIbIcI es un grupo ortocéntrico de puntos y su circunferencia de los nueve puntos es el circuncírculo de ABC.

◼

Proposición. El segmento que une el ortocentro de un triángulo dado con el circuncentro del triángulo formado por los excentros del triángulo dado es bisecado por el incentro del triángulo medial del triángulo dado.

Demostración. Sea ABC un triángulo, I, Ia, Ib, Ic, el incentro y sus respectivos excentros, O y Oe los circuncentros de ABC y IaIbIc respectivamente.

Figura 6

Por el teorema anterior, I y O son el ortocentro y el centro de los nueve puntos respectivamente de IaIbIc, por lo tanto, O es el punto medio de IOe.

Sean H y G el ortocentro y el centroide respectivamente de ABC, como H, G y O son colineales y G triseca el segmento OH, entonces, G es el centroide de IOeH.

Por lo tanto, IG biseca a OeH en I y IG2=GI.

Por otro lado, sabemos que existe una homotecia con centro en G y razón 12, que lleva a ABC, a su triangulo medial ABC, por lo que sus respectivos incentros I y Im son puntos homólogos de esta homotecia, es decir I, G y Im son colineales y G triseca al segmento IIm.

Como I cumple con estas características entonces I=Im.

◼

Más adelante…

En la próxima entrada estudiaremos otra recta notable del triángulo, la recta de Simson, veremos que la intersección de dos rectas de Simson se intersecan en la circunferencia de los nueve puntos y que cierto conjunto de rectas de Simson forman un cuadrángulo ortocéntrico.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que las rectas de Euler de los cuatro triángulos de un grupo ortocéntrico son concurrentes.
  2. Demuestra que el simétrico del circuncentro de un triángulo con respecto a uno de los lados del triángulo coincide con el simétrico del vértice opuesto al lado considerado respecto al centro de los nueve puntos del triángulo.
  3. Muestra que los vértices de un grupo ortocéntrico de triángulos pueden ser considerados como los centroides de otro grupo ortocéntrico de triángulos.
  4. Sea ABC un triángulo rectángulo con A=π2, D el pie de la altura por A, las bisectrices de BAD y DAC intersecan a BC en P y P respectivamente. Las bisectrices de DBA y ACD intersecan a AD en Q y Q respectivamente.
    i) Muestra que PPQQ es un cuadrángulo ortocéntrico,
    ii) si I, J y K son los incentros de ABC, ABD y ADC, muestra que AIJK es un cuadrángulo ortocéntrico.
  5. Prueba que la suma de los cuadrados de dos segmentos no adyacentes que unen vértices de un cuadrángulo ortocéntrico es igual al cuadrado del circundiámetro de los triángulos de este grupo ortocéntrico.
  6.  Construye un triángulo ABC dados su circuncentro O, y los circuncentros de los triángulos IIbIc y IIaIc, donde I, Ia, Ib y Ic es el incentro y los excentros de ABC.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 109-115.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 165-167.
  • Shively, L., Introducción a la Geómetra Moderna. México: Ed. Continental, 1961, pp 58.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Triángulo medial y recta de Euler

Por Rubén Alexander Ocampo Arellano

Introducción

Continuando con el estudio de las propiedades del centroide, en esta entrada veremos que es colineal con el ortocentro y el circuncentro, y que además triseca al segmento que une dichos puntos. Para establecer estos resultados, veremos primero algunos resultados del triángulo medial de un triángulo dado.

Triángulo medial

Definición 1. Al triángulo que tiene como vértices los puntos medios de un triángulo dado se le conoce como triángulo medial o triángulo complementario del triángulo dado.

Teorema 1. Un triángulo y su triángulo medial son homotéticos además comparten el mismo centroide.

Demostración. Sean ABC, A, B y C los puntos medios de BC, AC y AB respectivamente.

Por el teorema del segmento medio, los lados del triángulo medial ABC son paralelos a los lados de ABC y por lo tanto son homotéticos.

Ya que las rectas determinadas por dos puntos homólogos, AA, BB y CC son las medianas de ABC, entonces el centroide G es el centro de homotecia y sabemos que AG=2GA, por lo que la razón de homotecia es 12, donde el signo menos indica que dos puntos homólogos de esta homotecia se encuentran en lados opuestos respecto del centro de homotecia.

Figura 1

Como BC y BC son rectas homotéticas, entonces el punto homólogo de ABC es E=AGBC, y como A es el punto medio de BC entonces E es el punto medio de BC, pues la homotecia preserva las proporciones.

Por lo tanto, AG es mediana de ABC, de manera similar podemos ver que BG y CG son medianas de ABC, por lo tanto, G es el centroide de ABC.

◼

Proposición 1. El circuncentro de un triángulo es el ortocentro de su triángulo medial.

Demostración. Se sigue del hecho de que las mediatrices de un triángulo son las alturas de su triángulo medial, esto es así porque los vértices del triángulo medial son, por definición, los puntos medios de un triángulo dado y los lados del triángulo medial son paralelos a los lados del triángulo dado.

◼

Figura 2

Triángulo anticomplementario

Definición 2. Dado un triángulo, al triángulo formado por las rectas paralelas a los lados del triángulo dado a través de los respectivos vértices opuestos, se le conoce como triángulo anticomplementario del triángulo dado.

Proposición 2. Un triángulo y su triángulo anticomplementario son homotéticos y tienen el mismo centroide.

Demostración. Consideremos ABC y ABC su triángulo anticomplementario.

Figura 3

Como ◻CBCA y ◻ABCB son paralelogramos entonces CA=BC=AB, por lo tanto, A es el punto medio de BC. De manera análoga vemos que B y C son puntos medio de AC y AB respectivamente,

Por lo tanto, ABC es el triángulo medial de ABC y por el teorema 1 se tiene el resultado.

◼

Circunferencia de Droz Farny

Proposición 3. El producto de los segmentos en que el ortocentro divide a la altura de un triángulo es igual para las tres alturas del triángulo.

Demostración. Sean ABC y D, E y F los pies de las alturas por A, B y C respectivamente y H el ortocentro.

Figura 4

Notemos que AFHCDH y AEHBDH (son semejantes) pues son triángulos rectángulos y comparten un ángulo opuesto por el vértice, por lo tanto
AHCH=FHDH AH×DH=CH×HF,
AHBH=EHDH AH×DH=BH×HE.

De esto se sigue que
CH×HF=AH×DH=BH×HE.

◼

Teorema 2. Si tomamos los vértices de un triángulo como centros de circunferencias del mismo radio, estas cortaran a los respectivos lados de su triángulo medial en tres pares de puntos que son equidistantes del ortocentro del triángulo.

Demostración. Sean ABC y ABC su triángulo medial, tracemos tres circunferencias del mismo radio (A,r), (B,r) y (C,r) las cuales intersecan a BC, AC y AB en P, P; Q, Q y R, R, respectivamente.

Sean DBC el pie de la altura por A, y M=ADBC, por el teorema de Pitágoras en AMP y HMP tenemos
AP2AM2=MP2=HP2HM2
AP2HP2=AM2HM2=(AM+HM)(AMHM).

Figura 5

Como ACBCBA son congruentes por criterio LLL entonces sus alturas desde A y C, respectivamente, son iguales , por lo tanto AM=MD,
AP2HP2=(MD+HM)AH=HD×AH.

Por otra parte, PAP es isósceles y como AM es altura entonces AM es mediatriz de PP, por lo tanto HP=HP
(1)HP2=HP2=AP2AH×HD..

Si consideramos E y F los pies de las alturas por B y C respectivamente podemos encontrar fórmulas análogas
(2)HQ2=HQ2=BQ2BH×HE,
(3)HR2=HR2=CR2CH×HF..

Como (A,r), (B,r) y (C,r) tienen el mismo radio, entonces AP=BQ=CR y por la proposición 3, AH×DH=BH×HE=CH×HF.

Tomando lo anterior en cuenta y a las ecuaciones (1), (2) y (3) se sigue que
HP=HP=HQ=HQ=HR=HR.

◼

Recta de Euler

Teorema 3. El circuncentro, el centroide y el ortocentro de todo triangulo son colineales, con el centroide siempre en medio, a la recta determinada por estos tres puntos se le conoce como recta de Euler del triángulo, además HG=2GO.

Demostración. Sean ABC y ABC su triángulo medial, por el teorema 1, ABC y ABC están en homotecia desde G, el centroide, que es el mismo para ambos triángulos, y la razón de homotecia es 12.

Consideremos la altura AD de ABC, la homotecia de AD es una recta paralela a ella y que pasa por el punto homólogo de A, A, es decir la homotecia de una altura de ABC es una altura de ABC.

Figura 6

Como el ortocentro H de ABC es la intersección de sus alturas, entonces su punto homologo bajo la homotecia estará en la intersección de las alturas de ABC, esto es, el ortocentro de ABC, H.

Con esto tenemos que el ortocentro de ABC es colineal con G el centroide y el ortocentro de ABC respectivamente, además, debido a la razón de homotecia, HG=2GH.

Por la proposición 1, el ortocentro del triángulo medial ABC es el circuncentro O de ABC.

Así, O, G y H son colineales y HG=2GO.

◼

Observación. Notemos que si el triángulo es equilátero el ortocentro, el centroide y el circuncentro son el mismo punto y por lo tanto la recta de Euler degenera en un punto.

Problema. Construye un triángulo ABC dados el vértice A, el circuncentro O y las distancias de A al ortocentro AH, y al centroide AG.

Solución. El centroide G se encuentra en la circunferencia con centro en A y radio AG, (A,AG), el ortocentro H se encuentra en la circunferencia con centro en A y radio H, (A,AH).

Por el teorema 3 sabemos que H, G y O son colineales y que HO=3GO, por lo que H y G se encuentran en homotecia desde O.

Entonces, a (A,AH) le aplicamos una homotecia con centro en O y razón 13, esto será una circunferencia Γ y G resultara de la intersección de Γ con (A,AG).

Figura 7

Teniendo a G construido, como tenemos el circuncírculo (O,OA) y un vértice del triángulo, el problema se reduce a la solución del problema 2 de la entrada anterior.

◼

Distancia entre puntos notables

Teorema 4. Para un triángulo con lados a, b, c, ortocentro H, centroide G, y circuncírculo (O,R) tenemos:
OH2=9R2(a2+b2+c2),
HG2=4R249(a2b2+c2).

Demostración. Por el teorema 3 sabemos que OH=3OG y HG=2GO, además en la entrada anterior calculamos
OG2=R2(a2+b2+c29).

Por lo tanto,
OH2=9OG2=9R2(a2+b2+c2),
HG2=4OG2=4R249(a2+b2+c2).

◼

Corolario. Podemos calcular la suma de los cuadrados de las distancias del ortocentro a los vértices del triángulo en función del circunradio y los lados del triángulo con la siguiente fórmula.
HA2+HB2+HC2=12R2+(a2+b2+c2).

Demostración. Por el teorema 4, y usando las fórmulas encontradas en la entrada anterior
HA2+HB2+HC2=GA2+GB2+GC2+3HG2,
GA2+GB2+GC2=a2+b2+c23 .

Esto implica que,
HA2+HB2+HC2=a2+b2+c23+12R243(a2+b2+c2)
=12R2(a2+b2+c2).

◼

Más adelante…

En la siguiente entrada estudiaremos otro triángulo asociado a un triángulo dado, aquel cuyos vértices son los pies de las alturas del triángulo dado.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que el triángulo complementario y el triángulo anticomplementario de un triángulo dado son homotéticos, encuentra el centro y la razón de homotecia.
  2. Sea ABC y P un punto en el plano, considera A, B y C los pies de las perpendiculares dese P a BC, AC y AB respectivamente. Desde los puntos medios de AB, AC y BC traza perpendiculares a los lados de AB, AC y BC respectivamente, muestra que este último conjunto de perpendiculares son concurrentes.
  3. Sean D, DBC de un triangulo ABC, tal que el punto medio de BC es el punto medio de DD, sea E=ADBC, donde B y C son los puntos medios de AC y AB respectivamente, muestra que ED pasa por el centroide de ABC.
  4. Muestra que la recta de Euler de un triángulo pasa por uno de los vértices del triángulo si y solo si el triángulo es isósceles o rectángulo.
  5. Prueba que la recta que une el centroide de un triangulo con un punto P en su circuncírculo biseca al segmento que une el punto diametralmente opuesto a P con el ortocentro.
  6. Sean H, G, (O,R) y (I,r), el ortocentro, el centroide, el circuncírculo y el incírculo de un triángulo, muestra que:
    i) HI2+2OI2=3(IG2+2OG2),
    ii) 3(IG2+HG22)IH2=2R(R2r).

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 68-69, 94-96, 101-102.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 18-19.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 65-68.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Puntos notables del triángulo

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiamos la concurrencia de rectas importantes en el triangulo, a saber, las medianas, mediatrices, bisectrices y alturas. Mencionamos también consecuencias inmediatas de los puntos de concurrencia.

Centroide

Teorema 1. Las medianas de todo triángulo concurren en un punto que las triseca.

Demostración. Sean ABC, B y C los puntos medios de AC y AB respectivamente, por el teorema del segmento medio sabemos que CB=BC2 y CBBC.

Figura 1

Sea G la intersección de las medianas BB y CC, en GBC consideremos M y N los puntos medios de los lados GB y GC respectivamente, entonces
MN=BC2 y MNBC.

Por transitividad CB=MN y CBMN, esto implica que ◻CMNB es un paralelogramo y por lo tanto sus diagonales se bisecan, es decir,
CG=GN y MG=GB.

Por construcción, MG=BM y GN=NC
GB=BB3 y CG=CC3,
esto es, la medianas BB y CC se trisecan

Si repetimos el mismo procedimiento pero ahora con las medianas AA y BB encontraremos un punto G en donde las medianas se trisecaran, GB=BB3 y GA=AA3.

Como GB=BB3=GB, concluimos que G=G.

Por lo tanto, las medianas de un triángulo concurren en un punto que las triseca.

◼

Definición 1. Decimos que el punto en que concurren las medianas de un triángulo es el gravicentro, baricentro o centroide del triángulo y lo denotamos con la letra G mayúscula.

Figura 2

Circuncentro

Teorema 2. Las mediatrices de los lados de todo triángulo son concurrentes.

Demostración. Sea ABC, consideremos las mediatrices lc y lb de AB y AC respectivamente y O=lblc.

Figura 3

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la mediatriz de un segmento si y solo si equidista a los puntos extremos del segmento.

Ya que Olc y Olb, entonces OA=OB y OA=OC
OB=OC.

Por el resultado mencionado anteriormente OB=OC implica que Ola, la mediatriz de BC.

Por lo tanto, las mediatrices de un triángulo son concurrentes.

◼

Corolario. Tres puntos distintos y no colineales se encuentran en una única circunferencia.

Demostración. Sea ABC, por el teorema anterior las mediatrices de los segmentos determinados por los vértices del triángulo concurren en un punto O cuya distancia a cada uno de los vértices es la misma R=OA=OB=OC.

Por definición de circunferencia, A, B y C pertenecen a la circunferencia con centro en O y radio R, A, B, C(O,R)=Γ.

Ahora supongamos que existe Γ=(O,R) tal que A, B, CΓ, entonces, por definición, OA=OB=OC=R.

Esto implica que Ola, Olb y Olc, las mediatices de BC, AC y AB respectivamente,
Olalblc.

Como ya probamos que las mediatrices son concurrentes entonces O=O y R=R, así que Γ es única.

◼

Definición 2. Al punto de concurrencia de las mediatrices de los lados de un triángulo le llamamos circuncentro y lo denotamos como O.

A la distancia constante de O a los vértices del triángulo le llamamos circunradio denotado con la letra R mayúscula.

A la circunferencia única (O,R) determinada por los vértices del triángulo se le conoce como circuncírculo.

Figura 4

Incentro

Teorema 3. Las bisectrices interiores de todo triángulo son concurrentes.

Demostración. Sean lB y lC las bisectrices de los ángulos interiores en B y C respectivamente e I=lBlC.

Figura 5

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la bisectriz de un ángulo si y solo si equidista a los lados que forman el ángulo. Recordemos que la distancia de un punto a una recta es la longitud del punto al pie de la perpendicular a la recta trazada desde el punto.

Denotamos la distancia de un punto P a una recta l como (P,l).

Como Ilb e Ilc, entonces (I,AB)=(I,BC) y (I,BC)=(I,AC),
(I,AB)=(I,AC).

Por el resultado citado anteriormente, (I,AB)=(I,AC) implica que IlA, la bisectriz interior de A.

Por tanto, las bisectrices interiores de un triángulo son concurrentes.

◼

Si consideramos los pies de las perpendiculares a los lados del triángulo trazados desde el punto en que concurren las bisectrices, encontramos tres puntos distintos que equidistan a un punto fijo y por el corolario anterior estos determinan una única circunferencia, esto motiva la siguiente definición.

Definición 3. Al punto de concurrencia de las bisectrices interiores de un triángulo se le conoce como incentro del triángulo y lo denotamos con la letra I mayúscula.

A la distancia de I a los lados del triángulo le llamamos inradio y lo denotamos como r=(I,AB)=(I,BC)=(I,AC).

La circunferencia con centro en I y radio r, (I,r), se llama incírculo.

Figura 6

Excentros

Teorema 4. En todo triángulo las bisectrices exteriores de dos ángulos y la bisectriz interior del tercer ángulo son concurrentes.

Demostración. Sea ABC, lA y lC las bisectrices exteriores de A y C respectivamente e Ib=lAlC.

Figura 7

De manera análoga al caso de las bisectrices internas tenemos que
como IblA e IblC, entonces (Ib,AB)=(Ib,AC) y (Ib,AC)=(Ib,BC),
(Ib,AB)=(Ib,BC).

Como Ib está en la región acotada por el ángulo CBA entonces IlB, la bisectriz interior de B.

Por lo tanto, la bisectriz interna de B y las bisectrices externas de A y C son concurrentes.

De manera análoga probamos que las bisectrices externas de A y B concurren con la bisectriz interna de C, y las bisectrices externas de B y C concurren con la bisectriz interna de A.

◼

Similarmente a como lo hicimos con el incentro, notamos que, para cada uno de estos tres puntos de concurrencia, existen tres puntos distintos, uno en cada lado del triángulo que equidistan a un punto fijo y por lo tanto determinan una única circunferencia.

Definición 4. A los puntos en que concurren dos bisectrices externas y una bisectriz interna de un triángulo les llamamos excentros del triángulo y los denotamos como Ia, Ib e Ic de acuerdo a si se encuentran en la bisectriz interna de A, B o C respectivamente y decimos que son opuestos a dichos vértices.

Las distancias de Ia, Ib e Ic a los lados del triángulo son los exradios y se les denota como ra, rb y rc respectivamente.

A las circunferencias (Ia,ra), (Ib,rb) y (Ic,rc) se les conoce como excírculos del triángulo.

Figura 8

Ortocentro

Teorema 5. Las alturas de todo triángulo son concurrentes.

Demostración. Sea ABC, tracemos en cada vértice la paralela al lado opuesto.

Sean A la intersección de la paralela a AB trazada en C con la paralela a AC trazada en B, de manera análoga definimos B y C.

Figura 9

Por construcción, ◻ABCB es un paralelogramo por lo que AB=BC, también ◻CBCA es paralelogramo así que CA=BC,
AB=BC=CAA es el punto medio de CB.

De manera similar podemos ver que B es el punto medio de CA y C es el punto medio de AB.

En consecuencia, las alturas del triángulo ABC son las mediatrices del triángulo CAB y ya probamos que las mediatrices de los lados de todo triangulo son concurrentes, por lo tanto, las alturas de ABC son concurrentes.

◼

Definición 5. Al punto en común en que las tres alturas de un triángulo se intersecan le llamamos ortocentro y lo denotamos con la letra H mayúscula.

Figura 10

Más adelante…

En la siguiente entrada demostraremos algunos teoremas que nos permitirán calcular la magnitud de ángulos relativos a una circunferencia.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Qué puntos notables vistos en esta entrada, caen siempre dentro del triangulo y cuales siempre fuera?
  2. Muestra que una recta paralela a un lado de un triangulo a través del centroide divide el área del triangulo en dos partes tal que la razón de esta áreas es 45.
  3. Considera un triangulo rectángulo ABC con B=π2, sean CC la mediana por C y D el pie de la perpendicular a CC trazada desde B (figura 11), calcula la distancia de D al centroide G del triangulo en términos de los catetos.
Figura 11
  1. Un triángulo rectángulo tiene un ángulo interior de π3, calcula la distancia del vértice donde se intersecan los catetos al incentro I del triángulo en términos de la hipotenusa.
  2. Sea ABC un triángulo tal que la mediana AD es perpendicular a la mediana BE, encuentra AB si BC=a y AC=b.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 29-34.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 65-94.
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría analítica I: Aplicaciones a geometría del triángulo

Por Elsa Fernanda Torres Feria

Introducción

En esta entrada usaremos la forma normal de la recta para demostrar dos teoremas conocidos como teoremas de concurrencia de líneas.

Medianas y baricentro

Cerremos la entrada con la enunciación y la demostración del siguiente teorema.

Teorema. Dado un triángulo PQR, sus tres medianas concurren en un punto que divide al segmento dentro del triángulo (de cada mediana) en proporción 1:2.

Demostración.

Para empezar la demostración, construimos un triángulo PQR.

Para construir las medianas, primero localizamos los puntos medios de cada segmento (A, B, C) cuyas coordenadas baricéntricas están dadas por

A=12P+12QB=12Q+12RC=12R+12P

Ya que queremos que se encuentren justo en el punto medio de cada segmento.

Al trazar la mediana del segmento PQ tenemos lo siguiente

La manera en la que procederemos a partir de ahora, es que localizaremos el punto en el segmento de cada mediana que lo divide en proporción 1:2 esperando llegar a que los tres puntos son el mismo.

Comencemos con el punto G que divide al segmento AR en proporción 1:2, esto es que G sea:

G=13R+23A

AL sustituir el valor de A, tenemos como resultado
G=13R+23(12P+12Q)=13R+13P+13Q

Lo que puede ser replicado para cada segmento. Para el BP se tiene

G=13P+23B=13P+23(12Q+12R)=13P+13Q+13R=13R+13P+13Q

Y para el CQ

G»=13Q+23C=13Q+23(12R+12P)=13Q+13R+13P=13R+13P+13Q

G=G=G»

Acabamos de demostrar que los puntos que dividen a cada mediana en una proporción 1:2 son el mismo para cada una, por lo que las tres medianas concurren en este punto.

◻

A este punto G se le conoce como el baricentro del triángulo, y podrás imaginar después de que discutimos la idea física de estas coordenadas, que G corresponde al centro de masa o punto de equilibrio del triángulo.

Utiliza el siguiente interactivo para asegurarte de que esto es válido con cualquier triángulo, puedes mover los puntos P,Q y R y aún existirá el punto G de intersección de las 3 medianas. Si te da curiosidad, puedes usar la herramienta de distancia de GeoGebra para medir la longitud de cada segmento de la mediana y verificar que efectivamente, está en una relación 1:2 con respecto al punto G.

Teoremas de concurrencia

Para poder realizar las demostraciones, definiremos a la altura de un triángulo como la recta que pasa por uno de sus vértices y es ortogonal al lado opuesto. Ahora, enunciemos y demostremos el primer teorema.

Teorema 1. Las alturas de un triángulo son concurrentes.

Demostración

Comencemos esta demostración con un interactivo que ilustre un triángulo y sus alturas.

Las rectas verdes son las alturas del triángulo y en el interactivo es bastante evidente que concurren en un punto y que esto pasa para cualquier triángulo (para comprobarlo puedes mover con tu cursor los vértices para modificar el triángulo). Sin embargo en este curso de geometría analítica, queremos demostrarlo de manera algebraica.

Para esta demostración algebraica, notemos que los vértices del triángulo son A, B, y C y las alturas asociadas a cada vértice son a, b y c respectivamente. Escribamos la forma normal de cada una de estas rectas (alturas). Para a tenemos

a : (CB)x=(CB)A

pues la recta a es ortogonal al lado del triángulo que pasa por los vértices C y B, por lo que este lado tiene dirección (CB) y pasa por el punto A. De manera análoga, sabemos que b es perpendicular a la recta que pasa por A y C con dirección AC y pasa también por el punto B, así

b : (AC)x=(AC)B

Y de la misma forma para c tenemos

c : (BA)x=(BA)C

Nota que si sumamos las dos primeras ecuaciones, obtendremos la ecuación negativa de c:

(CB)x+(AC)x=(CB)A+(AC)B(CB+AC)x=CABA+ABCB(B+A)x=CAAB+ABCB(B+A)x=CACB(B+A)x=(AB)C

Esto es importante, pues si tomamos un elemento en la intersección de las alturas a y b (xab), entonces también está en la suma y está última nos da como resultado el negativo de la ecuación de la recta c, por lo tanto xc.

De manera análoga, si sumamos b y c obtenemos

(BC)x=(BC)A

que corresponde a la ecuación negativa de a, por lo que si xbc, entonces x está en la suma de las ecuaciones y por tanto está en a.

Para completar la demostración, deberíamos realizar el mismo procedimiento al sumar las ecuaciones de c y a y confirmar que un punto en su intersección está en b.

si dos de las alturas se intersectan, entonces la tercera recta también y en el mismo punto.

square

Teorema 2.

Demuestra que las tres mediatrices de un triángulo son concurrentes.

Demostración

Para comenzar la demostración, recordemos que la mediatriz de un segmento es la recta que es ortogonal a este y pasa por su punto medio.

De nuevo, es claro que las tres mediatrices del triángulo con vértices D, E y F concurren en un punto. Denominamos a los puntos medios de cada lado como a, b y c, que es por donde pasan las mediatrices.

Ahora, para comenzar la parte algebraica de la demostración, definamos en su forma normal la primera miediatriz i. Siguiendo la idea de la demostración pasada, i es ortogonal a (EF) y pasa por el punto a por lo que

i : (EF)x=(EF)a

De la misma manera, j es ortogonal a (DE) y pasa por b, así

j : (DE)x=(DE)b

Y para k tenemos

k : $(F-D) \cdot x = (F-D) \cdot c

Sigamos la intuición de la demostración anterior y sumemos las expresiones de i y j

(EF)x+(DE)x=(EF)a+(DE)bExFx+DxEx=EaFa+DbEbDxFx=EaFa+DbEb

Para seguir avanzando con nuestra demostración, debemos recordar que a,, b y c son los puntos medios de cada lado del triángulo, por lo que podemos expresarlos en términos de los vértices de la siguiente manera

a=F+E2, b=E+D2 Y c=D+F2

Con esto en mente, podemos sustituir a y b en la ecuación anterior y desarrollar

DxFx=E(F+E2)F(F+E2)+D(E+D2)E(E+D2)

Al realizar todo el desarrollo obtenemos que

DxFx=12(DDFF)

Ahora, en la demostración pasada queríamos llegar a algún múltiplo de k para demostrar que las 3 rectas se intersectaban, siguiendo con esa lógica, desarrollemos el lado derecho de k tomando en cuenta a c como punto medio de un lado

(FD)c=(FD)D+F2=12(FD)(D+F)=12(FD+FdotFDDFD)=12(FFDD)

Que es justamente el negativo de lo que obtuvimos arriba, por lo que al sumar las expresiones de i y j obtenemos el negativo de la expresión de k. Así, si un punto x está en ij, entonces está en la suma y por lo tanto está en k.

El procedimiento es análogo para cada uno de los casos faltantes.

◻

Para concluir esta entrada, denotaremos al punto en el que concurren las mediatrices como circuncentro.

Más adelante…

En las próximas entradas discutiremos la forma normal de un elemento geométrico en el espacio R3 que no será la recta y hablaremos de la norma de un vector, que de cierta manera apareció en nuestras demostraciones pero no lo hemos discutido con formalidad hasta ahora.

Tarea moral

  • Completa los casos faltantes en la demostración del primer teorema.
  • Completa los casos faltantes en la demostración del segundo teorema.
  • Encuentra el circuncentro del triángulo que tiene como vértices los puntos (5,3), (2,1) y (8,0).