Archivo de la etiqueta: independientes

Álgebra Lineal I: Rango de transformaciones lineales y matrices

Introducción

En entradas anteriores hablamos de transformaciones lineales, cómo actúan en conjuntos especiales de vectores y de cómo se pueden representar con matrices. Hablamos también de cómo cambiar de una base a otra y cómo usar esto para entender transformaciones en varias bases. Estamos listos para introducir un concepto fundamental de álgebra lineal, el de rango de una transformación lineal y de una matriz.

Antes de entrar en las definiciones formales, vale la pena hablar un poco de rango de manera intuitiva. Supongamos que V es un espacio vectorial de dimensión n y que W es un espacio vectorial sobre el mismo campo que V. Una transformación lineal T:V\to W puede «guardar mucha independencia lineal» o «muy poquita». Si T es inyectiva, ya vimos antes que T manda linealmente independientes a linealmente independientes. Si T es la transformación 0, entonces se «pierde toda la independencia».

El rango mide algo intermedio entre estos dos extremos. Mientras mayor sea el rango, más independencia lineal se preserva y viceversa. Si mantienes esta intuición en mente, varias de las proposiciones te resultarán más naturales.

Otro buen ejemplo para tener en mente es tomar una transformación lineal T:\mathbb{R}^3\to \mathbb{R}^3. Si es la transformación identidad, la base canónica se preserva. Si es la proyección al plano xy, entonces «perdemos» al vector (0,0,1), pues se va al (0,0,0). Si es la proyección al eje x, «perdemos» al (0,1,0) y al (0,0,1) pues ambos se van a (0,0,0). Y si es la transformación 0, perdemos a todos. El rango precisamente va a medir esto, y para estos ejemplos tendremos rango 3, 2, 1 y 0 respectivamente.

Rango para transformaciones lineales

Como en otras ocasiones, cuando hablemos de transformaciones lineales entre espacios vectoriales, serán sobre un mismo campo F.

Definición. Sean V y W espacios de dimensión finita. El rango de una transformación lineal T:V\to W es la dimensión de la imagen de T, es decir,

    \[\rank(T)=\dim\Ima T.\]

Si B es una base de V, entonces genera a V. La transformación T es suprayectiva de V a \Ima T, de modo que T(B) es generador de \Ima T. De esta forma, para encontrar el rango de una transformación lineal T:V\to W basta:

  • Tomar una base B de V
  • Aplicar T a cada elemento de B
  • Determinar un conjunto linealmente independiente máximo en T(B)

Para hacer este último paso, podemos poner a los vectores coordenada de T(B) con respecto a una base de W como los vectores fila de una matriz A y usar reducción gaussiana. Las operaciones elementales no cambian el espacio generado por las filas, así que el rango de T es el número de vectores fila no cero en la forma escalonada reducida A_{\text{red}} de A.

Ejemplo. Encuentra el rango de la transformación lineal T:\mathbb{R}^3\to M_{2}(\mathbb{R}) que manda (x,y,z) a

    \[\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.\]

Solución. Tomemos e_1,e_2,e_3 la base canónica de \mathbb{R}^3. Tenemos que T(e_1)=\begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}, T(e_2)=\begin{pmatrix} 1 & 0 \\ 2 & -1\end{pmatrix} y T(e_3)=\begin{pmatrix}-1 & 0\\ -2 & 1\end{pmatrix}.

Tomando la base canónica E_{11},E_{12},E_{21},E_{22} de M_2(\mathbb{R}), podemos entonces poner a las coordenadas de T(e_1),T(e_2),T(e_2) como vectores columna de una matriz

    \[\begin{pmatrix}1 & 2 & 0 & 1\\ 1 & 0 & 2 & -1\\ -1& 0 & -2 & 1\end{pmatrix}.\]

Sumando la segunda fila a la tercera, y después restando la primera a la segunda,obtenemos la matriz

    \[\begin{pmatrix}1 & 2 & 0 & 1\\ 0 & -2 & 2 & -2\\ 0& 0 & 0 & 0\end{pmatrix}.\]

De aquí, sin necesidad de terminar la reducción gaussiana, podemos ver que habrá exactamente dos filas no cero. De este modo, el rango de la transformación es 2.

\square

Propiedades del rango

Demostremos ahora algunas propiedades teóricas importantes acerca del rango de una transfromación lineal.

Proposición. Sean U, V y W espacios de dimensión finita. Sean S:U\to V, T:V\to W, T':V\to W transformaciones lineales. Entonces:

  1. \rank(T)\leq \dim V
  2. \rank(T)\leq \dim W
  3. \rank(T\circ S)\leq \rank(T)
  4. \rank(T\circ S)\leq \rank(S)
  5. \rank(T+T')\leq \rank(T) + \rank(T')

Demostración. (1) Pensemos a T como una transformación T:V\to \Ima(T). Haciendo esto, T resulta ser suprayectiva, y por un resultado anterior tenemos que \dim V\geq \dim \Ima T = \rank (T).

(2) Sabemos que \Ima (T) es un subespacio de W, así que \rank(T)=\dim \Ima T \leq \dim W.

(3) La imagen de T contiene a la imagen de T\circ S, pues cada vector de la forma T(S(v)) es de la forma T(w) (para w=S(v)). Así,

    \[\rank(T) =\dim \Ima T \geq \dim \ima T\circ S = \rank (T\circ S).\]

(4) La función T\circ S coincide con la restricción T_{\Ima S} de T a \Ima S. Por el inciso (1), \rank(T_{\Ima S})\leq \dim \Ima S = \rank(S), así que \rank (T\circ S) \leq \rank(S).

(5) Tenemos que \Ima (T+T') \subseteq \Ima T + \Ima T'. Además, por un corolario de la fórmula de Grassman, sabemos que

    \begin{align*}\dim (\Ima T + \Ima T')&\leq \dim \Ima T + \dim \Ima T'\\&= \rank(T) + \rank(T').\end{align*}

Así,

    \begin{align*}\rank(T+T')&\leq \rank(\Ima T + \Ima T')\\&\leq \rank(T)+\rank(T').\end{align*}

\square

Proposición. Sean R:U\to V, T:V\to W y S:W\to Z transformaciones lineales con R suprayectiva y S inyectiva. Entonces

    \[\rank(S\circ T\circ R)=\rank (T).\]

Dicho de otra forma «composición por la izquierda con transformaciones inyectivas no cambia el rango» y «composición por la derecha con transformaciones suprayectivas no cambia el rango». Un corolario es «composición con transformaciones invertibles no cambia el rango».

Demostración. De la proposición anterior, tenemos que \rank(S\circ T)\leq \rank (T). La restricción S_{\Ima T} de S a la imagen de T es una transformación lineal de \Ima T a \Ima (S\circ T) que es inyectiva, de modo que \dim \Ima T \leq \dim \Ima (S\circ T), que es justo \rank(T)\leq \rank(S\circ T), de modo que tenemos la igualdad \rank(S\circ T)=\rank (T).

Como R es suprayectiva, \Ima R= V, de modo que \Ima(S\circ T \circ R)=\Ima(S\circ T). Así,

    \[\rank (S\circ T \circ R) = \rank (S\circ T)=\rank(T).\]

\square

Teorema de rango-nulidad

Una transformación lineal T:V\to W determina automáticamente dos subespacios de manera natural: el kernel \ker T y la imagen \Ima T. Resulta que las dimensiones de \ker T, de \Ima T y de V están fuertemente relacionadas entre sí.

Teorema. Sean V y W espacios de dimensión finita. Sea T:V\to W una transformación lineal. Entonces

    \[\dim\ker T + \rank(T) = \dim V.\]

Demostración. Supongamos que \dim V=n y \dim \ker T = k. Queremos mostrar que \rank(T)=n-k. Para ello, tomemos una base B de \ker T y tomemos B'=\{v_1,\ldots,v_{n-k}\} tal que B\cup B' sea base de V. Basta mostrar que T(B')=\{T(v_1),\ldots,T(v_{n-k})\}\subset \Ima T es base de \Ima T. Sea U el generado por B', de modo que V=U \oplus \ker T.

Veamos que T(B') es generador de \Ima T. Tomemos T(v) en \Ima T. Podemos escribir v=z+u con z\in \ker T y u\in U. Así, T(v)=T(z)+T(u)=T(u)\in T(B').

Ahora veamos que T(B') es linealmente independiente. Si

    \[\alpha_1T(v_1)+\ldots+\alpha_{n-k}T(v_{n-k})=0,\]

entonces T(\alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k})=0, de modo que \alpha_1v_1+\ldots+\alpha_{n-k}v_{n-k} está en U y en \ker T, pero la intersección de estos espacios es \{0\}. Como esta combinación lineal es 0 y B' es linealmente independiente, \alpha_1=\ldots=\alpha_n=0.

De esta forma, T(B') es linealmente independiente y genera a \Ima T, de modo que \rank(T) =|B'|=n-k.

\square

Ejemplo. Consideremos de nuevo la transformación lineal T:\mathbb{R}^3\to M_{2}(\mathbb{R}) que manda (x,y,z) a

    \[\begin{pmatrix}x+y-z & 2x \\ 2y-2z & x+z-y\end{pmatrix}.\]

Muestra que T no es inyectiva.

Solución. Ya determinamos previamente que esta transformación tiene rango 2. Por el teorema de rango-nulidad, su kernel tiene dimensión 1. Así, hay un vector v\neq (0,0,0) en el kernel, para el cual T(v)=0=T(0), de modo que T no es inyectiva.

\square

Problema. Demuestra que para cualquier entero n existe una terna (a,b,c)\neq (0,0,0) con a+b+c=0 y tal que

    \[\int_0^1 at^{2n}+bt^n+c \,dt = 0.\]

Solución. Podríamos hacer la integral y plantear dos ecuaciones lineales. Sin embargo, daremos argumentos dimensionales para evitar la integral. Consideremos las transformaciones lineales T:\mathbb{R}^3\to \mathbb{R} y S:\mathbb{R}^3\to \mathbb{R} dadas por

    \begin{align*}T(x,y,z)&=\int_0^1 xt^{2n}+yt^n+z \,dt\\S(x,y,z)&=x+y+z.\end{align*}


Notemos que T(0,0,1)=\int_0^1 1\, dt = 1=S(0,0,1), de modo que ni T ni S son la transformación 0. Como su rango puede ser a lo más \dim\mathbb{R}=1, entonces su rango es 1. Por el teorema de rango-nulidad, \dim \ker S= \dim \ker T = 2. Como ambos son subespacios de \mathbb{R}^3, es imposible que \ker S \cap \ker T=\{0\}, de modo que existe (a,b,c) no cero tal que T(a,b,c)=S(a,b,c)=0. Esto es justo lo que buscábamos.

\square

Rango para matrices

Definición. El rango de una matriz A en M_{m,n}(F) es el rango de la transformación lineal asociada de F^n a F^m dada por X\mapsto AX. Lo denotamos por \rank(A).

A partir de esta definición y de las propiedades de rango para transformaciones lineales obtenemos directamente las siguientes propiedades para rango de matrices.

Proposición. Sean m, n y p enteros. Sea B una matriz en M_{n,p}(F) y A, A' matrices en M_{m,n}. Sea P una matriz en M_{n,p} cuya transformación lineal asociada es suprayectiva y Q una matriz en M_{r,m} cuya transformación lineal asociada es inyectiva. Entonces:

  1. \rank(A)\leq \min(m,n)
  2. \rank(AB)\leq \min(\rank(A),\rank(B))
  3. \rank(A+A')\leq \rank(A) + \rank(A')
  4. \rank(QAP) = \rank(A)

Como discutimos anteriormente, el rango de una transformación se puede obtener aplicando la transformación a una base y viendo cuál es el máximo subconjunto de imágenes de elementos de la base que sea linealmente independiente. Si tomamos una matriz A en M_{m,n}(F), podemos aplicar esta idea con los vectores e_1,\ldots,e_n de la base canónica de F^{n}. Como hemos visto con anterioridad, para cada i=1,\ldots, n tenemos que el vector Ae_i es exactamente la i-ésima columna de A. Esto nos permite determinar el rango de una matriz en términos de sus vectores columna.

Proposición. El rango de una matriz en M_{m,n}(F) es igual a la dimensión del subespacio de F^m generado por sus vectores columna.

Problema. Determina el rango de la matriz

    \[\begin{pmatrix} 3 & 1 & 0 & 5 & 0\\ 0 & 8 & 2 & -9 & 0\\ 0 & -1 & 0 & 4 & -2\end{pmatrix}.\]

Solución. Como es una matriz con 3 filas, el rango es a lo más 3. Notemos que entre las columnas están los vectores (3,0,0), (0,2,0) y (0,0,-2), que son linealmente independientes. De esta forma, el rango de la matriz es 3.

\square

A veces queremos ver que el rango de un producto de matrices es grande. Una herramienta que puede servir en estos casos es la desigualdad de Sylvester.

Problema (Desigualdad de Sylvester). Muestra que para todas las matrices A, B en M_n(F) se tiene que

    \[\rank(AB)\geq \rank(A)+\rank(B)-n.\]

Solución. Tomemos T_1:F^n\to F^n y T_2:F^n\to F^n tales que T_1(X)=AX y T_2(X)=BX. Lo que tenemos que probar es que

    \[\rank(T_1\circ T_2) \geq \rank(T_1) + \rank(T_2) - n.\]

Consideremos S_1 como la restricción de T_1 a \Ima T_2. Tenemos que \ker S_1 \subset \ker T_1, así que \dim \ker S_1 \leq \dim \ker T_1. Por el teorema de rango-nulidad en S_1, tenemos que

    \begin{align*}rank(T_2) &= \dim \Ima T_2 \\&= \dim \ker S_1 + \rank(S_1) \\&= \dim \ker S_1 + \rank(T_1\circ T_2)\\&\leq \dim \ker T_1 + \rank(T_1\circ T_2),\end{align*}

así que

    \[\rank(T_2)\leq \dim \ker T_1 + \rank(T_1\circ T_2).\]

Por el teorema de rango-nulidad en T_1 tenemos que

    \[\dim \ker T_1 + \rank(T_1)=n.\]

Sumando la desigualdad anterior con esta igualdad obtenemos el resultado.

\square

El teorema PJQ (opcional)

El siguiente resultado no se encuentra en el temario usual de Álgebra Lineal I. Si bien no formará parte de la evaluación del curso, recomendamos fuertemente conocerlo y acostumbrarse a usarlo pues tiene amplias aplicaciones a través del álgebra lineal.

Teorema (Teorema PJQ). Sea A una matriz en M_{m,n}(F) y r un entero en \{0,\ldots,\min(m,n)\}. El rango de A es igual a r si y sólo si existen matrices invertibles P\in M_m(F) y Q\in M_n(F) tales que A=PJ_rQ, en donde J_r es la matriz en M_{m,n} cuyas primeras r entradas de su diagonal principal son 1 y todas las demás entradas son cero, es decir, en términos de matrices de bloque,

    \[J_r=\begin{pmatrix}I_r & 0 \\0 & 0\end{pmatrix}.\]

No damos la demostración aquí. Se puede encontrar en el libro de Titu Andreescu, Teorema 5.68. Veamos algunas aplicaciones de este teorema.

Problema. Muestra que una matriz tiene el mismo rango que su transpuesta.

Solución. Llamemos r al rango de A. Escribimos A=PJ_rQ usando el teorema PJQ, con P y Q matrices invertibles. Tenemos que ^tA=^tQ\, ^tJ_r \,^tP, con ^tQ y ^tP matrices invertibles. Además, ^t J_r es de nuevo de la forma de J_r. Así, por el teorema PJQ, tenemos que ^t A es de rango r.

Combinando el problema anterior con el resultado del rango de una matriz en términos de sus vectores columna obtenemos lo siguiente.

Proposición. El rango de una matriz en M_{m,n}(F) es igual a la dimensión del subespacio de F^n generado por sus vectores renglón.

Terminamos esta entrada con una aplicación más del teorema PJQ.

Problema. Muestra que una matriz A de rango r se puede escribir como suma de r matrices de rango 1. Muestra que es imposible hacerlo con menos matrices.

Solución. Expresamos A=PJ_rQ usando el teorema PJQ. Si definimos A_i=PE_{ii}Q para i=1,\ldots,r, donde E_{ii} es la matriz cuya entrada (i,i) es uno y las demás cero, claramente tenemos que J_r=E_{11}+E_{22}+\ldots+E_{rr}, por lo que

    \[A=PJ_rQ=A_1+A_2+\ldots+A_r.\]

Además, como E_{ii} es de rango 1, por el teorema PJQ cada matriz A_i es de rango 1.

Veamos que es imposible con menos. Si B_1,\ldots,B_s son matrices de rango 1, como el rango es subaditivo tenemos que \rank (B_1+\ldots+B_s)\leq s. Así, si sumamos menos de r matrices, no podemos obtener a A.

\square

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Termina de hacer la reducción gaussiana del primer ejemplo.
  • Sea T una transformación de un espacio vectorial V de dimensión finita a si mismo. Usa el teorema de rango-nulidad para mostrar que si T es inyectiva o suprayectiva, entonces es biyectiva.
  • Determina el rango de la matriz

        \[\begin{pmatrix} 0 & 0 & 0 & 8 & 3\\ 7 & 8 & -1 & -2 & 0\\ 3 & -1 & 4 & 4 & -9\end{pmatrix}.\]

  • Demuestra que aplicar operaciones elementales a una matriz no cambia su rango.
  • Demuestra que matrices similares tienen el mismo rango.
  • Demuestra por inducción que para matrices A_1,\ldots, A_n del mismo tamaño tenemos que

        \[\rank (A_1+\ldots+A_n)\leq \sum_{i=1}^n \rank(A_i).\]

  • Escribe la demostración de la última proposición de la sección del teorema PJQ
  • Revisa la demostración del teorema de descomposición PJQ en el libro de Titu Andreescu.

Álgebra Lineal I: Problemas de transformaciones lineales, vectores independientes y forma matricial

El objetivo de esta entrada es mostrar algunos problemas resueltos sobre los temas vistos el jueves y viernes de la semana pasada.

Problema 1. Sean

v_1=(1,0,0), v_2=(1,1,0), v_3=(1,1,1)

y sea T:\mathbb{R}^3\longrightarrow \mathbb{R}^2 una transformación lineal tal que

T(v_1)=(3,2), T(v_2)=(-1,2), T(v_3)=(0,1)

Calcula el valor de T(5,3,1).

 

Solución. Primero observemos que {(1,0,0), (1,1,0), (1,1,1)} es una base de \mathbb{R}^3, entonces existen a,b,c\in \mathbb{R} tales que

    \[(5,3,1)=a(1,0,0)+b(1,1,0)+c(1,1,1).\]


Si logramos expresar a (5,3,1) de esta forma, después podremos usar que T es lineal para encontrar el valor que queremos. Encontrar los valores de a,b,c que satisfacen la ecuación anterior lo podemos ver como el sistema de ecuaciones:

    \[\begin{pmatrix}1 & 1 & 1\\0 & 1 & 1\\0 & 0 & 1\end{pmatrix} \begin{pmatrix}a\\b\\c\end{pmatrix} = \begin{pmatrix}5\\3\\1\end{pmatrix}.\]

Ahora consideramos la matriz extendida del sistema y la reducimos

    \[\begin{pmatrix}1 & 1 & 1 & 5\\0 & 1 & 1 & 3\\0 & 0 & 1 & 1\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 0 & 0 & 2\\0 & 1 & 1 & 3\\0 & 0 & 1 & 1\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 0 & 0 & 2\\0 & 1 & 0 & 2\\0 & 0 & 1 & 1\end{pmatrix}\]


Así, a=2, b=2, c=1.

Finalmente, usando que T es transformación lineal,

    \begin{align*}T(5,3,1)&=T(2(1,0,0)+2(1,1,0)+(1,1,1))\\&=2T(1,0,0)+2T(1,1,0)+T(1,1,1)\\&=2(3,2)+2(-1,2)+(0,1)\\&=(6,4)+(-2,4)+(0,1)\\&=(4,9).\end{align*}

\square

Problema 2. Sea P_n(\mathbb{R}) el espacio de los polinomios de grado a los más n con coeficientes reales.

Considera la transformación lineal T:P_3(\mathbb{R})\longrightarrow P_2(\mathbb{R}) dada por T(p(x))=p'(x).

Sean \beta=\{1,x,x^2,x^3\} y \gamma=\{1,x,x^2\} las bases canónicas de P_3(\mathbb{R}) y P_2(\mathbb{R}), respectivamente. Encuentra la representación matricial de la transformación T.

Solución. Primero le aplicamos T a cada uno de los elementos de \beta

T(1)=0\cdot 1 + 0\cdot x + 0\cdot x^2
T(x)=1\cdot 1 + 0\cdot x + 0\cdot x^2
T(x^2)=0\cdot 1 + 2\cdot x + 0\cdot x^2
T(x^3)=0\cdot 1 + 0\cdot x + 3\cdot x^2

Así,

    \[\begin{pmatrix}0 & 1 & 0 & 0\\0 & 0 & 2 & 0\\0 & 0 & 0 & 3\end{pmatrix}\]


es la representación matricial de T con respecto a las bases canónicas.

\square

Problema 3. Sea V=P_2(\mathbb{R}). Considera las transformaciones

T:\mathbb{R}^3\longrightarrow V, T(a,b,c)=a+2bx+3cx^2

y

S:V\longrightarrow M_2(\mathbb{R}), S(a+bx+cx^2)=\begin{pmatrix}a & a+b\\a-c & b\end{pmatrix}.

Consideramos las bases B_1=\{1,x,x^2\} de V, B_2 la base canónica de \mathbb{R}^3 y B_3=\{E_{11}, E_{12}, E_{21}, E_{22}\} de M_2(\mathbb{R}).

  1. Verifica que T y S son transformaciones lineales.
  2. Escribe las matrices asociadas a T y S con respecto a las bases anteriores.
  3. Encuentra la matriz asociada a la composición S\circ T con respecto a las bases anteriores.
  4. Calcula explícitamente S\circ T, después encuentra directamente su matriz asociada con respecto a las bases anteriores y verifica que el resultado obtenido aquí es el mismo que en el inciso anterior.

Solucion. 1. Sea u\in \mathbb{R} y (a,b,c), (a',b',c')\in \mathbb{R}^3.
Entonces

T(u(a,b,c)+(a',b',c'))=T(au+a',bu+b',cu+c')

=(au+a')+2(bu+b')x+3(cu+c')x^2
=u(a+2bx+3cx^2)+(a'+2b'x+3c'x^2)=uT(a,b,c)+T(a',b',c')

Así, T es lineal.

Ahora, sea u\in \mathbb{R} y a+bx+cx^2, a'+b'x+c'x^2\in V.
Entonces

S(u(a+bx+cx^2)+(a'+b'x+c'x^2))=S(ua+a'+(ub+b')x+(uc+c')x^2)
=\begin{pmatrix}ua+a' & (ua+a')+(ub+b')\\ua+a'-(uc+c') & ub+b'\end{pmatrix}
=u\begin{pmatrix}a & a+b\\a-c & b\end{pmatrix} + \begin{pmatrix}a' & a'+b'\\a'-c' & b'\end{pmatrix}
=uS(a+bx+cx^2)+S(a'+b'x+c'x^2)

Así, S es lineal.

2. Empezamos calculando la matrix Mat_{B_1,B_2}(T) de T con respecto de B_1 y B_2.
Sea B_2=\{e_1,e_2,e_3\} la base canónica de \mathbb{R}^3, entonces

T(e_1)=T(1,0,0)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2,
T(e_2)=T(0,1,0)=2x= 0\cdot 1 + 2\cdot x + 0 \cdot x^2,
T(e_3)=T(0,0,1)=3x^2= 0\cdot 1 + 0\cdot x + 3 \cdot x^2,

Así,

Mat_{B_1,B_2}(T)=\begin{pmatrix}1 & 0 & 0\\0 & 2 & 0\\0& 0 & 3\end{pmatrix}.

De manera análoga, calculamos

S(1)=\begin{pmatrix}1 & 1\\1 & 0\end{pmatrix} = 1 \cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0\cdot E_{22},
S(x)=\begin{pmatrix}0 & 1\\0 & 1\end{pmatrix} = 0 \cdot E_{11} + 1 \cdot E_{12} + 0 \cdot E_{21} + 1\cdot E_{22},
S(x^2)=\begin{pmatrix}0 & 0\\-1 & 0\end{pmatrix} = 0 \cdot E_{11} + 0 \cdot E_{12} + (-1) \cdot E_{21} + 0\cdot E_{22},

Por lo tanto

Mat_{B_3,B_1}(S)=\begin{pmatrix}1 & 0 & 0\\1 & 1 & 0\\1 & 0 & -1\\0 & 1 & 0\end{pmatrix}.

3. Usando el teorema visto en la entrada del viernes pasado 

Mat_{B_3,B_2}(S\circ T)=Mat_{B_3,B_1}(S)\cdot Mat_{B_1,B_2}(T)


=\begin{pmatrix}1 & 0 & 0\\1 & 1 & 0\\1 & 0 & -1\\0 & 1 & 0\end{pmatrix} \begin{pmatrix}1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 3\end{pmatrix} = \begin{pmatrix}1 & 0 & 0\\1 & 2 & 0\\1 & 0 & -3\\0 & 2 & 0\end{pmatrix}.

4. Calculamos

(S\circ T)(a,b,c)=S(T(a,b,c))= S(a+2bx+3cx^2)=\begin{pmatrix}a & a+2b\\a-3c & 2b\end{pmatrix}.

Luego,

(S\circ T)(e_1)=\begin{pmatrix}1 & 1\\1 & 0\end{pmatrix} = 1\cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0 \cdot E_{22}
(S\circ T)(e_2)=\begin{pmatrix}0 & 2\\0 & 2\end{pmatrix} = 0\cdot E_{11} + 2 \cdot E_{12} + 0 \cdot E_{21} + 2 \cdot E_{22}

y

(S\circ T)(e_2)=\begin{pmatrix}0 & 0\\-3 & 0\end{pmatrix} = 0 \cdot E_{11} + 0 \cdot E_{12} + -3 \cdot E_{21} + 0 \cdot E_{22}

Así, la matriz asociada a S\circ T es

Mat_{B_3,B_2}(S\circ T)= \begin{pmatrix}1 & 0 & 0\\1 & 2 & 0\\1 & 0 & -3\\0 & 2 & 0\end{pmatrix}

Que es justo lo que se obtuvo en el inciso 3.

\square

Álgebra Lineal I: Transformaciones lineales en independientes y generadores

Introducción

El objetivo de esta entrada es entender qué le hacen las transformaciones lineales a los conjuntos linealmente independientes, a los conjuntos generadores y a las bases. En la siguiente lista recordamos brevemente estas nociones, pero puedes ver definiciones más formales en las entradas de transformaciones lineales y del Lema de Steinitz.

  • Una transformación lineal T:V\to W entre espacios vectoriales V y W es una función que «abre sumas» (es decir T(x+y)=T(x)+T(y)) y «saca escalares» (es decir T(cx)=cT(x)). Recuerda que es necesario que V y W estén sobre el mismo campo, cosa que asumiremos cuando hablemos de transformaciones lineales.
  • Un conjunto de vectores \{v_1,\ldots, v_n\} en V es linealmente independiente si la única combinación lineal de ellos que da 0 es la trivial, osea en la que todos los coeficientes son 0.
  • Un conjunto de vectores \{v_1,\ldots,v_n\} en V genera a V si cualquier vector de V puede ser escrito como combinación lineal de estos elementos.
  • Un conjunto de vectores en V es base si es linealmente independiente y genera a V.

La idea de esta entrada es entender lo siguiente:

  • ¿Cuándo imagenes de linealmente independientes/generadores/bases son linealmente independientes/generadores/bases?
  • ¿Cómo saber si una transformación lineal es inyectiva?
  • ¿Cómo podemos determinar completamente a una transformación lineal T:V\to W en términos de lo que le hace a una base de V?

Exploración

Tomemos espacios vectoriales V, W y una transformación lineal T:V\to W. Si comenzamos con un conjunto S=\{v_1,\ldots,v_n\} de vectores en V que es linealmente independiente (o generador, o base) en V, ¿cuándo sucede que T(S)=\{T(v_1),\ldots,T(v_n)\} es linealmente independiente (o generador, o base, respectivamente) en W?

Esto definitivamente no sucede siempre. La tranformación Z:\mathbb{R}^3\to \mathbb{R}[x] que manda a todo vector con tres entradas reales al polinomio 0 es una transformación lineal. Sin embargo, a la base canónica \{e_1,e_2,e_3\} la manda al conjunto \{0,0,0\}=\{0\}, que no es un conjunto ni linealmente independiente, ni generador de los polinomios con coeficientes reales.

De esta forma, tenemos que pedirle más a T para que preserve propiedades bonitas.

Intuitivamente, si la imagen de T no cubre a todo W, entonces los vectores de la forma T(v) con v en V no deberían de poder generar a W. Así, para que T mande generadores a generadores, tiene que pasar que «T pase por todo W«. Esta noción queda capturada formalmente al pedir que T sea suprayectiva.

Del mismo modo, también intuitivamente si «T manda elementos distintos al mismo elemento», entonces probablemente perdamos conjuntos linealmente independientes. Así, para preservar conjuntos linealmente independientes, necesitamos que vectores distintos vayan a valores distintos. En términos formales, necesitamos que T sea inyectiva.

Los resultados principales

El primer resultado es que los requisitos que descubrimos intuitivamente en la sección pasada son suficientes.

Teorema. Sea T:V\to W una transformación lineal y S=\{v_1,\ldots,v_n\} un conjunto de vectores de V. Entonces:

  • Si T es inyectiva y S es linealmente independiente, entonces T(S) es linealmente independiente.
  • Si T es suprayectiva y S es generador, entonces T(S) es generador.
  • Si T es biyectiva y S es base, entonces T(S) es base.

Demostración. Comencemos suponiendo que T es inyectiva y S es linealmente independiente. Entonces T(v_1),\ldots,T(v_n) son todos distintos. Tomemos una combinación lineal de elementos de T(S) igual a cero, es decir,

    \[a_1T(v_1)+a_2T(v_2)+\ldots+a_nT(v_n)=0.\]

Como T es transformación lineal,

    \[T(a_1v_1+a_2v_2+\ldots+a_nv_n)=0=T(0).\]

Como T es inyectiva, esto implica que

    \[a_1v_1+a_2v_2+\ldots+a_nv_n=0,\]

pero como S es linealmente independiente, concluimos que a_1=\ldots=a_n=0. Así, T(S) es linealmente independiente.

Supongamos ahora que T es suprayectiva y S es generador. Tomemos un w\in W. Como T es suprayectiva, existe v\in V tal que T(v)=w y como S es generador, existen a_1,\ldots,a_n tales que

    \[a_1v_1+\ldots+a_nv_n=v.\]

Aplicando T en ambos lados, abriendo las sumas y sacando escalares obtenemos que

    \[a_1T(v_1)+\ldots+a_nT(v_n)=T(v)=w.\]

Así, todo elemento de W se puede escribir como combinación lineal de elementos de T(S), como queríamos.

Finalmente, supongamos que T es biyectiva y S es base. Como T es inyectiva y S linealmente independiente, entonces T(S) es linealmente independiente. Como T es suprayectiva y S generador, entonces T(S) es generador. Así, T(S) es base.

\square

Una consecuencia fudamental del resultado anterior es que si V y W son espacios de dimensión finita y existe una transformación lineal inyectiva T:V\to W, entonces \dim(V)\leq \dim(W). En efecto, si B es base de V y T es inyectiva, entonces T(B) es linealmente independiente en W y sabemos que W tiene a lo más \dim(W) vectores linealmente independientes, así que \dim(V)=|B|=|T(B)|\leq \dim(W). De manera similar, si existe una transformación lineal T:V\to W suprayectiva, entonces \dim(V)\geq \dim(W). Demuestra esto. ¿Qué pasa con las dimensiones si existe una transformación lineal biyectiva entre V y W?

El teorema también sugiere que es importante saber cuándo una transformación lineal es inyectiva, suprayectiva o ambas. Resulta que en el caso de la inyectividad hay un criterio que nos ayuda.

Proposición. Una transformación lineal T es inyectiva y si sólo si el único vector que va a 0 bajo T es el 0.

Demostración. Sean V y W espacios vectoriales y T:V\to W una transformación lineal. Recordemos que sabemos que T(0)=0.

Si T es inyectiva y T(x)=0, entonces T(x)=T(0) y por inyectividad x=0, de modo que x es el único vector que va a 0 bajo T.

Si el único vector que bajo T va a 0 es el 0 y tenemos que T(x)=T(y), entonces usando que T es lineal tenemos que 0=T(y)-T(x)=T(y-x). Así, y-x=0, es decir, x=y. Con esto queda mostrado que T es inyectiva.

\square

Conociendo los valores de una transformación lineal en algunos vectores, es posible determinar el valor de la transformación en otros vectores que son combinación lineal de los primeros. Considera el siguiente ejemplo.

Problema. La transformación lineal T:M_{2,2}(\mathbb{R})\to\mathbb{R}^2 cumple que T\begin{pmatrix}1 & 1\\0 & 0\end{pmatrix}=(1,0), T\begin{pmatrix}0 & 1 \\0 & 1\end{pmatrix}=(0,-1), T\begin{pmatrix}0 & 0\\1 & 1\end{pmatrix}=(-1,0) y T\begin{pmatrix}1 & 0\\1 & 0\end{pmatrix}=(0,1). Determina el valor de T\begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix}.

Intenta resolver el problema por tu cuenta antes de ver la solución. Para ello, intenta poner a la matriz \begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix} como combinación lineal de las otras matrices y usar que T es lineal.

Solución. Sean A, B, C y D las matrices de las cuales conocemos cuánto vale T en ellas y E la matriz con puros 3‘s. Queremos determinar el valor de T(E). Notemos que E=\frac{3}{2}(A+B+C+D). Como T es transformación lineal, tenemos que

    \begin{align*}T(E)&=\frac{3}{2}(T(A)+T(B)+T(C)+T(D))\\&=\frac{3}{2}((1,0)+(0,-1)+(-1,0)+(0,1))\\&=(0,0).\end{align*}

\square

En este problema lo que sirvió para encontrar el valor de T(E) fue poner a la matriz E como combinación lineal de las matrices A,B,C,D. De hecho, para cualquier matriz que sea combinación lineal de las matrices A,B,C,D, pudiéramos haber hecho lo mismo. En general, saber las imágenes de una transformación lineal en los elementos de una base determina toda la transformación lineal.

Teorema. Sean V, W espacios vectoriales, B=\{v_1,v_2,\ldots,v_n\} una base de V y w_1,w_2,\ldots, w_n vectores cualesquiera de W. Entonces, existe una y sólo una transformación lineal T:V\to W tal que

    \[T(v_1)=w_1,\quad T(v_2)=w_2, \quad \ldots,  \quad T(v_n)=w_n.\]

Demostración. Probemos primero la parte de existencia. Como B es base, cualquier vector v de V se puede escribir como

    \[a_1v_1+a_2v_2+\ldots+a_nv_n.\]

Construyamos la función T:V\to W tal que

    \[T(v)=a_1w_1+a_2w_2+\ldots+a_nw_n.\]

Como para cada i=1,\ldots,n tenemos que la combinación lineal de v_i en términos de B es v_i=1\cdot v_i, tenemos que T(v_i)=1\cdot w_i=w_i, que es una de las cosas que queremos. La otra que queremos es que T sea lineal. Si

    \[v=a_1v_1+a_2v_2+\ldots+a_nv_n\]

y

    \[w=b_1v_1+b_2v_2+\ldots+b_nv_n,\]

entonces

    \[v+w=(a_1+b_1)v_1+ (a_2+b_2)v_2+\ldots+ (a_n+b_n)v_n,\]

y por definición

    \[T(v+w)=(a_1+b_1)w_1+ (a_2+b_2)w_2+\ldots+ (a_n+b_n)w_n.\]

Notemos que el lado derecho es igual a T(v)+T(w), de modo que T abre sumas. De manera similar se puede mostrar que T saca escalares.

Esbocemos ahora la demostración de la unicidad. Supongamos que T y T' son transformaciones lineales de V a W tales que T(v_i)=T'(v_i)=w_i para toda i=1,\ldots,n. Tenemos que mostrar que T(v)=T'(v) para toda v. Para ello procedemos como en el problema antes de este teorema: escribimos a v como combinación lineal de elementos de v. El valor de T(v) depende únicamente de w_1,\ldots,w_n y de la combinación lineal. El de T'(v) también. Por lo tanto son iguales.

\square

Una consecuencia del teorema anterior, en la que no es necesario enunciar a las imágenes de la base, es la siguiente.

Corolario. Sean V y W espacios vectoriales, B una base de V y T y T' transformaciones lineales de V a W. Si T(v)=T'(v) para toda v\in B, entonces T(v)=T'(v) para toda v\in V.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra qué le hace al vector (7,3) una transformación lineal T:\mathbb{R}^2\to \mathbb{R} tal que T(2,1)=20 y T(7,2)=5.
  • Determina si las matrices A,B,C,D del problema de la entrada son una base para M_{2,2}(\mathbb{R}). Si no son una base, ¿cuál es la dimensión del subespacio que generan?
  • Muestra que la función construida en el teorema de existencia y unicidad de transformaciones lineales en términos de base, la función que construimos saca escalares.
  • Escribe los detalles de que dicha función es única.
  • Demuestra el corolario enunciado en la entrada.

Puedes dejar dudas de la entrada o soluciones a algunos de esta tarea moral en los comentarios y les echaremos un ojo.

Otras entradas de Álgebra Lineal