Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna I: Puntos notables del triángulo

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiamos la concurrencia de rectas importantes en el triangulo, a saber, las medianas, mediatrices, bisectrices y alturas. Mencionamos también consecuencias inmediatas de los puntos de concurrencia.

Centroide

Teorema 1. Las medianas de todo triángulo concurren en un punto que las triseca.

Demostración. Sean $\triangle ABC$, $B’$ y $C’$ los puntos medios de $AC$ y $AB$ respectivamente, por el teorema del segmento medio sabemos que $C’B’ = \dfrac{BC}{2}$ y $C’B’ \parallel BC$.

Figura 1

Sea $G$ la intersección de las medianas $BB’$ y $CC’$, en $\triangle GBC$ consideremos $M$ y $N$ los puntos medios de los lados $GB$ y $GC$ respectivamente, entonces
$MN = \dfrac{BC}{2}$ y $MN \parallel BC$.

Por transitividad $C’B’ = MN$ y $C’B’ \parallel MN$, esto implica que $\square C’MNB’$ es un paralelogramo y por lo tanto sus diagonales se bisecan, es decir,
$C’G = GN$ y $MG = GB’$.

Por construcción, $MG = BM$ y $GN = NC$
$\Rightarrow GB’= \dfrac{BB’}{3}$ y $C’G = \dfrac{CC’}{3}$,
esto es, la medianas $BB’$ y $CC’$ se trisecan

Si repetimos el mismo procedimiento pero ahora con las medianas $AA’$ y $BB’$ encontraremos un punto $G’$ en donde las medianas se trisecaran, $G’B’= \dfrac{BB’}{3}$ y $G’A’ = \dfrac{AA’}{3}$.

Como $GB’= \dfrac{BB’}{3} = G’B’$, concluimos que $G’ = G$.

Por lo tanto, las medianas de un triángulo concurren en un punto que las triseca.

$\blacksquare$

Definición 1. Decimos que el punto en que concurren las medianas de un triángulo es el gravicentro, baricentro o centroide del triángulo y lo denotamos con la letra $G$ mayúscula.

Figura 2

Circuncentro

Teorema 2. Las mediatrices de los lados de todo triángulo son concurrentes.

Demostración. Sea $\triangle ABC$, consideremos las mediatrices $l_c$ y $l_b$ de $AB$ y $AC$ respectivamente y $O = l_b \cap l_c$.

Figura 3

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la mediatriz de un segmento si y solo si equidista a los puntos extremos del segmento.

Ya que $O \in l_c$ y $O \in l_b$, entonces $OA = OB$ y $OA = OC$
$\Rightarrow OB = OC$.

Por el resultado mencionado anteriormente $OB = OC$ implica que $O \in l_a$, la mediatriz de $BC$.

Por lo tanto, las mediatrices de un triángulo son concurrentes.

$\blacksquare$

Corolario. Tres puntos distintos y no colineales se encuentran en una única circunferencia.

Demostración. Sea $\triangle ABC$, por el teorema anterior las mediatrices de los segmentos determinados por los vértices del triángulo concurren en un punto $O$ cuya distancia a cada uno de los vértices es la misma $R = OA = OB = OC$.

Por definición de circunferencia, $A$, $B$ y $C$ pertenecen a la circunferencia con centro en $O$ y radio $R$, $A$, $B$, $C \in (O, R) = \Gamma$.

Ahora supongamos que existe $\Gamma’ = (O’, R’)$ tal que $A$, $B$, $C \in \Gamma’$, entonces, por definición, $O’A = O’B = O’C = R’$.

Esto implica que $O’ \in l_a$, $O’ \in l_b$ y $O’ \in l_c$, las mediatices de $BC$, $AC$ y $AB$ respectivamente,
$\Rightarrow O \in l_a \cap l_b \cap l_c$.

Como ya probamos que las mediatrices son concurrentes entonces $O’ = O$ y $R’ = R$, así que $\Gamma$ es única.

$\blacksquare$

Definición 2. Al punto de concurrencia de las mediatrices de los lados de un triángulo le llamamos circuncentro y lo denotamos como $O$.

A la distancia constante de $O$ a los vértices del triángulo le llamamos circunradio denotado con la letra $R$ mayúscula.

A la circunferencia única $(O, R)$ determinada por los vértices del triángulo se le conoce como circuncírculo.

Figura 4

Incentro

Teorema 3. Las bisectrices interiores de todo triángulo son concurrentes.

Demostración. Sean $l_B$ y $l_C$ las bisectrices de los ángulos interiores en $\angle B$ y $\angle C$ respectivamente e $I = l_{B} \cap l_{C}$.

Figura 5

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la bisectriz de un ángulo si y solo si equidista a los lados que forman el ángulo. Recordemos que la distancia de un punto a una recta es la longitud del punto al pie de la perpendicular a la recta trazada desde el punto.

Denotamos la distancia de un punto $P$ a una recta $l$ como $(P, l)$.

Como $I \in l_{b}$ e $I \in l_{c}$, entonces $(I, AB) = (I, BC)$ y $(I, BC) = (I, AC)$,
$\Rightarrow (I, AB) = (I, AC)$.

Por el resultado citado anteriormente, $(I, AB) = (I, AC)$ implica que $I \in l_A$, la bisectriz interior de $\angle A$.

Por tanto, las bisectrices interiores de un triángulo son concurrentes.

$\blacksquare$

Si consideramos los pies de las perpendiculares a los lados del triángulo trazados desde el punto en que concurren las bisectrices, encontramos tres puntos distintos que equidistan a un punto fijo y por el corolario anterior estos determinan una única circunferencia, esto motiva la siguiente definición.

Definición 3. Al punto de concurrencia de las bisectrices interiores de un triángulo se le conoce como incentro del triángulo y lo denotamos con la letra $I$ mayúscula.

A la distancia de $I$ a los lados del triángulo le llamamos inradio y lo denotamos como $r = (I, AB) = (I, BC) = (I, AC)$.

La circunferencia con centro en $I$ y radio $r$, $(I, r)$, se llama incírculo.

Figura 6

Excentros

Teorema 4. En todo triángulo las bisectrices exteriores de dos ángulos y la bisectriz interior del tercer ángulo son concurrentes.

Demostración. Sea $\triangle ABC$, $l_A$ y $l_C$ las bisectrices exteriores de $\angle A$ y $\angle C$ respectivamente e $I_b = l_A \cap l_C$.

Figura 7

De manera análoga al caso de las bisectrices internas tenemos que
como $I_b \in l_A$ e $I_b \in l_C$, entonces $(I_b, AB) = (I_b, AC)$ y $(I_b, AC) = (I_b, BC)$,
$\Rightarrow (I_b, AB) = (I_b, BC)$.

Como $I_b$ está en la región acotada por el ángulo $\angle CBA$ entonces $I \in l_B$, la bisectriz interior de $\angle B$.

Por lo tanto, la bisectriz interna de $\angle B$ y las bisectrices externas de $A$ y $C$ son concurrentes.

De manera análoga probamos que las bisectrices externas de $\angle A$ y $\angle B$ concurren con la bisectriz interna de $\angle C$, y las bisectrices externas de $\angle B$ y $\angle C$ concurren con la bisectriz interna de $\angle A$.

$\blacksquare$

Similarmente a como lo hicimos con el incentro, notamos que, para cada uno de estos tres puntos de concurrencia, existen tres puntos distintos, uno en cada lado del triángulo que equidistan a un punto fijo y por lo tanto determinan una única circunferencia.

Definición 4. A los puntos en que concurren dos bisectrices externas y una bisectriz interna de un triángulo les llamamos excentros del triángulo y los denotamos como $I_a$, $I_b$ e $I_c$ de acuerdo a si se encuentran en la bisectriz interna de $\angle A$, $\angle B$ o $\angle C$ respectivamente y decimos que son opuestos a dichos vértices.

Las distancias de $I_a$, $I_b$ e $I_c$ a los lados del triángulo son los exradios y se les denota como $r_a$, $r_b$ y $r_c$ respectivamente.

A las circunferencias $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ se les conoce como excírculos del triángulo.

Figura 8

Ortocentro

Teorema 5. Las alturas de todo triángulo son concurrentes.

Demostración. Sea $\triangle ABC$, tracemos en cada vértice la paralela al lado opuesto.

Sean $A’$ la intersección de la paralela a $AB$ trazada en $C$ con la paralela a $AC$ trazada en $B$, de manera análoga definimos $B’$ y $C’$.

Figura 9

Por construcción, $\square ABCB’$ es un paralelogramo por lo que $AB’ = BC$, también $\square C’BCA$ es paralelogramo así que $C’A = BC$,
$\Rightarrow AB’ = BC = C’A \Rightarrow A$ es el punto medio de $C’B’$.

De manera similar podemos ver que $B$ es el punto medio de $C’A’$ y $C$ es el punto medio de $A’B’$.

En consecuencia, las alturas del triángulo $\triangle ABC$ son las mediatrices del triángulo $\triangle C’A’B’$ y ya probamos que las mediatrices de los lados de todo triangulo son concurrentes, por lo tanto, las alturas de $\triangle ABC$ son concurrentes.

$\blacksquare$

Definición 5. Al punto en común en que las tres alturas de un triángulo se intersecan le llamamos ortocentro y lo denotamos con la letra $H$ mayúscula.

Figura 10

Más adelante…

En la siguiente entrada demostraremos algunos teoremas que nos permitirán calcular la magnitud de ángulos relativos a una circunferencia.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Qué puntos notables vistos en esta entrada, caen siempre dentro del triangulo y cuales siempre fuera?
  2. Muestra que una recta paralela a un lado de un triangulo a través del centroide divide el área del triangulo en dos partes tal que la razón de esta áreas es $\dfrac{4}{5}$.
  3. Considera un triangulo rectángulo $\triangle ABC$ con $\angle B = \dfrac{\pi}{2}$, sean $CC’$ la mediana por $C$ y $D$ el pie de la perpendicular a $CC’$ trazada desde $B$ (figura 11), calcula la distancia de $D$ al centroide $G$ del triangulo en términos de los catetos.
Figura 11
  1. Un triángulo rectángulo tiene un ángulo interior de $\dfrac{\pi}{3}$, calcula la distancia del vértice donde se intersecan los catetos al incentro $I$ del triángulo en términos de la hipotenusa.
  2. Sea $\triangle ABC$ un triángulo tal que la mediana $AD$ es perpendicular a la mediana $BE$, encuentra $AB$ si $BC = a$ y $AC = b$.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 29-34.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 65-94.
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Semejanza de triángulos

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiamos otro tipo de relación, la de semejanza de triángulos, la cual es una de las herramientas más útiles en geometría euclidiana.

Definición. Decimos que dos triángulos $\triangle ABC$ y $\triangle A’B’C’$ son semejantes si sus ángulos respectivos son iguales y sus lados respectivos son proporcionales, es decir,

  • $\angle A = \angle A’$, $\angle B = \angle B’$, $\angle C = \angle C’$ y
  • $\dfrac{AB}{A’B’} = \dfrac{BC}{B’C’} = \dfrac{AC}{A’C’}$.

Si dos triángulos son semejantes lo denotamos así $\triangle ABC \sim \triangle A’B’C’$.

Criterio de semejanza ángulo, ángulo, ángulo (AAA o AA)

Teorema 1, criterio de semejanza ángulo, ángulo, ángulo. Si los ángulos correspondientes de dos triángulos son iguales entonces los triángulos son semejantes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ dos triángulos tales que $\angle A = \angle A’$, $\angle B = \angle B’$, $\angle C = \angle C’$. Por demostrar que los lados correspondientes son proporcionales.

Sean $D \in AB$ y $E \in AC$ tales que $AD = A’B’$ y $AE = A’C’$, como $\angle A = \angle A’$, por el criterio de congruencia LAL, tenemos que los triángulos $\triangle ADE \cong \triangle A’B’C’$.

Figura 1

Por lo tanto, $\angle EDA = \angle C’B’A’$, $\angle AED = \angle A’C’B’$ y $DE = B’C’$.

Dado que $AB$ es transversal a $DE$ y $BC$ y los ángulos correspondientes son iguales, entonces $DE \parallel BC$.

Por el teorema de Tales, $\dfrac{AB}{AD} = \dfrac{AC}{AE} = \dfrac{BC}{DE}$,
$\Rightarrow \dfrac{AB}{A’B’} = \dfrac{AC}{A’C’} = \dfrac{BC}{B’C’}$.

Así, $\triangle ABC \sim \triangle A’B’C’$.

$\blacksquare$

Observación. Como la suma de los ángulos internos de todo triangulo es igual a $\pi$, entonces si conocemos la magnitud de dos ángulos internos conocemos los tres y por lo tanto podemos referirnos a este criterio como AA.

Criterio de semejanza lado, ángulo, lado (LAL)

Teorema 2, criterio de semejanza lado, ángulo, lado. Si dos triángulos tienen dos lados correspondientes proporcionales y el ángulo entre ellos es igual, entonces los triángulos son semejantes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ dos triángulos tales que $\dfrac{AB}{A’B’} = \dfrac{AC}{A’C’}$ y $\angle A = \angle A’$.

Sean $D \in AB$ y $E \in AC$ tales que $AD = A’B’$ y $AE = A’C’$.

Figura 2

Como $\angle A = \angle A’$ por el criterio de congruencia LAL, $\triangle ADE \cong \triangle A’B’C’$, así $\angle EDA = \angle C’B’A’$ y $\angle AED = \angle A’C’B’$.

Por hipótesis sabemos que $\dfrac{AB}{A’B’} = \dfrac{AC}{A’C’}$
$\Rightarrow \dfrac{AB}{AD} = \dfrac{AC}{AE}$.

Esto implica, por el reciproco del teorema de Tales, que $DE \parallel BC$, se sigue que $\angle CBA = \angle EDA$ y $\angle ACB = \angle AED$ por ser ángulos correspondientes.

Por transitividad, $\angle A = \angle A’$, $\angle B = \angle B’$ y $\angle C = \angle C’$

Por criterio de semejanza AAA, $\triangle ABC \sim \triangle A’B’C’$.

$\blacksquare$

Criterio de semejanza lado, lado, lado (LLL)

Teorema 3, criterio de semejanza lado, lado, lado. Si los lados correspondientes de dos triángulos son proporcionales entonces los triángulos son semejantes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ dos triángulos tales que $\dfrac{AB}{A’B’} = \dfrac{BC}{B’C’} = \dfrac{AC}{A’C’}$, por demostrar que $\angle A = \angle A’$, $\angle B = \angle B’$ y $\angle C = \angle C’$.

Sean $D \in AB$ y $E \in AC$ tales que $AD = A’B’$ y $AE = A’C’$ (figura 2).

Como $\angle BAC = \angle DAE$ y $\dfrac{AB}{AD} = \dfrac{AC}{AE}$, por criterio de semejanza LAL, $\triangle ABC \sim \triangle ADE$, y en consecuencia $\dfrac{AB}{AD} = \dfrac{BC}{DE}$.

$AD = A’B’$, por construcción, y $\dfrac{AB}{A’B’} = \dfrac{BC}{B’C’}$ por hipótesis,
$\Rightarrow \dfrac{BC}{B’C’} = \dfrac{AB}{A’B’} = \dfrac{AB}{AD} = \dfrac{BC}{DE}$
$\Rightarrow B’C’ = DE$.

Por criterio de congruencia LLL, $\triangle A’B’C’ \cong \triangle ADE$.

Por transitividad, $\triangle ABC \sim \triangle A’B’C’$.

$\blacksquare$

Triángulos con lados perpendiculares

Proposición 1. Dos triángulos cuyos lados correspondientes son perpendiculares son semejantes.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ tales que $AB \perp A’B’$, $BC \perp B’C’$ y $AC \perp A’C’$.

Consideremos $Z$, $P$ y $Q$ las intersecciones de $BC$ con $B’C’$, $A’B’$ y $A’C’$ respectivamente, $X = AB \cap A’B’$ e $Y = AC \cap A’C’$ (figura 3).

Figura 3

$\angle CBA = \angle PBX$, por ser opuestos por el vértice,
como $\triangle BXP$ es rectángulo entonces $\angle PBX$ y $\angle XPB$ son complementarios,
$\Rightarrow \angle CBA$ y $\angle XPB$ son complementarios,
$\angle XPB = \angle B’PZ$, por ser opuestos por el vértice,
$\Rightarrow \angle CBA$ y $\angle B’PZ$ son complementarios.

Como $\triangle B’ZP$ es rectángulo entonces $\angle B’PZ$ y $\angle ZB’P$ son complementarios,
$\Rightarrow \angle CBA = \angle ZB’P$,
$\Rightarrow \angle B’ = \angle B$.

Por otro lado, $\angle ACB = \angle YCQ$, por ser opuestos por el vértice,
como $\triangle CYQ$ es rectángulo entonces $\angle YCQ$ y $\angle CQY$ son complementarios,
$\Rightarrow \angle ACB$ y $\angle CQY$ son complementarios.

Como $\triangle C’ZQ$ es rectángulo entonces $\angle QC’Z$ y $\angle CQY$ son complementarios,
$\Rightarrow \angle ACB = \angle QC’Z$,
$\Rightarrow \angle C = \angle C’$.

Por criterio de semejanza AA, $\triangle ABC \sim \triangle A’B’C’$.

$\blacksquare$

Proposición 2. Dos triángulos cuyos lados correspondientes son paralelos son semejantes.

Demostración. Podemos construir un triángulo cuyos lados correspondientes sean perpendiculares a los lados de uno de los triángulos, por transitividad sus lados también serán perpendiculares a los lados del segundo triangulo.

Por la proposición anterior los triángulos originales serán semejantes al triangulo construido y por lo tanto serán semejantes entre sí.

$\blacksquare$

Desigualdad entre bisectrices

Proposición 3. En un triángulo entre cualesquiera dos ángulos internos la bisectriz del mayor es menor a la bisectriz del menor de los ángulos.

Demostración. Sea $\triangle ABC$ y supongamos que $\angle B > \angle C$ y sean $D$ y $E$ las intersecciones de las bisectrices de los ángulos $\angle B$ y $\angle C$ respectivamente con los lados opuestos. Debemos mostrar que $BD < CE$.

Sean $F \in AD$ tal que $\angle DBF = \angle ACE = \angle ECB$ y $G$ la intersección de $CE$ con $BF$, por criterio de semejanza AA, $\triangle FBD \sim \triangle FCG$, por lo tanto,

$\begin{equation} \dfrac{BF}{CF} = \dfrac{BD}{CG}. \end{equation}$

Figura 4

Por otro lado, en el triángulo $\triangle BFC$ tenemos que
$\angle CBF = \angle CBD + \angle DBF $
$= \dfrac{\angle B}{2} + \dfrac{\angle C}{2} > \dfrac{\angle C}{2} + \dfrac{\angle C}{2} = \angle C$.

Como al ángulo mayor siempre se opone a el lado mayor, tenemos que $FC > BF$ $\Leftrightarrow$ $1 > \dfrac{BF}{CF} = \dfrac{BD}{CG}$.

Donde la última igualdad se da por la ecuación $(1)$

Por lo tanto, $CE > CG > BD$.

$\blacksquare$

Semejanza en el triángulo rectángulo

Proposición 4. Sean $\triangle ABC$ un triángulo rectángulo con $\angle A = \dfrac{\pi}{2}$ y $D$ el pie de la perpendicular a $\overline{BC}$ trazada desde $A$, entonces:
$i)$ $AD^2 = BD \times DC$,
$ii)$ $AB^2 = BC \times BD$,
$iii)$ $AC^2 = BC \times DC$,
$iv)$ $AD \times BC = AB \times AC$.

Figura 5

Demostración. Por criterio de semejanza AA, $\triangle ABC \sim \triangle DBA$ y $\triangle ABC \sim \triangle DAC$,

$i)$  Por la relación de semejanza tenemos
$\dfrac{AD}{AC} =\dfrac{BD}{AB} \Rightarrow AD = \dfrac{BD \times AC}{AB}$,
$\dfrac{AD}{AB} =\dfrac{DC}{AC}  \Rightarrow AD = \dfrac{DC \times AB}{AC}$
$\Rightarrow AD^2 = BD \times DC$

$ii)$ Como $\triangle ABC \sim \triangle DBA$, $\dfrac{AB}{BD} =\dfrac{BC}{AB}$
$\Rightarrow AB^2 = BC \times BD$

$iii)$ Como $\triangle ABC \sim \triangle DAC$, $\dfrac{AC}{DC} =\dfrac{BC}{AC}$
$\Rightarrow AC^2 = BC \times DC$

$iv)$ de $ii)$ y $iii)$ tenemos $BC^2 = \dfrac{AB^2 \times AC^2}{BD \times DC}$
y empleando $i)$ obtenemos $AD^2 \times BC^2 = (BD \times DC) \dfrac{AB^2 \times AC^2}{BD \times DC}$
$\Rightarrow AD \times BC = AB \times AC$.

$\blacksquare$

Más adelante…

En la siguiente entrada comenzaremos a distinguir el sentido en el que recorremos un sementó de recta y si la razón en que un punto divide a un segmento es negativa o positiva. Haciendo uso de segmentos dirigidos mostraremos el teorema de Stewart.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra el teorema de Pitágoras usando semejanza de triángulos.
  2. Criterio de semejanza hipotenusa-cateto, muestra que un par de triángulos rectángulos son semejantes si la razón entre sus hipotenusas y la razón entre uno de sus catetos son iguales.
  3. Muestra que si en un triángulo dos bisectrices internas tienen la misma longitud, entonces el triángulo es isósceles.
  4. Sean $\square ABCD$ un paralelogramo,$E \in CD$, $G$ y $F$ las intersecciones de $AE$ con $BD$ y $BC$ respectivamente (figura 6), encuentra $EF$ en términos de $AG$ y $GE$.
Figura 6
  1. Sean $\square ABCD$ un paralelogramo, $E$, $F \in BD$ tales que $BE = DF$, $G = AE \cap BC$ y $H = AF \cap CD$ (figura 7), muestra que $GH \parallel BD$.
Figura 7

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 18-24.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 72-73.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 6-11.
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Moderna I: Permutaciones disjuntas

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Repasemos un poco el último ejemplo de la entrada anterior. En $S_5$ teníamos la composición $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5)$ y fijándonos en qué ocurre con cada elemento, concluimos que esta composición es igual a $(1 \; 2)(3 \; 4 \; 5)$. Entonces obtuvimos dos composiciones distintas para escribir a esa permutación. En el dibujo, es más claro que en la primera los dos ciclos se están entrelazando entonces es más difícil entender qué es lo que hace la permutación. Pero cuando vemos la representación de $(1 \; 2)(3 \; 4 \; 5)$ es más fácil entender qué es lo que está haciendo nuestra permutación. Así, es más conveniente trabajar con la segunda notación.

La representación de $(1 \; 2 \; 3 \; 4)(2 \; 4 \; 5) = (1 \; 2)(3 \; 4 \; 5)$

A simple vista podemos observar que $(1 \; 2 \; 3 \; 4)$ y $(2 \; 4 \; 5)$ comparten el 2, pero $(1 \; 2)$ y $(3 \; 4 \; 5)$ no comparten ningún elemento. En este caso, se dice que $(1 \; 2)$ y $(3 \; 4 \; 5)$ son ciclos disjuntos. Más aún, ¿será que cualquier permutación se puede descomponer en ciclos disjuntos? la respuesta es que , esto lo demostraremos también en esta entrada.

Definición de permutaciones disjuntas

Antes de definir lo que significa que dos permutaciones sean disjuntas, nos gustaría recordar la última observación de la entrada anterior.
Observación. Si $n \geq 3$, entonces $S_n$ no es abeliano.
Esto nos sirve para establecer que, en general, trabajaremos con grupos no abelianos.

Ahora sí definamos lo que son permutaciones disjuntas.
Definición. Sean $\alpha, \beta \in S_n$. Decimos que $\alpha$ y $\beta$ son disjuntas o ajenas si sop$\,\alpha \,\cap $ sop$\,\beta = \emptyset$, es decir, dado $i\in \{1,2,\dots, n\}$ se tiene que

\begin{align*}
\alpha(i) \neq i &\Rightarrow \beta(i) = i .\\
\end{align*}

En consecuencia también ocurre que si $\beta(i) \neq i$, entonces $\alpha(i) = i.$

Observación. Si $\alpha$ y $\beta$ son disjuntas, pueden fijar a un mismo elemento pero no mover a un mismo elemento.

En particular, si tenemos dos ciclos de longitud mayor a uno, podemos obtener la siguiente equivalencia.
Observación. Sean $\alpha = (i_1 \dots i_r)$ y $\beta = (j_1 \dots j_t)$ con $r,t > 1$. Entonces $\alpha$ y $\beta$ son disjuntas si y sólo si $\{i_1, \dots, i_r\} \cap \{j_1, \dots, j_t\} = \emptyset$.

Ejemplos.

  • $(1 \; 2 \; 3 \; 4)$ y $(2 \; 4 \; 5)$ no son disjuntas.
  • $(1 \; 2)$ y $(3 \; 4 \; 5)$ son disjuntas.

Las permutaciones disjuntas conmutan

Lema. Sean $\alpha, \beta \in S_n$. Si $\alpha$ y $\beta$ son disjuntas, entonces conmutan.

P.D. $\alpha \beta = \beta \alpha$.
Sea $i \in \{1, \dots, n\}$.

Caso 1. Cuando $\alpha(i) = i$, $\beta(i) = i$. Ambas fijan al mismo elemento, esto es posible en permutaciones disjuntas. Entonces, al componer, no importará que permutación se aplique primero.
\begin{align*}
\alpha\beta(i) = \alpha(i) = i = \beta(i) = \beta\alpha(i).
\end{align*}

Caso 2. Cuando $\alpha(i) = i$, $\beta(i) \neq i$.
Si componemos, obtenemos $\beta\alpha(i) = \beta(i)$.
Como $\beta$ es inyectiva y $\beta(i) \neq i$, entonces $\beta(\beta(i)) \neq \beta(i)$. Así $\beta$ mueve a $\beta(i)$ y como $\alpha$ y $\beta$ son disjuntas $\alpha$ fija a $\beta(i)$. Entonces
\begin{align*}
\alpha\beta(i) = \alpha(\beta(i)) = \beta(i).
\end{align*}
Por lo tanto $\beta\alpha(i) = \alpha\beta(i)$.

Caso 3. Cuando $\alpha(i) \neq i$, $\beta(i) = i$.
Este es análogo al caso 2.

El caso $\alpha(i) \neq i$, $\beta(i) \neq i$ no se da pues $\alpha$ y $\beta$ son disjuntas.
Por lo tanto $\alpha\beta = \beta\alpha$.

$\blacksquare$

Toda permutación se puede descomponer en ciclos disjuntos

Comencemos como un ejemplo. Consideremos a la permutación $\alpha \in S_9$

\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 4 & 1 & 7 & 8 & 6 & 2 & 9 & 5
\end{pmatrix}.
\end{align*}

  • El 1 va al 3 y el 3 regresa al 1, entonces tenemos una transposición $(1 \; 3)$.
  • Luego, observemos que el 2 va al 4, el 4 al 7 y el 7 al 4. Así tenemos un $3-$ciclo, $(2 \; 4 \; 7)$.
  • De los números que no han aparecido hasta ahora, podemos tomar el 5, este va al 8, el 8 al 9 y el 9 regresa al 5. Entonces tenemos otro $3-$ciclo $(5 \; 8 \; 9)$.
  • Por último, el 6 queda fijo.

Esto se puede dibujar de la siguiente manera:

Representación gráfica de $\alpha$.

Pero también se puede escribir algebraicamente como:

\begin{align*}
\alpha = (1 \; 3)\,(2 \; 4 \; 7)\,(5 \; 8 \; 9)\,(6).
\end{align*}

Ahora veremos que cualquier permutación se puede descomponer en un producto de ciclos disjuntos.

Analicemos primero cómo se construyen los ciclos a partir de un número en su soporte.

Observación 1. Sean $t\in\mathbb{N}^+$, $\sigma\in S_n$ un $t$-ciclo e $i\in \text{sop } \sigma$. Entonces $$\sigma=(i\; \sigma(i) \;\sigma^2(i)\dots \sigma^{t-1}(i))$$ con $t=\text{mín}\{j\in \mathbb{N}^+| \sigma^{j}(i)=i\}.$

Demostración.

Sean $t\in\mathbb{N}^+$, $\sigma\in S_n$ un $t$-ciclo e $i\in \text{sop } \sigma$. Sabemos que $\sigma$ es de la forma $$\sigma=(i_0\; i_1 \cdots i_{t-1})$$ con $i_0, i_1, \dots , i_{t-1}$ distintos. Como $i\in \text{sop } \sigma=\{i_0, i_1, \dots , i_{t-1}\}$ podemos suponer sin pérdida de generalidad que $i=i_0$ por lo que $\sigma=(i\; i_1 \cdots i_{t-1})$. Entonces

\begin{align*}\sigma(i)&=i_1, \\\sigma^2(i)&=\sigma(\sigma(i))=\sigma(i_1)=i_2\end{align*} y en general $\sigma^j(i)=i_{j}$ para toda $1\leq j<t$ por lo que $$\sigma=(i\; \sigma(i) \;\sigma^2(i)\cdots \sigma^{t-1}(i))$$ con $i,\sigma(i) ,\sigma^2(i),\dots , \sigma^{t-1}(i)$ distintos. En particular $\sigma(i) ,\sigma^2(i),\dots , \sigma^{t-1}(i)$ son distintos de $i$ y además $\sigma^t(i)=\sigma(\sigma^{t-1}(i))=\sigma(i_{t-1})=i$ por lo que $t=\text{mín}\{j\in \mathbb{N}^+| \sigma^{j}(i)=i\}.$

Veamos ahora qué ocurre si la permutación no es necesariamente un ciclo. Probemos que cada número movido por la permutación da lugar a un ciclo.

Lema 1. Sea $\alpha\in S_n$, $i\in\{1,\dots , n\}$. Para cada $i\in\text{sop }\alpha$ existe $j\in\mathbb{N}^+$ tal que $\alpha ^{j}(i)=i$, más aún, si $t_i=\text{mín}\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}$ se tiene que $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos.

Demostración.
Sea $\alpha \in S_n$, $i\in\text{sop }\alpha$ . Consideremos
\begin{align*}
i , \alpha(i), \alpha^2(i), \dots
\end{align*}

Sabemos que esta lista tiene elementos repetidos ya que consiste de números en el conjunto finito $\{1,2,\dots,n\}$. Existen entonces $r,s\in\mathbb{N}$ distintos tales que $\alpha^r(i) = \alpha^s(i)$, sin pérdida de generalidad $s < r,$ por lo cual $ \alpha^{r-s}(i) = i$ con $ r-s\in\mathbb{N}^+$ como se quería demostrar.

Así, el conjunto $\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}$ es no vacío, y por el principio del buen orden tiene un elemento mínimo, digamos $t_i$. Veamos ahora que $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos. Supongamos que $\alpha^q(i) = \alpha^l(i)$ para algunos $0\leq q\leq l < t_i$, entonces $\alpha^{l-q}(i) = i$ con $ 0\leq l-q<t_i$ y por la elección de $t_i$ esto implica que $l-q=0$, es decir que $q=l$. Por lo tanto $i , \alpha(i), \alpha^2(i), \dots ,\alpha^{t_i-1}(i)$ son distintos.

$\blacksquare$

Gracias al lema anterior podemos considerar el ciclo $(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))$:

Definición. Sea $\alpha\in S_n$, $i\in\text{sop }\alpha$ . El ciclo definido por $\alpha$ y por $i$ es

$$\sigma_{\alpha,i}=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))\text{ con }t_i=\text{mín}\{j\in\mathbb{N}^+\mid \alpha ^{j}(i)=i\}.$$

Notemos que si $i\in\text{sop }\alpha$, entonces $$\sigma_{\alpha,i}=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))= (\alpha (i)\cdots \alpha ^{t_i-1}(i)\;i)= (\alpha^2 (i)\cdots \alpha ^{t_i-1}(i)\;i\;\alpha(i))= \dots, \text{ etc.},$$ por lo que toda $k\in \{i, \alpha (i),\dots , \alpha ^{t_i-1}(i)\}$ define el mismo ciclo que $i$, es decir:

Observación 2. Si $i\in\text{sop }\alpha$, entonces para toda $k\in \{i, \alpha (i),\dots , \alpha ^{t_i-1}(i)\}$ se tiene que $\sigma_{\alpha,k}=\sigma_{\alpha,i}$ y $t_k=t_i.$

En consecuencia tenemos el siguiente resultado:

Lema 2. Sea $\alpha\in S_n$, $i,j\in\text{sop }\alpha$, y consideremos $\sigma_{\alpha,i},\sigma_{\alpha,j}$ como en la definición anterior. Si $\sigma_{\alpha,i}\neq \sigma_{\alpha,j},$ entonces $\sigma_{\alpha,i}$ y $\sigma_{\alpha,j}$ son disjuntos.

Demostración.

Sea $\alpha \in S_n$, $i,j\in\text{sop }\alpha$, $\sigma_{\alpha,i}\neq \sigma_{\alpha,j},$ como en la definición anterior. Probemos el lema por contrapuesta. Supongamos que $\sigma_{\alpha,i}$ y $ \sigma_{\alpha,j},$ no son disjuntos. Existe entonces $k$ movido por ambos ciclos, es decir $k\in\{i, \alpha (i),\cdots \alpha ^{t_i-1}(i)\}\cap\{j, \alpha (j),\cdots ,\alpha ^{t_j-1}(j)\}.$ Por la observación previa tenemos que $\sigma_{\alpha,k}=\sigma_{\alpha,i}$ y $\sigma_{\alpha,k}=\sigma_{\alpha,j}$, de donde concluimos que $\sigma_{\alpha,i}=\sigma_{\alpha,j}$.

$\blacksquare$

Ahora veremos que al considerar todos los ciclos distintos del tipo $\gamma_i$ y componerlos, obtenemos una descomposición de la permutación inicial en ciclos disjuntos:

Teorema. Toda permutación en $S_n$ es un ciclo o un producto de ciclos disjuntos

Demostración.

Sea $\alpha\in S_n$. Consideremos todos los ciclos $\sigma_{\alpha,i}$ con $j\in\text{sop }\alpha$ y eliminemos los ciclos repetidos, llamemos $\gamma_1,\gamma_2,\dots ,\gamma_r$ a los ciclos restantes. Afirmamos que $\alpha=\gamma_1\gamma_2\cdots \gamma_r$ es una descomposición de $\alpha$ en ciclos disjuntos. Por construcción $\gamma_1\gamma_2\cdots \gamma_r$ es un producto de ciclos, y por el lema 2, dado que $\gamma_1,\gamma_2,\dots ,\gamma_r$ son distintos, entonces son también disjuntos. Así, basta convencerse de que $\alpha=\gamma_1\gamma_2\cdots \gamma_r$ para terminar la demostración.

Sea $i\in\{1,2,\dots ,n\}$. Si $i\in\text{sop }\alpha$ tenemos que $\sigma_{\alpha,i}\in\{\sigma_{\alpha,j}\mid j\in\text{sop }\alpha\}=\{\gamma_1,\gamma_2,\dots ,\gamma_r\}$ y entonces $\sigma_{\alpha,i}=\gamma_j$ para alguna $1\leq j\leq r$. Así, $\gamma_j=\sigma_{\alpha,i}=(i\; \alpha (i)\cdots \alpha ^{t_i-1}(i))$ y $$\gamma_1\gamma_2\cdots \gamma_r(i)=\gamma_j(i)=\alpha(i)$$ (donde la primera igualdad se debe a que $\gamma_1,\gamma_2,\dots ,\gamma_r$ son disjuntos). Si $i\notin\text{sop }\alpha$ tenemos que $i\notin\text{sop }\gamma_j$ para toda $j\in\{1,\dots ,r\}$ , por lo que $\gamma_1\gamma_2\cdots \gamma_r(i)=i=\alpha(i)$. Por lo tanto $\alpha=\gamma_1\gamma_2\cdots \gamma_r$ .

$\blacksquare$

Ejemplo.
Sea $\alpha \in S_{10}$ como sigue

\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 1 & 7 & 9 & 6 & 8 & 3 & 5 & 2 & 10
\end{pmatrix}.
\end{align*}

Veamos qué sucede con el $1 \in $ sop $\alpha$. Le aplicamos $\alpha$ varias veces para formar el primer ciclo.

\begin{align*}
1, \alpha(1) = 4, \alpha^2(1) = 9, \alpha^3(1) = 2, \alpha^4(1) = 1.
\end{align*}

Entonces, nombremos $\gamma_1$ a ese $4-$ciclo, $\gamma_1 = (1 \; 4 \; 9 \; 2)$.

Ahora, tomemos un elemento que no esté en $\gamma_1$, digamos $3$. De nuevo, aplicamos $\alpha$ varias veces para descubrir el ciclo al que pertenece.
\begin{align*}
3, \alpha(3) = 7, \alpha^2(3)=3.
\end{align*}

Tenemos así una transposición $\gamma_2=(3\; 7).$

Volvemos a tomar un número que no haya aparecido hasta ahora, digamos $5$. Aplicando $\alpha$ varias veces, podemos descubrir el ciclo,
\begin{align*}
5, \alpha(5) = 6, \alpha^2(5) = 8, \alpha^3(5) = 5,
\end{align*}

obteniendo el ciclo $\gamma_3=(5\;6\;8)$.

Así, nuestra permutación quedaría como
\begin{align*}
\alpha = (1 \; 4 \; 9 \; 2 ) (3 \; 7)( 5 \; 6 \; 8).
\end{align*}

$\blacksquare$

Tarea moral

  1. Demuestra la observación: Si $n \geq 3$, entonces $S_n$ no es abeliano.
  2. Encuentra dos permutaciones disjuntas $\alpha$ y $\beta$. Encuentra $\beta\alpha$ y $\alpha\beta$ ¿qué observas al comparar $\beta\alpha$? Intenta con otro ejemplo de dos permutaciones disjuntas $\alpha$ y $\beta$ y analiza lo que ocurre.
  3. Sean $\alpha$ y $\beta$ dos permutaciones que conmutan ¿podemos concluir entonces $\alpha$ y $\beta$ son disjuntas?
  4. Considera el siguiente elemento de $S_{11}$
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\\
    5 & 8 & 2 & 6 & 4 & 1 & 3 & 7 & 9 & 11 & 10
    \end{pmatrix}.
    \end{align*}
    Encuentra una factorización en ciclos disjuntos de $\alpha$, y de $\alpha^{-1}$.

Más adelante…

Ya conocemos qué son las permutaciones disjuntas y que cualquier permutación se puede ver como multiplicación de ciclos disjuntos. También, puede que hayas notado que comenzamos a escribir los $1-$ciclos de los elementos que se quedan fijos en las permutaciones. Esto nos encamina al tema principal de la siguiente entrada, la factorización completa, que no es más que la descomposición de una permutación en ciclos disjuntos incluyendo los $1-$ciclos.

Entradas relacionadas

Álgebra Superior I: Tipos de relaciones en conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

Hemos hablado ya de relaciones entre conjuntos, sobre imagen, dominio y composición. Ahora vamos a ver algunas relaciones especiales entre conjuntos, que son la inyectividad, la suprayectividad y relaciones de un conjunto en sí mismo.

Inyectividad de una relación

Las ideas de los dos tipos de relación que vamos a exponer son inyectividad y suprayactividad. La inyectividad es una idea que nos va a hablar de cómo podemos relacionar un elemento de la imagen de una relación con un elemento del dominio. En pocas palabras lo que nos dirá la inyectividad es: Una relación inyectiva es aquella en la que los distintos elementos del dominio van a elementos de la imagen distintos. Veamos esto con calma con un ejemplo.

Supongamos que a nosotros nos interesa recuperar los elementos del dominio con los de la imagen, es decir, quisiéramos ver para cada pareja $y$ de la imagen, de qué $x$ proviene. En el caso de que haya dos relaciones distintas $(x,y),(z,y)$ nos causaría conflicto, pues podríamos decir que $y$ «viene» de dos distintos elementos del dominio.

Una relación inyectiva es aquella en donde para cada elemento de la imagen, existe un único elemento del dominio que se relaciona con esta. Es decir, una relación inyectiva $R$ será aquella en donde para cada $y \in Im(R)$, solo existe un elemento $x \in Dom(R)$ tal que $(x,y) \in R$. Otra forma de verlo es con la siguiente definición:

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. Diremos que $R$ es inyectiva si $$\forall y \in Im(R) (\exists ! x \in X:(x,y) \in R)$$

Observa ahora que esto significa que si $R$ es una relación inyectiva y dos parejas $(x,y),(z,y)$ pertenecen a la relación $R$, entonces no les queda de otra que ser la misma pareja, esto implica que $x=z$.

Proposición. Sea $R$ una relación entre dos conjuntos $X$ y $Y$. Entonces son equivalentes:

  1. $R$ es una relación inyectiva.
  2. Si $(x,y) \in R$ y $(w,y) \in R$ entonces $x=w$.

Demostración.

$1) \Rightarrow 2)$. Consideremos $(x,y) \in R$ y $(w,y) \in R$. Lo que queremos demostrar es que $x=w$, para ello notemos que $R$ es inyectiva, lo que quiere decir que existe una única pareja $(x,y) \in R$. Esto quiere decir que $(x,y)=(w,y)$ y esto solo sucede si $y=y$ y $x=w$. Siendo la segunda igualdad la buscada.

$2) \Rightarrow 1)$. Ahora supongamos que si $(x’,y’) \in R$ y $(w’,y’) \in R$ entonces $x’=w’$. Y supongamos que $y$ es un elemento de la imagen de $R$. Demostremos ahora que existe un único elemento $x$ tal que $(x,y) \in R$. Para ello mostraremos que existe al menos un elemento $x$ tal que $(x,y)$ y cualquier otro elemento $w$ no cumple tal propiedad. Para demostrar lo primero, notemos que $y$ es un elemento del contradominio, lo que quiere decir que existe al menos un elemento $x \in X$ tal que $(x,y) \in R$. Y finalmente para demostrar que $x$ es único, supongamos existe un elemento $w \in X$ distinto a $x$ tal que $(w,y) \in R$. Pero por hipótesis, si pasa esto entonces $x=w$, lo cual es una contradicción pues hemos dicho que $x$ es distinto a $w$. De esta manera, $x$ sí es único.

$\square$

También es análogo pensar que si una relación $R$ es inyectiva, entonces para cada elemento de la imagen $y$, sucede que $Im^{-1}[\{y\}]$ tiene un único elemento, pues la definición nos dice que solo existe un elemento $x$ del dominio que se relaciona con $y$.

Ahora observa por ejemplo a los conjuntos de animales $X$ y el tipo de animales $Y$. Podríamos decir que en tipos de animales, tenemos aquellos que viven en la tierra (terrestres) y los que viven en el agua (acuáticos). Entonces una parte de la relación $R$ que relaciona el animal con el hábitat que tiene, se vería de la siguiente manera:

Ahora, si nos preguntamos, cuáles son los animales terrestres, deberíamos observar que al menos los animales terrestres son los perros, gatos, camellos, etc. Una relación que no es inyectiva, no nos regresa un único elemento, sino que un subconjunto del dominio de más de un elemento. Así que esta relación no es inyectiva.

Por otro lado, una relación que sí es inyectiva entre los conjuntos $X=\{a,b,c,d,e,f\}$ y $\mathbb{Z}$ es la relación $R$:

$$R=\{(a,y): y \in Z\} $$

Es inyectiva pues los elementos de esta relación se ven como: $R=\{\dots,(a,-1),(a,0),(a,1),(a,2),\dots\}$ Y si agarramos cualquier número en la imagen de la relación, solo vendrá de un elemento, el elemento $a$.

Otros ejemplos de relaciones inyectivas son:

$R = \{(x,y) \in \mathbb{Z}^2:x=y\}$
$R = \{(x,y) \in \mathbb{Z}^2:x=2y\}$
$R = \{(x,y) \in \mathbb{Z}^2:(0,y) \text{ si }y\text{ es par,}(1,y)\text{ en otro caso}\}$

Relaciones suprayectivas

Otro concepto que será interesante es el de la suprayactividad. Este en términos simples nos dice que una relación $R$ es suprayectiva entre dos conjuntos $X,Y$ si cada elemento de $Y$ se relaciona con algún elemento de $X$. Es así como la siguiente definición nos lo menciona:

Definción. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. Diremos que $R$ es suprayectiva si $Im[Y]=Y$.

Una forma alterna de verlo es como en la siguiente proposición nos lo demuestra, siendo que siempre podremos encontrar una pareja para cada elemento $y$ de $Y$:

Proposición. Una relación $R$ es suprayectiva si y solo si $\forall y\in Y(\exists x \in X:(x,y) \in Y)$

Demostración Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$

$\Rightarrow$] Por hipótesis, $R$ es suprayectiva. Para demostrar que $\forall y\in Y(\exists x \in X:(x,y) \in Y)$ consideraremos un elemento $y \in Y$ arbitrario y demostraremos que existe algún elemento $x \in X$ tal que $(x,y)$ sea un elemento de la relación.
Como hipótesis, sabemos que la imagen de $R$ es igual a $Y$, esto quiere decir que:$$Y=Im(R)=\{y \in Y: \exists x \in X \text{ tal que }(x,y)\in R\}.$$ De esta manera, $$y \in \{y \in Y: \exists x \in X \text{ tal que }(x,y)\in R\}.$$ De manera que $\exists x \in X \text{ tal que }(x,y)\in R$. Por lo tanto, $\forall y\in Y(\exists x \in X:(x,y) \in Y)$

$\Leftarrow$]. Ahora supongamos por hipótesis que para cada elemento $y \in Y$, existe un elemento $x \in X$ tal que $(x,y) \in R$. Ahora, demostremos que $R$ es suprayectiva, es decir $Im(R)=Y$. Para esto, tendremos que demostrar que $Y$ está contenido en $Im(R)$ y viceversa. Pero nota que $Im(R)$ siempre es un subconjunto de $Y$ (pues por definición, sus elementos son elementos de $Y$). Así que bastará demostrar que $Y \subset Im[R]$. Para ello, considera un elemento $y \in Y$. Por hipótesis, para aquel elemento, existirá $x \in X$ tal que $(x,y) \in R$. Pero esto significa que $y \in Im[Y]$. Así, $Y \subset Im[R]$.

$\square$

Un ejemplo de una función suprayectiva sobre los conjuntos $X = \{1,2,3\}, Y=\{0\}$ es la relación $R=\{(1,0),(3,0)\}$. Esto puesto que hay solo un elemento en el conjunto $Y$ y hay al menos una relación para cada elemento del conjunto $Y$. Esto quiere decir que «cubrimos» a todo el contradominio. Otros ejemplos de funciones suprayectivas son:
$R = \{(x,y) \in \mathbb{Z}^2:x=y\}$
$R = \{(x,y) \in \mathbb{Z} \times \{0,1,2,3,4\} : x =1 \land y \in \{0,1,2,3,4\}\}$
Si $R$ es una relación entre dos conjuntos, $X,Y$, la relación $R=X \times Y$ es suprayectiva.

Relaciones de un conjunto en sí mismo

Hemos estado hablando ya de un conjunto muy particular, $\mathbb{Z}^2$ que lo definimos como $\mathbb{Z} \times \mathbb{Z}$, es decir de relaciones en el conjunto de los números enteros en sí mismo. Este tipo de relaciones, como ya lo hemos mencionado, se les acostumbra a poner un subíndice $^2$ para indicar que estamos hablando del producto cartesiano de un conjunto sobre él mismo. Por ejemplo si $X$ es un conjunto, entonces $X^2=X \times X$. Vamos a concentrarnos ahora en algunas relaciones especiales de un conjunto en sí mismo.

La primera relación que veremos será la reflexividad, y esto se da cuando un elemento está relacionado consigo mismo. Por ejemplo, en $\mathbb{Z}^2$, la relación cuyos elementos son de la forma $(x,x)$ siempre será reflexiva, pues cada elemento $x$ está relacionado consigo mismo.

La segunda relación se llama la simetría, que nos indica que para cada pareja $(x,y)$ de la relación, sucederá que igual $(y,x)$ estará en la relación. Si te das cuenta, algo que nos dice esta relación es que el orden «no importa», pues da igual cuál elemento escribamos del lado izquierdo y del lado derecho, pues su homónimo simétrico estará igual en la relación.

La tercera es un concepto similar al segundo pero en su antónimo. Diremos que una relación es antisimétrica si para cada pareja que tengamos en la relación $(x,y) \in R$, no sucederá que $(y,x) \in R$ a menos que $x=y$. Piensa por ejemplo para esto, en la relación «ser menor o igual a un número» $\leq$. Sucede que $1 \leq 2$ pero no que $2 \leq 1$.

Finalmente, la cuarta propiedad es llamada la transitividad. Esto lo que nos indica es que la composición de la relación también es parte de la relación. En otras palabras, si $(x,y),(y,z) \in R$ entonces $(x,z) \in R$. Para pensar en un ejemplo, piensa en la igualdad entre números, si $1+1=2$ y $2=4-2$, entonces $1+1=4-2$.

Anotaremos este tipo de relaciones como una definición

Definición. Sea $R$ una relación de un conjunto $X$ en sí mismo. Diremos que:

  • $R$ es reflexiva si $\forall x \in X,(x,x) \in R$
  • $R$ es simétrica si $\forall x \in X \forall y \in X\big( (x,y) \in R \Rightarrow (y,x) \in R \big)$
  • $R$ es antisimétrica si $\forall x \in X \forall y \in X\big( ((x,y) \in R \land (y,x) \in R) \Rightarrow (x=y) \big)$
  • $R$ es transitiva si $\forall x \in X \forall y \in X \forall z \in Z \big( ((x,y) \in R \land (y,z) \in R ) \Rightarrow (x,z) \in R \big)$

Más adelante…

En la siguiente entrada entraremos a los ordenes parciales, los cuales son relaciones de un conjunto sobre sí mismo que cumplen algunas de las clases especiales de relaciones que hemos revisado en esta entrada. De hecho quizá ya tengas una idea intuitiva de qué es un orden, concepto que ampliaremos más en lo que sigue.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$.Demuestra que son equivalentes:
    1. $R$ es inyectiva
    2. $\forall y \forall x \big(((x,y)\in R \land (z,y) \in R) \Rightarrow x=z\big)$
    3. $\forall y \in Im(R) \big( Im^{-1}[\{y\}] \text{ tiene un solo elemento}\big)$
  2. Demuestra que las siguientes relaciones son inyectivas:
    • $R = \{(x,y) \in \mathbb{Z}^2:x=y\}$
    • $R = \{(x,y) \in \mathbb{Z}^2:x=2y\}$
    • $R = \{(x,y) \in \mathbb{Z}^2:(0,y) \text{ si }y\text{ es par,}(1,y)\text{ en otro caso}\}$
  3. Sea la relación $R$ sobre el conjunto $X$ de los seres humanos dada por: $$R=\{(x,y) \in X^2:x \text{ tiene el mismo cumpleaños que }y\}.$$ Demuestra que $R$ es una relación reflexiva, simétrica y transitiva.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Relaciones en conjuntos: dominio, codominio y composición

Por Guillermo Oswaldo Cota Martínez

Introducción

Habiendo hablado del producto cartesiano, ya tenemos los ingredientes para irnos acercando a la definición de función, pero antes de hablar de ellas, tenemos que hablar de relaciones y de algunos de sus conceptos. En esta entrada introduciremos el concepto de relación, dominio, codominio y composición entre relaciones.

Relaciones

Cuando estamos hablando de el producto cartesiano, estamos juntando las parejas posibles de elementos entre dos conjuntos. Pero quizá no nos interesen todas las parejas posibles, quizá a veces solo nos interesaría hablar de algún subconjunto de estas parejas. Por ejemplo, si tenemos los conjuntos de zapatos izquierdos y derechos denotados por $I,D$ entonces no siempre nos interesan todas las parejas posibles de zapatos, quizá solo nos interese combinar cada zapato izquierda con su par correspondiente. Para dar un ejemplo, imagina que hay tres zapatos $A,B,C$ y los conjuntos $I$ y $D$ contienen tres zapatos de cada uno de los zapatos que hay:

$I = \{I_A, I_B, I_C\} $

$D = \{D_A, D_B, D_C\} $

Si quisieramos unir cada zapato con su par, nos podemos fijar en su producto cartesiano $I \times D$, sin embargo hay elementos que sí nos van a interesar y otros que no. Por ejemplo, la pareja $(I_A,D_A)$ sí nos interesa, pues es el zapato izquierdo y derecho del zapato $A$. Por otro lado, la pareja $(I_A,D_C)$ no nos interesa, pues estamos juntando dos zapatos pero de modelos distintos. En particular, el subconjunto de $I \times D$ que describe a los tres zapatos es: $$R = \{(I_A,D_A),(I_B,D_B),(I_C,D_C)\}.$$ Este conjunto es una relación entre los conjuntos $I$ y $D$. Como podrás notar, $R \subset I \times D$, y para la definición de relación, basta con que el conjunto esté contenido en el producto cartesiano para que cumpla la definicón.

Definición. Sean $X$ y $Y$ dos conjuntos, una relación entre los conjuntos $X$ y $Y$ es un subconjunto $R$ del producto cartesiano $X \times Y$: $$R \subset X \times Y $$

Definición. Si $R$ es una relación de $X$ en $Y$, diremos que $x$ está relacionado con $y$ bajo la relación $R$ si la pareja $(x,y) \in X \times Y$ y $(x,y) \in R$.

Con esta última definición, podemos notar que el zapato izquierdo $A$ ($I_A$) está relacionado con el zapato derecho $A$ ($D_A$) bajo la relación $R$, pues la pareja $(I_A,D_A)$ pertenece a la relación $R$.

En nuestro ejemplo anterior, mostramos una relación entre $I$ y $D$. Otros ejemplos de relaciones entre $I$ y $D$ son los siguientes:

$\{(I_B,D_A),(I_C,D_B),(I_C,D_A)\},$
$\{(I_C,D_B)\}$
$\{(I_A,D_A),(I_C,D_B)\}$
$\emptyset$
$I \times D$

Dominio y codominio de relaciones

Vamos ahora a trabajar con el conjunto de los números enteros $\mathbb{Z}$. Y trabajaremos con el producto cartesiano $\mathbb{Z} \times \mathbb{Z}$. Llamemos a este producto cartesiano $\mathbb{Z}^2$ que es la forma en que comúnmente se le denota al producto cartesiano entre el mismo conjunto (en este caso $\mathbb{Z}$) en la literatura.

Ahora, consideremos la siguiente relación entre los conjuntos: $$R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $$

Y notemos que algunos ejemplos de elementos de esta relación son: $\{ (3,6),(0,0),(-3,-6),(3^{10},2*3^{10}) ,(-300,-600)\} \subset R$. Gráficamente, podemos ver la relación en la siguiente imagen:

Del lado izquierdo corresponden los elementos $x$ de las parejas $(x,y) \in R$ y del lado derecho los elementos $y$. Notemos que del lado izquierdo (los elementos $x$), no consideramos todos los elementos. Por ejemplo, los números $\{-5,-4,-2,-1,1,2,4,5\}$ no forman ninguna pareja, pues en la definición de nuestro conjunto, solo estamos considerando los múltiplos de $3$ del lado izquierdo de la relación. A estos números que sí forman parejas del lado izquierdo, les llamamos dominio.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. El dominio de la relación $R$ es $$Dom(R) = \{x \in X: \exists y \in Y \text{ tal que } (x,y) \in R\}$$

Notemos que siempre pasará que $Dom(R)\subset X$, otra definición que no hay que confundir con la de dominio es la de contradominio, al que nos referimos como el conjunto $Y$.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. El contradominio de $R$ es el conjunto $Y$.

En nuestro ejemplo anterior, $$Dom(R)=\{x \in X: x \text{ es múltiplo de 3}\}$$.

Esto es cierto, pues las parejas de la relación $R$ son aquellas parejas de la forma $(3n,6n)$, pues pedimos que del lado izquierdo estén los múltiplos de $3$ (todo múltiplo de $3$ puede escribirse como algún número entero $n$ multiplicado por $3$), y del lado izquierdo el doble del número que escribimos del otro lado (si del lado izquierdo está $3n$ entonces del derecho estará $2*3n=6n$). Así que el dominio son aquellos números que forman alguna pareja, es decir, los múltiplos de $3$.

Por otro lado, el contradominio es $\mathbb{Z}$. Ahora, podemos preguntarnos en un concepto análogo a la idea de los elementos $y$ para los cuales existe un elemento $x$ de forma que $(x,y)$ pertenezca a la relación, para eso, podemos observar que los únicos elementos de $Z$ que pertenecen a alguna pareja del lado derecho son $\{\dots,-12,-6,0,6,12,\dots\}$, es decir, los múltiplos de $6$, de manera que podríamos hablar de que este conjunto es la imagen de la relación $R$.

Definición. Sean $X,Y$ dos conjuntos y $R$ una relación de $X$ en $Y$. La imagen de $R$ es: $$Im(R) = \{y \in Y: \exists x \in X \text{ tal que } (x,y) \in R\}$$

Imagen Directa e Imagen Inversa

Ahora, tomemos a los conjuntos $A=\{0,2,3,5,6,7,8,9\}$ y $B=\{-6,-1,2,3,4,6,7,12,21\}$ veamos que $A \times B \subset \mathbb{Z}^2$ pues ambos son subconjuntos de números enteros. El siguiente concepto que vamos a presentar, va a ser la imagen directa e inversa. Para esto, consideremos nuevamente nuestra relación $R$ de la sección anterior. Veamos que los elementos de $A$ que pertenecen al dominio de $R$ son $\{0,3,6,9\}$ esto pues $\{(0,0),(3,6),(6,12),(9,18)\} \subset R$. Definamos la imagen directa de $A$ como los elementos en la imagen de $R$ con la restricción de que únicamente consideremos elementos de $A$ del lado izquierdo.

Definición. Sean $X,Y$ dos conjuntos, $A \subset X$ y $R$ una relación de $X$ en $Y$. La imagen directa de $A$ es el conjunto: $$Im[A]=\{y \in Y: \exists x \in A \text{ tal que }(x,y) \in R\}$$

Compara esta definición con la definición de imagen, lo único que estamos cambiando es el conjunto al que pertencen las $x$.

De manera similar, tenemos un concepto similar para $B$, en donde restringiremos ahora el dominio. Para esto, nota que las parejas de $R$ que tienen su imagen en $B$ son $\{(-3,-6),(3,6),(6,12)\}$. Y el concepto de imagen inversa, serán aquellos elementos del dominio de $R$ los cuales están relacionados con algún elemento de $B$.

Definición. Sean $X,Y$ dos conjuntos, $B\subset Y$ y $R$ una relación de $X$ en $Y$. La imagen inversa de $B$ es el conjunto: $$Im^{-1}[B]=\{x \in X: \exists y \in B \text{ tal que }(x,y) \in R\}$$

De esta, manera:

$$Im[A]=\{0,6,12,18\},$$ $$ Im^{-1}[B]=\{-3,3,6\}.$$

A continuación, vamos a introducir una última definición de esta entrada, que da la idea intuitiva de juntar distintas relaciones.

Composición de funciones

Ahora, veremos la siguiente relación entre el conjunto de zapatos izquierdos $I$ y conjunto de zapatos derechos $D$:

$$R = \{(x,y) \in I \times D: x \text{ es del mismo color que }y\} $$

Y la relación entre zapatos derechos y el conjunto $P$ de pantalones:

$$ T = \{(x,y) \in D \times P:x \text{ es del mismo color que }y\} $$

Estas relaciones solo nos están juntando colores de prendas, la primera nos junta zapatos del mismo color y la tercera relaciones el color de los zapatos derechos con el del pantalón.

Así que por si ejemplol tuvieramos los colores rojo, amarillo y azul entre zapatos izquierdos, derechos y pantalones, entonces la primera relación tendría al zapato izquierdo rojo $I_R$, el zapato derecho rojo $D_R$ y el pantalón rojo $P_R$, de manera que $(I_R,D_R) \in R \land (D_R,P_R) \in T$. ¿Podemos establecer la conexión entre los zapatos izquierdos y los pantalones? Pues con esta pareja, resulta que de alguna manera el zapato $D_R$ une a los dos elementos mediante dos relaciones distintas. La primera relación tiene como contradominio el conjunto $D$ mientras que la segunda lo tiene como dominio.

De la misma manera, podemos conectar el zapato izquierdo azul $I_A$ con algún pantalón de la siguiente manera:

  1. Notamos que $I_A$ está relacionado con el zapato derecho azul $D_A$ mediante la relación $R$.
  2. Observamos que a su vez el zapato $D_A$ está relacionado con el pantalón azul $P_A$ mediante $T$.

De esta manera, podemos encontrar alguna conexión del zapato $I_A$ al pantalón $P_A$ viendo que hay una relación entre $I_A$ con $D_A$ y de $D_A$ con $P_A$. Así que podríamos definir una relación entre los zapatos izquierdos y los pantalones a través de las relaciones $R$ y $T$. Definamos esta relación como $R \circ T$ de la siguiente manera:

$$T \circ R = \{(x,y) \in I \times P: \exists z \in D \text{ tal que }\big( (x,z) \in R \land (z,y) \in T\big) \} $$

Lo que queremos decir con esta expresión, es que los elementos de la relación $T \circ R$ son los elementos $(x,y)$ de tal forma que existe una forma de conectar $(x,y)$ mediante un elemento $z$ de tal forma que $x$ está relacionado con $y$ mediante la relación $T \circ R$ si existe un elemento $z$ que los conecta, es decir, si existe $z$ en $Im(R) \cap Dom(T)$ de tal forma que $(x,z) \in R$ y $(z,y) \in T$.

Definición. Sean $X,Z,Y$ tres conjuntos, $R$ una relación de $X$ en $Z$ y $T$ una relación de $Z$ en $Y$. La relación composición de $R$ con $T$ es la relación:
$$T \circ R = \{ (x,y) \in X \times Y: \exists z \in Z\big( (x,z) \in R \land (z,y) \in T\big)$$

Veamos ahora un ejemplo de nuevo con los número enteros. Considera la relación que ya habíamos visto anteriormente, dada por: $$R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $$ Nota ahora, que como dijimos anteriormente, estos son las parejas de la forma $(3n,6n)$ de manera que otra forma de escribir el conjunto es $$R = \{(3n,6n): n \in \mathbb{Z} \} $$.

Ahora considera la siguiente relación $T$:$$T = \{(x,y) \in \mathbb{Z}^2: x = y+1\}$$

Algunos elementos de esta relación son: $\{(3,2),(7,6),(1,0),(-9,-10)\}$. Gráficamente se ve de la siguiente manera:

Y si te das cuenta, únicamente son los números de la forma $(n+1,n)$. Por lo que podríamos escribir esta relación como $$T = \{(n+1,n): n \in \mathbb{Z} \} $$.

Ahora veamos cómo se ve la composición $T \circ R$. Para ello, tomemos un elemento de la relación $R$. Por ejemplo, $(3,6) \in R$. Ahora notemos que de igual forma, $(6,5)$ pertenece a la relación $T$. De manera que $(3,5) \in T \circ R$. En general, un elemento de la relación $R$ se escribe como $(3n,6n)$, y un elemento de la relación $T$, como dijimos al principio del párrafo, es de la forma $(n+1,n)$ o lo que es lo mismo, $(n,n-1)$. Y enseguida nota que si tomamos un número entero $n$, entonces $(3n,6n) \in R$ y $(6n,6n-1) \in T$. De esta manera, podemos escribir a la composición de $R$ con $T$ como el conjunto: $$ T \circ R = \{(3n,6n-1): n \in \mathbb{Z}\}$$

Más adelante…

En la siguiente entrada seguiremos hablando de las relaciones entre conjuntos y veremos algunos tipos de relaciones especiales que tendrán algunas propiedades interesantes. También hablaremos un poco más de relaciones de un conjunto en sí mismo, este tipo de relaciones ya las hemos visto, sin embargo, veremos más propiedades que pueden cumplir estas. Esto nos servirá para hablar después de órdenes entre conjuntos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $$R=\{(x,y) \in \mathbb{Z}^2: x+y=0\}$$ y la relación$$T=\{(x,y) \in \mathbb{Z}^2: x-y=0\}.$$Encuentra:
    • $Dom(R)$
    • $Im(R)$
    • Escribe todos los elementos de $T \circ R$
    • Encuentra $Im[\{1,2,3,4,5\}]$ sobre la relación $R$
    • Encuentra $Im^{-1}[\{-1,-2,-3,-4,-5\}]$ sobre la relación $T$
  2. Demuestra que si $R = \{(x,y) \in \mathbb{Z}^2: (x \text{ es múltiplo de 3} )\land (y = 2x) \} $, entonces $$R = \{(3n,6n): n \in \mathbb{Z} \} $$
  3. La recta $\mathcal{L}$ con pendiente $m$ e intersección $b$ con el eje $y$ en los números enteros es el conjunto: $$\mathcal{L}=\{(x,y) \in \mathbb{Z}^2: mx+b=y\} $$ Encuentra $\mathcal{L_1}\cap \mathcal{L_2}$ donde $\mathcal{L_1}$ es la recta con $m=1,b=0$ y $\mathcal{L_2}$ es la recta con $m=-1,b=2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»