Archivo de la etiqueta: vectores

Álgebra Superior I: El espacio vectorial $\mathbb{R}^n$

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos conceptos relacionados a los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$. Hablamos de vectores, combinaciones lineales, espacio generado, independencia lineal y bases. Ahora haremos lo análogo en dimensiones más altas, para lo cual hablaremos de $\mathbb{R}^n$.

La idea es sencilla, queremos extender lo que ya hicimos para vectores con $5$ o $100$ entradas. Sin embargo, visualizar estos espacios y entender su geometría ya no será tan sencillo. Es por esta razón que principalmente nos enfocaremos a generalizar las propiedades algebraicas que hemos discutido. Esta resultará una manera muy poderosa de estudiar los espacios vectoriales, pues nos permitirá generalizar sin mucha dificultad los conceptos aprendidos en la entrada anterior al espacio $\mathbb{R}^n$ para cualquier número natural $n$.

Definición del espacio vectorial $\mathbb{R}^n$

En la entrada anterior vimos cuáles son propiedades que debe cumplir una colección de objetos, en conjunto con una operación de suma y otra de producto escalar, para poder considerarse un espacio vectorial. Como ya vimos, tanto $\mathbb{R}^2$ y $\mathbb{R}^3$ son espacios vectoriales. Podemos definir a $\mathbb{R}^n$ y a sus operaciones como sigue.

Definición. El conjunto $\mathbb{R}^n$ consiste de todas las $n$-adas ordenadas $u=(u_1,u_2,\ldots,u_n)$ en donde cada $u_i$ es un número real, para $i=1,\ldots,n$. A $u_i$ le llamamos la $i$-ésima entrada de $u$. Para dos elementos de $\mathbb{R}^n$, digamos

\begin{align*}
u&=(u_1,u_2,\ldots,u_n)\\
v&=(v_1,v_2,\ldots,v_n),
\end{align*}

definimos la suma $u+v$ como la $n$-áda cuya $i$-ésima entrada es $u_i+v_i$ (decimos que sumamos entrada a entrada). En símbolos, $$u+v=(u_1+v_1,u_2+v_2,\ldots,u_n+v_n).$$

Además, si tomamos un real $r$, definimos el producto escalar de $r$ con $u$ como la $n$-ada cuya $i$-ésima entrada es $r u_i$, es decir, $ru=(ru_1,ru_2,\ldots,ru_n).$

El conjunto $\mathbb{R}^n$ con esta suma y producto escalar cumple ser un espacio vectorial. A continuación probaremos sólo algunas de las propiedades, ¿puedes completar el resto?

1. La suma es asociativa:
\begin{align*}
(u+v)+w
&= ((u_1,u_2,\ldots,u_n) + (v_1,v_2,\ldots,v_n)) + (w_1,w_2,\ldots,w_n) \\
&= (u_1+v_1,u_2+v_2,\ldots,u_n+v_n) + (w_1,w_2,\ldots,w_n) \\
&= ((u_1+v_1)+w_1,(u_2+v_2)+w_2,\ldots,(u_n+v_n)+w_n) \\
&= (u_1+(v_1+w_1),u_2+(v_2+w_2),\ldots,u_n+(v_n+w_n)) \\
&= (u_1,u_2,\ldots,u_n) + (v_1+w_1,v_2+w_2,\ldots,v_n+w_n) \\
&= (u_1,u_2,\ldots,u_n) + ((v_1,v_2,\ldots,v_n) + (w_1,w_2,\ldots,w_n)) \\
&= u + (v+w).
\end{align*}

La cuarta igualdad usa el paso clave de que en $\mathbb{R}$ sí sabemos que la suma es asociativa.

2. La suma es conmutativa:
\[
u+v = v+w.
\]

¡Intenta demostrarlo!

3. Existe un elemento neutro para la suma, que es el elemento de $\mathbb{R}^n$ en donde todas las entradas son iguales al neutro aditivo $0$ de $\mathbb{R}$:
\begin{align*}
u+0
&= (u_1,u_2,\ldots,u_n) + (0,0,\ldots,0) \\
&= (u_1+0,u_2+0,\ldots,u_n+0) \\
&= (u_1,u_2,\ldots,u_n) \\
&= u.
\end{align*}

Para demostrar esta propiedad, necesitaras usar que en $\mathbb{R}$ cada $u_i$ tiene inverso aditivo.

4. Para cada $n$-tupla existe un elemento inverso:
\[
u + (-u) = 0.
\]

5. La suma escalar se distribuye bajo el producto escalar:
\begin{align*}
(r+s)u
&= (r+s)(u_1,u_2,\ldots,u_n) \\
&= ((r+s)u_1,(r+s)u_2,\ldots,(r+s)u_n) \\
&= (ru_1 + su_1, ru_2 + su_2, \ldots, r_n + su_n) \\
&= (ru_1,ru_2,\ldots,ru_n) + (su_1,su_2,\ldots,su_n) \\
&= r(u_1,u_2,\ldots,u_n) + s(u_1,u_2,\ldots,u_n) \\
&= ru + su.
\end{align*}

Una vez más, se está usando una propiedad de $\mathbb{R}$ para concluir una propiedad análoga en $\mathbb{R}^n$. En este caso, se está usando fuertemente que hay una propiedad de distributividad en $\mathbb{R}$.

6. La suma de $n$-tuplas de distribuye bajo el producto de escalares:
\[
r(u+v) = ru + rv.
\]

7. El producto escalar es compatible con el producto de $\mathbb{R}$:
\begin{align*}
(rs)u
&= (rs)(u_1,u_2,\ldots,u_n) \\
&= ((rs)u_1,(rs)u_2,\ldots,(rs)u_n) \\
&= (r(su_1),r(su_2),\ldots,r(su_n)) \\
&= r(su_1, su_2, \ldots, su_n) \\
&= r(s(u_1,u_2,\ldots,u_n)) \\
&= r(su).
\end{align*}

8. El neutro multiplicativo $1$ de $\mathbb{R}$ funciona como neutro para el producto escalar:
\[
1u = u.
\]

De este modo, podemos trabajar con el espacio vectorial $\mathbb{R}^n$ para explorar sus propiedades. La gran ventaja es que lo que demostremos para $\mathbb{R}^n$ en general lo podremos usar para cualquier valor particular de $n$. y poder emplearlas cuando trabajemos con algún número $n$ en particular.

Combinaciones lineales y espacio generado

Al igual que hicimos con $\mathbb{R}^2$ y $\mathbb{R}^3$ podemos definir los conceptos de combinación lineal y espacio generado para el espacio vectorial $\mathbb{R}^n$.

Definición. En $\mathbb{R}^n$, diremos que un vector $u$ es combinación lineal de los vectores $v_1,\ldots,v_k$ si y sólo si existen números reales $r_1,\ldots,r_n$ en $\mathbb{R}$ tales que
\[
u = r_1v_1 + r_2v_2 + \cdots + r_kv_k.
\]

Ejemplo. En $\mathbb{R}^5$, el vector $(3,4,-2,5,5)$ es combinación lineal de los vectores $(2,1,2,0,3)$, $(0,1,-1,3,0)$ y $(1,-1,5,-2,1)$, pues
\[
(3,4,-2,5,5) = 2(2,1,2,0,3) + 1(0,1,-1,3,0) + -1(1,-1,5,-2,1).
\]

$\triangle$

La noción de combinación lineal nos permite hablar de todas las posibles combinaciones lineales, así como en $\mathbb{R}^2$ y $\mathbb{R}^3$.

Definición. Dado un conjunto de vectores $v_1,\ldots,v_n$ en $\mathbb{R}^n$, podemos definir el espacio generado por estos vectores como el conjunto de todas las posibles combinaciones lineales de $v_1,\ldots,v_n$ en $\mathbb{R}^n$.

Es este caso, ya no podremos visualizar geométricamente el espacio generado (aunque con un poco de imaginación, quizás puedas generalizar lo que ya hicimos en dimensiones anteriores: ¿cómo se vería un plano en $\mathbb{R}^4$?, ¿cómo se vería un sub-$\mathbb{R}^3$ de $\mathbb{R}^4$?). De cualquier manera, sí podemos seguir respondiendo preguntas del espacio generado a través de sistemas de ecuaciones.

Ejemplo. ¿El espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$ y $(1,0,2,1)$ es $\mathbb{R}^4$?

Para ver si $\mathbb{R}^4$ es el espacio generado por los vectores propuestos, debemos asegurarnos de que cada vector en $\mathbb{R}^4$ se pueda expresar como combinación lineal de estos. Entonces, seleccionamos un vector $(a,b,c,d)$ arbitrario en $\mathbb{R}^4$, y debemos ver si existen escalares $q$, $r$, $s$ y $t$ tales que
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d);
\]
esto es,
\[
(q,q,q,0) + (0,3r,r,2r) + (2s,3s,s,0) + (t,0,2t,t) = (a,b,c,d),
\]
que equivale a
\[
(q+2s+t, q+3r+3s, q+r+s+2t, 2r+t)=(a,b,c,d),
\]
lo cual a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
q & +{} & & +{} & 2s & +{} & t & = a \\
q & +{} & 3r & +{} & 3s & & & = b \\
q & +{} & r & +{} & s & +{} & 2t & = c \\
& & 2r & & & +{} & t & = d,
\end{alignedat}
\right.
\]
el cual podemos representar como
\[
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}.
\]
Además, podemos observar que la matriz en el lado izquierdo tiene determinante distinto de $0$ (para verificar esto, tendrás que calcularlo), lo que nos indica que es invertible, y la igualdad anterior equivale a
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
o bien,
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
-3 & 1 & 3 & -3 \\
-1/2 & 1/4 & 1/4 & 0 \\
3/2 & -1/4 & -5/4 & 1 \\
1 & -1/2 & -1/2 & 1
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
de donde tenemos la solución para $q,r,s,t$ siguiente:
\[
\left\{
\begin{alignedat}{4}
q & = & -3a & +{} & b & +{} & 3c & -{} & 3d \\
r & = & -\tfrac{1}{2}a & +{} & \tfrac{1}{4}b & +{} & \tfrac{1}{4}c & & \\
s & = & \tfrac{3}{2}a & -{} & \tfrac{1}{4}b & -{} & \tfrac{5}{4}c & +{} & d \\
t & = & a & -{} & \tfrac{1}{2}b & -{} & \tfrac{1}{2}c & +{} & d.
\end{alignedat}
\right.
\]
Este sistema nos da una fórmula para los escalares $q$, $r$, $s$ y $t$ en función del valor de las entradas del vector $(a,b,c,d)$, y estos escalares satisfacen
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d).
\]
Como esto se cumple para un vector arbitrario $(a,b,c,d)$ en $\mathbb{R}^4$, entonces se cumple para todos los vectores de $\mathbb{R}^4$; es decir, ¡$\mathbb{R}^4$ es el espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$, $(1,0,2,1)$!

$\triangle$

Nuestra técnica de resolver sistemas de ecuaciones mediante la inversa de la matriz asociada ha resultado muy útil. Hemos tenido un poco de suerte en que la matriz sea invertible. Si no lo fuera, no podríamos haber hecho el procedimiento descrito en el ejemplo. ¿Será que si la matriz no es invertible, entonces el sistema no se podrá resolver? La respuesta es compleja: a veces sí, a veces no. En ese caso hay que entender el sistema de ecuaciones con otro método, como reducción gaussiana.

Independencia lineal

Cuando exploramos las propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$, observamos que hay ocasiones en las que el espacio generado por un conjunto de vectores es «más chico» de lo que se esperaría de la cantidad de vectores: por ejemplo, dos vectores en $\mathbb{R}^2$ generan una línea (y no todo $\mathbb{R}^2$) cuando estos dos se encuentran alineados con el origen. Cuando tres vectores en $\mathbb{R}^3$ no están alineados, pero se encuentran sobre el mismo plano por el origen, su espacio generado es dicho plano (y no todo $\mathbb{R}^3$).

Aunque el el espacio vectorial $\mathbb{R}^n$ no podamos visualizarlo de manera inmediata, podemos mantener la intuición de que un conjunto de vectores «genera todo lo que puede generar» o «genera algo más chico». Para identificar en qué situación nos encontramos, recurrimos a la siguiente definición.

Definición. Dado un conjunto de $k$ vectores $v_1, v_2, \ldots, v_k$ en $\mathbb{R}^n$ distintos de 0, diremos son linealmente independientes si la única forma de escribir al vector 0 como combinación lineal de ellos es cuando todos los coeficientes de la combinación lineal son igual al escalar 0; es decir, si tenemos que
\[
r_1v_1 + r_2v_2 + \cdots + r_kv_k = 0,
\]
entonces forzosamente $r_1 = r_2 = \cdots = r_n = 0$.

Teniendo esta definición en consideración, se puede mostrar que si un conjunto de vectores es linealmente independiente, entonces ninguno de los vectores se puede escribir como combinación lineal de los otros. De hecho, es únicamente en este caso cuando cuando el espacio generado por los vectores es «todo lo que se puede generar».

La justificación de por qué sucede esto es similar a la que vimos en la entrada anterior: como el primer vector es no genera una línea. Como el segundo vector no se puede escribir como combinación lineal del primero, entonces queda fuera de esta línea y ambos generan un plano. Como el tercer vector no se puede escribir como combinación lineal de los primeros dos, entonces queda fuera del plano, y entre los tres generan un espacio «más grande» («de dimensión $3$»). A partir de este punto, quizá no podamos visualizar inmediatamente la forma geométrica del espacio generado, pero como sabemos que los vectores son linealmente independientes, entonces el cuarto vector no se puede escribir como combinación lineal de los primeros tres. Por ello, queda fuera del espacio generado por los primeros tres, y el espacio generado por los cuatro es aún «más grande» («de dimensión $4$»); y así sucesivamente, para tantos vectores linealmente independientes como tengamos.

Una herramienta que podemos emplear para determinar cuándo un conjunto de vectores es linealmente independiente son nuevamente los sistemas de ecuaciones. Para esto veamos el siguiente ejemplo.

Ejemplo. ¿Son los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ linealmente independientes en $\mathbb{R}^4$?

Supongamos que para ciertos escalares $a$, $b$, $c$ y $d$, se cumple que
\[
a(1,5,1,-2) + b(3,-3,0,-1) + c(-2,0,4,1) + d(0,1,-1,0) = (0,0,0,0).
\]
Esto es equivalente a decir que
\[
(a,5a,a,-2a) + (3b,-3b,0,-b) + (-2c,0,4c,c) + (0,d,-d,0) = (0,0,0,0)
\]
que equivale a
\[
(a+3b-2c, 5a-3b+d,a+4c-d,-2a-b+c) = (0,0,0,0),
\]
y a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
a & +{} & 3b & -{} & 2c & & & = 0 \\
5a & -{} & 3b & & & +{} & d & = 0 \\
a & & & +{} & 4c & -{} & d & = 0 \\
-2a & -{} & b & +{} & c & & & = 0
\end{alignedat}
\right.
\]
el cual podemos representar de la forma
\[
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
y, como notamos que la matriz del lado izquierdo de la ecuación tiene determinante distinto de 0 (¿puedes verificarlo?), entonces es invertible, de modo que
\[
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
es decir,
\[
a = b = c = d = 0,
\]
lo que nos indica, basándonos en la definición, que los vectores anteriores son linealmente independientes.

$\triangle$

El ejemplo anterior nos da una idea de lo que debe cumplir un conjunto linealmente independiente de $n$ vectores en $\mathbb{R}^n$. En general, podemos mostrar que un conjunto de $n$ vectores $v_1 = (v_{11}, v_{12}, \ldots, v_{1n})$, $v_2 = (v_{21}, v_{22}, \ldots, v_{2n})$, $\ldots$, $v_n = (v_{n1}, v_{n2}, \ldots, v_{nn})$ es linealmente independiente si y sólo si la matriz
\[
\begin{pmatrix}
v_{11} & v_{21} & \cdots & v_{n1} \\
v_{12} & v_{22} & \cdots & v_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1n} & v_{2n} & \cdots & v_{nn}
\end{pmatrix},
\]
formada por los vectores escritos como columna, es invertible. Esto ya platicamos que está relacionado con que su determinante sea distinto de 0. Pero no en todas las situaciones tendremos tantos vectores como entradas y entonces tendremos que estudiar el sistema de ecuaciones lineales con otras técnicas, como reducción gaussiana.

Ejemplo. ¿Serán los vectores $(1,2,3,4,5)$, $(6,7,8,9,10)$ y $(11,12,13,14,15)$ de $\mathbb{R}^5$ linealmente independientes? Tal y como lo hemos hecho arriba, podemos preguntarnos si hay reales $a,b,c$ tales que $$a(1,2,3,4,5)+b(6,7,8,9,10)+c(11,12,13,14,15)=(0,0,0,0,0),$$ y que no sean todos ellos cero. Tras plantear el sistema como sistema de ecuaciones y luego en forma matricial, lo que se busca es ver si el sistema $\begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $ tiene alguna solución no trivial. Esto puede entenderse aplicando reducción gaussiana a $A$, que muestra que toda solución al sistema anterior es solución al sistema $\begin{pmatrix} 1 & 0 & -1\\0 & 1 & 2\\0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$ lo cual nos lleva a que el sistema original es equivalente al sistema $$\left\{ \begin{array} \,a – c &= 0\\ b + 2c &= 0\end{array}.\right.$$

De aquí, podemos tomar a $c$ como cualquier valor, digamos $1$, de donde $a=1$ y $b=-2$ es solución. En resumen, hemos detectado que $$(1,2,3,4,5)-2(6,7,8,9,10)+(11,12,13,14,15)=(0,0,0,0,0),$$ que es una combinación lineal de los vectores donde no todos los coeficientes son cero. Por ello, no son linealmente intependientes.

Puedes intentar «imaginar» esto como que son vectores en $\mathbb{R}^5$ (un espacio de «dimensión $5$»), pero no generan dentro de él algo de dimensión $3$, sino algo de dimensión menor. Como $(1,2,3,4,5)$ y $(6,7,8,9,10)$ sí son linealmente independientes (¡demuéstralo!), entonces los tres vectores en realidad generan sólo un plano mediante sus combinaciones lineales.

$\square$

Bases

De manera similar a lo que observamos en la entrada anterior, hay ocasiones en las que un conjunto de vectores no tiene como espacio generado a todo $\mathbb{R}^n$. Por otra parte, hay ocasiones en las que el conjunto de vectores sí genera a todo $\mathbb{R}^n$, pero lo hace de manera «redundante», en el sentido de que, aunque su espacio generado sí es todo $\mathbb{R}^n$, podríamos quitar a algún vector del conjunto y el espacio generado sería el mismo. La siguiente definición se enfoca en los conjuntos en los que no pasa mal ninguna de estas cosas. Es decir, los vectores generan exactamente al espacio: cada vector se genera por una y sólo una combinación lineal de ellos.

Definición. Diremos que un conjunto de vectores $v_1, v_2, \ldots, v_k$ es base del esapacio vectorial $\mathbb{R}^n$ si el conjunto de vectores es linealmente independiente y el espacio generado por estos es exactamente $\mathbb{R}^n$.

Ejemplo. Al igual que en $\mathbb{R}^2$ y $\mathbb{R}^3$, la «base canónica» es el primer ejemplo que seguramente se nos viene a la mente. La base canónica en $\mathbb{R}^n$ consiste en los $n$ vectores $\mathrm{e}_1 = (1,0,0,\cdots,0)$, $\mathrm{e}_2 = (0,1,0,\cdots,0)$, $\mathrm{e}_3 = (0,0,1,\ldots,0)$, $\ldots$, $\mathrm{e}_n = (0,0,0,\cdots,1)$. Es claro que cualquier vector $u = (u_1,u_2,\cdots,u_n)$ es combinación lineal de $\mathrm{e}_1,\ldots,\mathrm{e}_n$ pues podemos expresarlo como
\begin{align*}
u
&= (u_1,u_2,\cdots,u_n) \\
&= (u_1,0,\cdots,0) + (0,u_2,\cdots,0) + \cdots (0,0,\cdots,u_n) \\
&= u_1(1,0,\cdots,0) + u_2(0,1,\cdots,0) + \cdots + u_n(0,0,\cdots,1) \\
&= u_1\mathrm{e}_1 + u_2\mathrm{e}_2 + \cdots + u_n\mathrm{e}_n.
\end{align*}
Además, los vectores $\mathrm{e}_1,\ldots,\mathrm{e}_n$ son linealmente independientes (¿puedes ver por qué?). De este modo, verificamos que la «base canónica» es, en efecto, una base.

$\triangle$

Ejemplo. Más arriba verificamos que los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ son linealmente independientes. Además, vimos que la matriz formada por estos es invertible. De este modo, verificamos que estos vectores forman una base para $\mathbb{R}^4$.

$\triangle$

Más adelante…

A lo largo de esta unidad nos hemos enfocado en estudiar a vectores, matrices, ecuaciones lineales y espacios vectroriales. En las últimas entradas, vimos que hay ocho condiciones que se deben cumplir para que un conjunto de objetos matemáticos (junto con una operación de suma y una de producto escalar) sean considerados espacio vectorial. Todos los ejemplos de espacio vectorial que vimos son de la forma $\mathbb{R}^n$, sin embargo, puede surgir la pregunta, ¿existen espacios vectoriales que no sean de esta forma?

De hecho, si has estado prestando atención en la formalidad de los resultados, hay muchos resultados que han quedado pendientes:

  • ¿Por qué el determinante no depende de la fila o columna en la que se expanda?
  • Si tenemos matrices de $n\times n$, ¿por qué son invertibles si y sólo si el determinate es cero?
  • En matrices de $n\times n$, ¿por qué el determinante es multiplicativo?
  • ¿Cómo se formaliza el proceso de reducción gaussiana y para qué más sirve?
  • ¿Será que podemos tener muchos vectores linealmente independientes en $\mathbb{R}^n$? ¿Será posible tener un conjunto generador de menos de $n$ vectores para $\mathbb{R}^n$? ¿Por qué?

Estas dudas no se resuelven en el curso de Álgebra Superior 2, que sigue a este. Sin embargo, en el curso de Álgebra Lineal I sí se resuelven varias de estas dudas.

Además, podrás ver que hay otros tipos de objetos matemáticos distintos a las listas ordenadas y que también forman un espacio vectorial; algunos con los cuales ya hemos trabajado, como lo son las matrices, y otros que se comportan de manera muy poco usual, como son los espacios con dimensión infinita. Asimismo, con las herramientas que hemos desarrollado hasta ahora, podremos aprender nuevos conceptos como transformaciones lineales, eigenvectores y eigenvalores; estos nos permitirán comprender de manera más íntima los espacios vectoriales, y podremos relacionarlos unos con otros.

Tarea moral

  1. Verifica lo siguiente:
    • $(1,1,1,1)$, $(2,2,2,2)$, $(1,1,2,2)$, $(2,2,1,1)$ no es un conjunto linealmente independiente de $\mathbb{R}^4$.
    • $(1,2,3,4)$, $(2,3,4,1)$, $(3,4,1,2)$, $(4,1,2,3)$ es un conjunto generador de $\mathbb{R}^4$.
    • $(1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,0),(1,1,0,0,0),(1,0,0,0,0)$ es una base de $\mathbb{R}^5$.
  2. Demuestra las siguientes dos cosas:
    • Sea $S$ un conjunto generador de $\mathbb{R}^n$ y $T\supseteq S$. Entonces $T$ es conjunto generador de $\mathbb{R}^n$.
    • Sea $T$ un conjunto linealmente independiente de $\mathbb{R}^n$ y $S\subseteq T$. Entonces $S$ es un conjunto linealmente independiente de $\mathbb{R}^n$.
  3. Sean $v_1,v_2,v_3,\ldots,v_k$ vectores linealmente independientes de $\mathbb{R}^n$. Demuestra que $v_1, v_1+v_2, v_1+v_2+v_3,\ldots,v_1+v_2+v_3+\ldots+v_k$ son también vectores linealmente independientes de $\mathbb{R}^n$. ¿Es esto un si y sólo si?
  4. En vista de lo que hemos platicado para matrices de $2\times 2$, $3\times 3$, $\mathbb{R}^2$ y $\mathbb{R}^3$, ¿cómo definirías el producto matriz-vector $AX$ donde $A$ es una matriz de $m\times n$ y $X$ un vector en $\mathbb{R}^n$?
  5. Demuestra que la definición de base tal y como está en la entrada en efecto permite no sólo escribir a cada vector $v$ del espacio como combinación lineal de los elementos de una base $v_1,\ldots,v_n$, sino que también implica que dicha expresión será única.

Entradas relacionadas

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas

Álgebra Superior I: Producto de matrices con matrices

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido varias operaciones que involucran escalares, vectores y matrices. En esta entrada aprenderemos sobre una de las operaciones más importantes en el álgebra lineal: el producto de matrices con matrices.

Definición de producto de matrices

Para poder efectuar el producto de dos matrices, hay que asegurarnos de que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

El resultado de una matriz $A$ de tamaño $m \times n$ por una matriz $B$ de tamaño $n \times \ell$ será la matriz $C = AB$ de tamaño $m \times \ell$, donde la entrada $c_{ij}$ de $C$ está dada por la fórmula
\[
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.
\]

A primera vista esta fórmula puede parecer complicada, sin embargo, practicando con algunos ejemplos verás que es muy fácil de implementar.

  • Producto de matrices de tamaño $2 \times 2$:

Sean
\[
A
=
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & 4 \\
6 & 8
\end{pmatrix}.
\]

Como estamos multiplicando una matriz de tamaño $2 \times 2$ por una matriz de tamaño $2 \times 2$, sabemos que el resultado será otra matriz de tamaño $2 \times 2$. Ahora, iremos calculando una por una sus entradas.

Sea $C = AB$. Para calcular la entrada $c_{11}$ observamos la primera fila de $A$ y la primera columna de $B$, las cuales son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
de modo que $c_{11} = (1)(2)+(3)(6) = 20$:
\[
AB
=
\begin{pmatrix}
20 & \phantom{28} \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

Para la entrada $c_{12}$, nos fijamos en la primera columna de $A$ y en la segunda columna de $B$, que son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{12} = (1)(4) + (3)(8) = 28$:
\[
AB
=
\begin{pmatrix}
20 & 28 \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

De manera similar, observemos la segunda fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
obteniendo $c_{21} = (5)(2) + (7)(6) = 52$, mientras que la segunda fila de $A$ y la segunda columna de $B$ son
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{22} = (5)(4) + (7)(8) = 76$.

Por lo tanto,
\[
AB
=
\begin{pmatrix}
20 & 28 \\
52 & 76
\end{pmatrix}.
\]

En general, el resultado del producto de las matrices
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
es
\[
AB
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $3 \times 2$ por matriz de $2 \times 2$:

Supongamos que
\[
A
=
\begin{pmatrix}
3 & 5 \\
1 & 0 \\
4 & 3
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
7 & 8 \\
5 & 2
\end{pmatrix}.
\]

En este caso, como estamos multiplicando una matriz de tamaño $3 \times 2$ por una matriz de tamaño $2 \times 2$, la matriz resultante tendrá tamaño $3 \times 2$.

Podemos obtener sus entradas de manera similar al caso anterior. Si $C = AB$, entonces la entrada $c_{12}$ la podemos encontrar revisando la primera fila de $A$ y la segunda columna de $B$,
\[
A
=
\begin{pmatrix}
3 & 5 \\
\phantom{1} & \phantom{0} \\
\phantom{4} & \phantom{3}
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{7} & 8 \\
\phantom{5} & 2
\end{pmatrix}.
\]
de modo que $c_{12} = (3)(8) + (5)(2) = 34$. Por su parte, para obtener la entrada $c_{31}$ nos fijamos en la tercera fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{3} & \phantom{5} \\
\phantom{1} & \phantom{0} \\
4 & 3
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
7 & \phantom{8} \\
5 & \phantom{2}
\end{pmatrix}.
\]
obteniendo $c_{31} = (4)(7) + (3)(5) = 43$.

¿Podrías comprobar que
\[
AB
=
\begin{pmatrix}
46 & 34 \\
7 & 8 \\
43 & 38
\end{pmatrix}?
\]

Así, para el caso general de matrices de $3 \times 2$ por $2 \times 2$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $4 \times 2$ por matriz de $2 \times 3$:

¿Podrías verificar que la siguiente fórmula es correcta?
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\
a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23}
\end{pmatrix}.
\]

Propiedades del producto de matrices

A continuación revisaremos algunas de las propiedades que cumple la multiplicación de matrices. Para demostrar las siguientes propiedades, consideraremos la matriz $A$ de tamaño $3 \times 2$ y las matrices $B$ y $C$ de tamaño $2 \times 2$, aunque se pueden probar para matrices de cualesquier otro tamaño entre las cuales se puedan efectuar las operaciones.

Veamos que si efectuamos la multiplicación de una matriz de tamaño $m \times n$ por una matriz de tamaño $n \times 1$ siguiendo el algoritmo descrito anteriormente, el resultado coincide con el de multiplicar la matriz de tamaño $m \times n$ por un vector de tamaño $n$. Por ejemplo, si multiplicamos $A$ por una matriz $U$ de tamaño $2 \times 1$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_{11} \\
u_{12}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_{11} + a_{12}u_{21} \\
a_{21}u_{11} + a_{22}u_{21} \\
a_{31}u_{11} + a_{32}u_{21}
\end{pmatrix}.
\]

Esta es una observación importante pues todo lo que demostremos para el producto de matrices también lo tendremos para el producto de matriz por vector.

Veamos que la multiplicación de matrices es asociativa:

\begin{align*}
(AB)C
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \\
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}b_{11} + a_{12}b_{21})c_{11} + (a_{11}b_{12} + a_{12}b_{22})c_{21}
& (a_{11}b_{11} + a_{12}b_{21})c_{12} + (a_{11}b_{12} + a_{12}b_{22})c_{22} \\
(a_{21}b_{11} + a_{22}b_{21})c_{11} + (a_{21}b_{12} + a_{22}b_{22})c_{21}
& (a_{21}b_{11} + a_{22}b_{21})c_{12} + (a_{21}b_{12} + a_{22}b_{22})c_{22} \\
(a_{31}b_{11} + a_{32}b_{21})c_{11} + (a_{31}b_{12} + a_{32}b_{22})c_{21}
& (a_{31}b_{11} + a_{32}b_{21})c_{12} + (a_{31}b_{12} + a_{32}b_{22})c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}c_{11} + b_{12}c_{21}) + a_{12}(b_{21}c_{11} + b_{22}c_{21})
& a_{11}(b_{11}c_{12} + b_{12}c_{22}) + a_{12}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{21}(b_{11}c_{11} + b_{12}c_{21}) + a_{22}(b_{21}c_{11} + b_{22}c_{21})
& a_{21}(b_{11}c_{12} + b_{12}c_{22}) + a_{22}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{31}(b_{11}c_{11} + b_{12}c_{21}) + a_{32}(b_{21}c_{11} + b_{22}c_{21})
& a_{31}(b_{11}c_{12} + b_{12}c_{22}) + a_{32}(b_{21}c_{12} + b_{22}c_{22})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}c_{11} + b_{12}c_{21} & b_{11}c_{12} + b_{12}c_{22} \\
b_{21}c_{11} + b_{22}c_{21} & b_{21}c_{12} + b_{22}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
A(BC).
\end{align*}

De manera muy similar, si $u$ es un vector de tamaño 2, podemos ver que se cumple que $A(Bu) = (AB)u$. ¿Puedes demostrarlo? Hazlo por lo menos para matrices $A$ y $B$ ambas de $2\times 2$.

Quizás tengas la impresión de que hay que hacer demasiadas cuentas y que sería sumamente difícil demostrar estas propiedades para matrices más grandes. Sin embargo, en cursos posteriores verás cómo trabajar apropiadamente con la notación para poder hacer estas demostraciones más fácilmente.

El producto de matrices es asociativo. Sin embargo, no es conmutativo. Por ejemplo, consideremos las matrices
\[
E=
\begin{pmatrix}
5 & 7 \\
-3 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
F=
\begin{pmatrix}
1 & 2 \\
9 & -1
\end{pmatrix}.
\]


Veamos que
\[
EF =
\begin{pmatrix}
68 & 3 \\
-3 & -6
\end{pmatrix}
\ne
\begin{pmatrix}
-1 & 7 \\
48 & 63
\end{pmatrix}
=
FE.
\]

En términos de combinar el producto de matrices con otras operaciones, tenemos que el producto de matrices por la izquierda se distribuye sobre la suma de matrices:
\begin{align*}
A(B+C)
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}+c_{11} & b_{12}+c_{12} \\
b_{21}+c_{21} & b_{22}+c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}+c_{11}) + a_{12}(b_{21}+c_{21})
& a_{11}(b_{12}+c_{21}) + a_{12}(b_{22}+c_{22}) \\
a_{21}(b_{11}+c_{11}) + a_{22}(b_{21}+c_{21})
& a_{21}(b_{12}+c_{21}) + a_{22}(b_{22}+c_{22}) \\
a_{31}(b_{11}+c_{11}) + a_{32}(b_{21}+c_{21})
& a_{31}(b_{12}+c_{21}) + a_{32}(b_{22}+c_{22}) \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11}+a_{11}c_{11} + a_{12}b_{21}+a_{12}c_{21}
& a_{11}b_{12}+a_{11}c_{11} + a_{12}b_{22}+a_{12}c_{22} \\
a_{21}b_{11}+a_{21}c_{11}+ a_{22}b_{21}+a_{22}c_{21}
& a_{21}b_{12}+a_{21}c_{12}+ a_{22}b_{22}+a_{22}c_{22} \\
a_{31}b_{11}+a_{31}c_{11} + a_{32}b_{21}+a_{32}c_{21}
& a_{31}b_{12}+a_{31}c_{12} + a_{32}b_{22}+a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\
a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \\
a_{31}c_{11} + a_{32}c_{21} & a_{31}c_{12} + a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
AB + AC.
\end{align*}

El producto también se distribuye sobre la suma cuando la suma aparece a la izquierda. ¿Podrías probar que si $D$ es una matriz de tamaño $3 \times 2$, entonces se cumple $(A+D)B = AB + DB$?

En entradas anteriores vimos que $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarla por un vector de tamaño $n$. Resulta que $\mathcal{I}_n$ también tiene esta propiedad al multiplicarla por la izquierda por una matriz de tamaño $n\times m$. Por ejemplo, veamos que al multiplicar $\mathcal{I}_3$ por la izquierda por $A$, obtenemos
\begin{align*}
\mathcal{I}_3 A
&=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} + 0a_{21} + 0a_{31} & 1a_{12} + 0a_{22} + 0a_{32} \\
0a_{11} + 1a_{21} + 0a_{31} & 0a_{12} + 1a_{22} + 0a_{32} \\
0a_{11} + 0a_{21} + 1a_{31} & 0a_{12} + 0a_{22} + 1a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
A.
\end{align*}

¿Podrías probar que $A\mathcal{I}_2 = A$ (es decir, que $\mathcal{I}_2$ es neutro por la derecha para $A$)?

Habiendo visto que el producto de matrices es asociativo, conmutativo y tiene neutros, probablemente te estarás preguntando si existen inversos en la multiplicación de matrices. Este cuestionamiento lo dejaremos para la siguiente entrada.

Relación con la composición de transformaciones

Como vimos en la entrada anterior, una forma de visualzar el producto de una matriz $A$ por un vector $u$ es como una transformación que envía el vector $u$ a un único vector $Au$.

Teniendo en mente esto, veamos que la propiedad de que $A(Bu) = (AB)u$ resulta aún más interesante. Para esto, veamos que el siguiente ejemplo: sean
\[
A
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix},
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Si multiplicamos $B$ por $u$, vemos que corresponde a la transformación que envía $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ al vector $Bu = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

Ahora, si multiplicamos $A$ por el vector $Bu$, vemos que corresponde a la transformación que envía $Bu$ al vector $A(Bu) = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ (Acabamos de obtener el resultado de aplicar a $u$ la composición de las transformaciones $B$ y $A$).

Por otra parte, si realizamos la multiplicación
\[
AB
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix}
=
\begin{pmatrix}
6 & 0 \\
4 & 2
\end{pmatrix},
\]
la transformación asociada a $AB$ envía $u$ al vector $(AB)u = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$.

¡La composición de las transformaciones asociadas a $B$ y $A$ aplicada al vector $u$ coincide con la transformación asociada a la matriz $AB$ aplicada al mismo vector!

Si probamos esto para un vector arbitrario, nos daremos cuenta de que en todos los casos se cumple lo mismo. En realidad, esto no es una coincidencia: como aprenderás en tus cursos de álgebra lineal, la composición de transformaciones lineales está directamente asociada al producto de matrices.

Potencias de matrices

Podemos ver que si una matriz $A$ es cuadrada, al tener el mismo número de filas que de columnas, entonces podemos realizar la multiplicaciones $AA$, $AAA$, $AAAA$, etc., que por asociatividad no importa en qué orden multipliquemos. Esto nos sugiere que podemos cacular potencias de matrices.

Para una matriz cuadrada $A$, definiremos de manera recursiva la potencia $A^n$:

  • Definimos $A^0 = \mathcal{I}$.
  • Dada $A^n$, con $n$ un número natural, definimos $A^{n+1} = A^n A$.

Por ejemplo, si
\[
A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\]
calculemos $A^3$ empleando la definición recursiva. Para esto, iremos calculando una por una las potencias de $A$, hasta llegar a $A^3$:
\begin{align*}
A^0
&=
\mathcal{I}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\\[5pt]
A^1
&=
A^0A
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\\[5pt]
A^2
&=
A^1 A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(2)(2) + (1)(3) & (2)(1) + (1)(4) \\
(3)(2) + (4)(3) & (3)(1) + (4)(4)
\end{pmatrix}
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix},
\\[5pt]
A^3
&=
A^2A
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(7)(2) + (6)(3) & (7)(1) + (6)(4) \\
(18)(2) + (19)(3) & (18)(1) + (19)(4)
\end{pmatrix}
=
\begin{pmatrix}
32 & 31 \\
93 & 94
\end{pmatrix}.
\end{align*}

Prueba calcular algunas potencias de la matriz \(
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}.
\) ¿Notas algún patrón especial?

Más adelante…

En esta entrada aprendimos sobre el producto de matrices con matrices y conocimos algunas de sus propiedades. En la siguiente entrada abordaremos la pregunta sobre si existen los inversos en la multiplicación de matrices.

Tarea moral

  1. Realiza el producto de matrices $$\begin{pmatrix} -1 & -2 & -3 \\ 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$
  2. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza las siguientes operaciones por separado, sin usar la asociatividad del producto de matrices. ¿Cuál de las dos operaciones te resultó más fácil de hacer?
    • $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
    • $$(((AA)A)A)\begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$
  3. Completa las pruebas faltantes de las propiedades de la multiplicación de matrices.
  4. Demuestra la siguiente ley de exponentes para matrices: $A^mA^n=A^{m+n}$.
  5. Prueba que si
    \[
    A =
    \begin{pmatrix}
    a_{11} & 0 \\
    0 & a_{22}
    \end{pmatrix},
    \]
    y $k$ es un entero mayor o igual que $0$, entonces
    \[
    A^k
    =
    \begin{pmatrix}
    {a_{11}}^k & 0 \\
    0 & {a_{22}}^k
    \end{pmatrix}
    \]
    (Sugerencia: realizarlo por inducción sobre $k$, utilizando la definición recursiva).
  6. Encuentra matrices $A$ y $B$ de $2\times 2$ para las cuales $A^2-B^2\neq (A+B)(A-B)$.

Entradas relacionadas

Álgebra Superior I: Matrices invertibles

Por Eduardo García Caballero

Introducción

En la entrada anterior definimos el producto de matrices con matrices y exploramos algunas de sus propiedades, siendo varias de estas familiares: el producto de matrices es asociativo, conmutativo y tiene elemento neutro. En esta entrada exploraremos una pregunta que quedó abierta: ¿el producto de matrices cumple con tener inversos?

Definición de matrices invertibles

Diremos que una matriz cuadrada $A$ es invertible si y sólo si tiene inverso multiplicativo; es decir, si existe una matriz $B$ tal que $AB = BA = \mathcal{I}$.

Observemos para que la definción anterior tenga sentido, es indispensable que $A$ sea cuadrada, pues veamos que si $A$ es de tamaño $m \times n$, entonces para que los productos $AB$ y $BA$ estén definidos, $B$ tendrá que ser de tamaño $n \times m$. Así, $AB$ será de tamaño $m\times n$ y $BA$ de tamaño $n\times n$, y como $AB = BA$, entonces $m = n$, y, por tanto, $AB = BA = \mathcal{I}_n$ (y con ello también observamos que $B$ tiene que ser cuadrada de tamaño $n \times n$).

Un ejemplo de una matriz de $2 \times 2$ que es invertible es
\[
A
=
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}
\]
que tiene como inversa a la matriz
\[
B
=
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix},
\]
pues
\begin{align*}
AB
&=
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix}\\
&=
\begin{pmatrix}
(1)(-5) + (-2)(-3) & (1)(-2) + (-2)(-1) \\
(-3)(-5) + (5)(-3) & (-3)(-2) + (5)(-1)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2
\end{align*}
y
\begin{align*}
BA
&=
\begin{pmatrix}
-5 & -2 \\
-3 & -1
\end{pmatrix}
\begin{pmatrix}
1 & -2 \\
-3 & 5
\end{pmatrix}\\
&=
\begin{pmatrix}
(-5)(1) + (-2)(-3) & (-5)(-2) + (-2)(5) \\
(-3)(1) + (-1)(-3) & (-3)(-2) + (-1)(5)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2.
\end{align*}
Por lo tanto,
\[
AB = BA = \mathcal{I}_2.
\]

Algo que seguramente te preguntarás es si cualquier matriz cuadrada tiene un inverso multiplicativo. A diferencia de otros tipos de operaciones con inversos, el producto de matrices no siempre cumple con tenerlos: un ejemplo de esto es la matriz
\[
A=
\begin{pmatrix}
2 & 1 \\
0 & 0
\end{pmatrix}
\]
la cual, al multiplicarla por cualquier matriz
\[
B
=
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
por la derecha, nos da como resultado
\[
AB
=
\begin{pmatrix}
2 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
2a + c & 2b + ,d \\
0 & 0
\end{pmatrix},
\]
y como en cualquier caso obtenemos que su entrada en la posición $(2,2)$ es $0$, tenemos que $AB$ es distinta a $\mathcal{I}_2$, pues la entrada en la posición $(2,2)$ de esta última es $1$.

Propiedades de matrices invertibles

A continuación exploraremos algunas de las propiedades que cumplen las matrices invertibles.

Primeramente, veamos que si una matriz $A$ de $n \times n$ es invertible, entonces su inversa será única. Para demostrar esto, supongamos que $B$ y $C$ son ambas inversas multiplicativas de $A$; es decir, $AB = BA = \mathcal{I}_n$ y $AC = CA = \mathcal{I}_n$. Entonces,
\begin{align*}
AB &= AC \\[5pt]
B(AB) &= B(AC) \\[5pt]
(BA)B &= (BA)C \\[5pt]
\mathcal{I}_n B &= \mathcal{I}_n C \\[5pt]
B &= C.
\end{align*}

Como la matriz inversa de $A$ es única, usualmente la denotamos como $A^{-1}$.

Por otra parte, veamos que si $A$ y $B$ son matrices invertibles, con inversas $A^{-1}$ y $B^{-1}$, respectivamente, entonces, si podemos multiplicar $A$ y $B$ (es decir, si $A$ y $B$ son del mismo tamaño), entonces $AB$ es invertible, pues se cumple que
\[
(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A\mathcal{I}_nA^{-1} = AA^{-1} = \mathcal{I}_n,
\]
y también que
\[
(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}\mathcal{I}_nB = B^{-1}B = \mathcal{I}_n,
\]
es decir, $B^{-1}A^{-1}$ es la matriz inversa de $AB$, lo cual denotamos como $(AB)^{-1} = B^{-1}A^{-1}$.

Finalmente, recordando la interpretación geométrica que dimos a la multiplicación de matrices por vectores, y la propiedad de que $A(Bu) = (AB)u$, entonces notamos que
\[
A^{-1}(Au) = (A^{-1}A)u = \mathcal{I}u = u.
\]

Como la transformación correspondiente a $A$ envía el vector $u$ al vector $Au$, y como el resultado de aplicar $(A^{-1}A)u$ deja al vector $u$ en su lugar, esto nos dice que la transformación correspondiente a $A^{-1}$ es aquella que regresa el vector $Au$ a su posición original.

En la siguiente imagen se visualiza esta propiedad para el caso en el que
\[
A
=
\begin{pmatrix}
3 & 1 \\
4 & 2
\end{pmatrix}
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Formula para inversa de matrices de $2 \times 2$

Más arriba vimos que hay matrices que sí tienen inversa, mientras que otras no tienen. Para el caso de matrices de $2 \times 2$, tendremos que
\[
A
=
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
es invertible si y sólo si se cumple que $ad-bc \ne 0$.

En dado caso, la inversa de $A$ será la matriz
\[
A^{-1}
=
\frac{1}{ad-bc}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
=
\begin{pmatrix}
\frac{d}{ad-bc} & \frac{-b}{ad-bc} \\
\frac{-c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.
\]

Por ejemplo, veamos que si
\[
A =
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix},
\]
entonces $ad – bc = (1)(3) – (2)(-2) = 3 – (-4) = 7 \ne 0$, por lo que podemos garantizar que $A$ tiene matriz inversa, la cual es
\[
A^{-1}
=
\frac{1}{ad-bc}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
=
\frac{1}{7}
\begin{pmatrix}
3 & -2 \\
2 & 1
\end{pmatrix}
=
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}.
\]

Verificamos que
\begin{align*}
AA^{-1}
&=
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix}
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}\\
&=
\begin{pmatrix}
(1)(3/7) + (2)(2/7) & (1)(-2/7) + (2)(1/7) \\
(-2)(3/7) + (3)(2/7) & (-2)(-2/7) + (3)(1/7)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2
\end{align*}
y
\begin{align*}
A^{-1}A
&=
\begin{pmatrix}
3/7 & -2/7 \\
2/7 & 1/7
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
-2 & 3
\end{pmatrix}\\
&=
\begin{pmatrix}
(3/7)(1) + (-2/7)(-2) & (3/7)(2) + (-2/7)(3) \\
(2/7)(1) + (1/7)(-2) & (2/7)(2) + (1/7)(3)
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}\\
&=
\mathcal{I}_2.
\end{align*}

De manera similar, veamos que la matriz
\[
\begin{pmatrix}
3 & 4 \\
1 & 2
\end{pmatrix}
\]
es invertible pues $(3)(2) – (4)(1) = 2 \ne 0$. ¿Puedes calcular su inversa?

Por el contrario, veamos que en la matriz
\[
\begin{pmatrix}
6 & 4 \\
3 & 2
\end{pmatrix}
\]
tenemos que $(6)(2) – (4)(3) = 12 -12 = 0$, y, por tanto, no es invertible.

Para el caso de matrices de mayor tamaño, también existen condiciones y fórmulas para calcular sus inversas, sin embargo, estas no resultan tan sencillas. Será necesario que comprendamos más propiedades de las matrices para poder obtenerlas.

Más adelante…

En esta entrada conocimos una propiedad más que cumplen las matrices respecto a su producto, que es la de tener inverso multiplicativas; también vimos las condiciones bajo las cuales una matriz de $2 \times 2$ puede tener inverso, y revisamos su fórmula.

En la siguiente entrada, conoceremos una nueva operación, la cual se distinguirá de todas las que hemos visto hasta ahora, pues esta operación involucra a una única matriz a la vez.

Tarea moral

  1. ¿Para qué valores de $a$ se cumple que
    \[
    \begin{pmatrix}
    5 & a \\
    2 & 2-a
    \end{pmatrix}
    \]
    es invertible?
  2. Muestra que si $A$, $B$ y $C$ son matrices invertibles del mismo tamaño, entonces
    \[
    (ABC)^{-1} = C^{-1}B^{-1}A^{-1}.
    \]
  3. Muestra que si $A$ es una matriz invertible y $k$ es un entero positivo, entonces $A^k$ también es invertible y $(A^k)^{-1}=(A^{-1})^k$.
  4. ¿Por qué la matriz
    \[
    \begin{pmatrix}
    3 & 4 & 0 \\
    7 & 2 & 0 \\
    0 & 0 & 0
    \end{pmatrix}
    \]
    no es invertible?
  5. Muestra que en efecto el criterio que dimos para que una matriz $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tenga inversa es suficiente y necesario. Para la parte de que es suficiente, tendrás que ver que si $ad-bc\neq 0$, la matriz propuesta en la entrada siempre funciona como inversa. Para ver que es necesario, supón que $ad-bc=0$. En este caso, $ad=bc$ y podrás encontrar a partir de $a,b,c,d$ a dos vectores distintos $u$ y $v$ tales que $Au=Av$. Esto mostrará que la transformación asociada a $A$ no es inyectiva y por tanto no podrá tener inversa, así que $A$ tampoco tendrá inversa.

Entradas relacionadas

Álgebra Superior I: Sistemas de ecuaciones lineales

Por Eduardo García Caballero

Introducción

Una de las aplicaciones más importantes de los vectores y matrices tiene que ver con un tema que conociste desde la secundaria y preparatoria: los sistemas de ecuaciones.

Más específicamente, los vectores y matrices nos serán de gran utilidad para resolver sistemas de ecuaciones lineales, determinar cuándo un sistema sí tiene soluciones, y cuáles son todas sus soluciones.

Pero antes, repasemos un poco los conceptos de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Recordemos que una ecuación es una expresión en la que hay variables o valores que no conocemos. En el caso de una ecuación lineal, se trata de ecuaciones en las que todas sus variables se encuentran elevadas a la primera potencia y acompañadas únicamente por coeficientes constantes. Por ejemplo, podemos ver que las expresiones
\[
2x + 9y – z = 3,
\qquad
4w + 3000a = y + \tfrac{1}{2}x
\]
son ecuaciones lineales, mientras que las expresiones
\[
ax^2 + bx + c = 0,
\qquad
2xz = 9y
\]
no lo son, pues contienen al menos una variable elevada a exponentes distintos de $1$, o bien hay variables multiplicándose entre sí.

De manera más formal, una ecuación de lineal es una ecuación que se puede escribir de la forma
\[
a_1x_2 + a_2x_2 + \cdots + a_nx_n = b,
\]
donde $x_1, \ldots, x_n$ son variables y $a_1, \ldots, a_n, b$ son coeficientes, todos del mismo tipo (en este curso trabajaremos con coeficientes reales, pero en otros cursos podrás encontrar coeficientes de otros tipos, como son números enteros, racionales, y complejos, entre otros).

Por su parte, un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales. Por ejemplo, los siguientes son sistemas de ecuaciones lineales:
\[
\begin{cases}
2x -\tfrac{3}{2}y + 8z = 1 \\
9z + 2w + 5y = 3,
\end{cases}
\qquad
\begin{cases}
2 + 9a = 46b -5c \\
2d + 8x = \sqrt{3} \\
x + y + z = a + b + c \\
x = -y
\end{cases}
\]
Bajo esta definición, una única ecuación se puede considerar un sistema de ecuaciones lineales (con una ecuación).

Notemos que no es necesario que todas las ecuaciones compartan variables, sin embargo, generalmente esto sí sucederá. De hecho, podemos pensar que todas las variables aparecen en todas las ecuaciones. En caso de que esto no suceda, podemos considerar que las variables que no aparecen en una ecuación tienen coeficiente cero. Además, siempre podemos reordenar las variables en las ecuaciones para que en todas ellas aparezcan en el mimo orden. Por ejemplo, a continuación el sistema de ecuaciones a la izquierda lo podemos escribir como el de la derecha, sin alterarlo.

\[
\begin{cases}
2x -\tfrac{3}{2}z + 8y = 11 \\
9z + 2w + 5k = -3,
\end{cases}
\qquad
\begin{cases}
0k+0w+2x + 8y – \tfrac{3}{2}z = 11 \\
5k+2w+0x+0y+9z = -3.
\end{cases}
\]

¿Qué quiere decir resolver un sistema de ecuaciones lineales?

Como recordarás, encontrar una solución de una ecuación corresponde a encontrar valores que, al sustituirlos en las variables, hagan que la expresión sea verdadera. Por ejemplo, si tenemos la ecuación $2x-3y=0$, una solución está dada por $x=3$ y $y=2$, ya que al sustituir en efecto tenemos $(2)(3)-(3)(2)=0$. En ocasiones, una ecuación puede tener más de una solución. Por ejemplo, en este caso otra posible solución es $x=6$ y $y=4$, ya que al sustituir en efecto tenemos $(2)(6)-(3)(4)=0$. Para esta ecuación hemos encontrado entonces dos posibles soluciones. Pero aún no la hemos resuelto. Como veremos un poco más abajo, para resolverla tenemos que alcanzar una meta más grande.

Para el caso de sistemas de ecuaciones lineales, encontrar una solución consiste en dar una asignación de valores a las variables que hagan que todas las ecuaciones sean ciertas simultáneamente. Por ejemplo, podemos verificar que los valores
\[
x = 3 \quad y =5 \quad z = -2
\]
hacen que cada una de las ecuaciones en el sistema
\[
\begin{cases}
x + 2y – z = 15 \\
4x – y + z = 5
\end{cases}
\]
se cumplan simultáneamente. Otra posible solución está dada por la asignación
\[
x = 1 \quad y =15 \quad z = 16.
\]

Cuando hablamos de resolver una ecuación o un sistema de ecuaciones no nos bastará encontrar unas cuantas soluciones que funcionen. Queremos encontrar todas las posibles soluciones.

Como ejemplo más sencillo, tratemos de encontrar todas las soluciones del sigueinte sistema con una única ecuación
\[
\begin{cases}
2x + 3y – z = 5.
\end{cases}
\]

Si despejamos $x$ en la ecuación, obtenemos
\[
x = \frac{-3y+z+5}{2}.
\]
Esto nos indica que podemos escoger valores arbitrarios de $y$ y $z$, y el valor de $x$ quedará determinado por estos valores.

Entonces, la solución de la ecuación son todas las $(x,y,z)$ tales que $x = \frac{-3y+z+5}{2}$; es decir, todas las soluciones del sistema de ecuaciones son de la forma
\[
\left( \frac{-3y+z+5}{2}, y, z \right).
\]

Otra manera de decir esto es que el conjunto de soluciones para el sistema de ecuaciones es el siguiente:

$$S:=\left\{\left( \frac{-3y+z+5}{2}, y, z \right):y,z\in \mathbb{R}\right\}.$$

Esto ahora sí resuelve el sistema, pues hemos encontrado una descripción para todas las posibles soluciones del sistema. Si tomas los valores que quieras para $y$ y $z$, podrás dar una solución. Por ejemplo, al tomar $y=1,z=2$ obtenemos la solución $(2,1,2)$, la cual puedes verificar que es una solución al sistema de ecuaciones de una ecuación con el que comenzamos. Toda posible solución está en $S$. Como $y$ y $z$ pueden valer lo que sea, las llamamos variables libres. A $x$, que queda totalmente determinada una vez fijas las variables libres, la llamamos variable pivote.

¿Qué sucede si tenemos más ecuaciones? Tratemos de encontrar todas las soluciones para el sistema de ecuaciones siguiente
\[
\begin{cases}
y+z =1 \\
3x+2y+5z&=1.
\end{cases}
\]

Podemos intentar lo mismo que arriba y fijar algún valor e intentar poner al resto en términos de ese. Pero hay que ser cuidadosos. Por ejemplo, al fijar el valor de $x$, no podremos despejar a $y$ (ni a $z$) en términos únicamente de $x$. Sin embargo, fijamos el valor de $z$, sí podemos determinar todo completamente.

Al fijar $z$, entonces $y$ queda determinado como $y = -z + 1$. Sustituyendo este valor de $y$ en la segunda ecuación, obtendremos $3x + 2(-z+1) + 5z = 1$, que equivale a $3x +3z = -1$, de donde tenemos que $x = -z -1/3 $. Entonces, podemos pensar a $z$ como la variable libre y como $y$ y $x$ dependen completamente de $z$, las pensamos como variables pivote. La descripción de las soluciones quedaría entonces como

$$R=\{(-z-1/3,-z+1,z):z\in \mathbb{R}\}.$$

Aunque ahora hemos tenido éxito con describir totalmente las soluciones de dos sistemas de ecuaciones y en ambos casos hemos tenido una infinidad de soluciones, lo cierto es que existen sistemas de ecuaciones sin solución. Por ejemplo, consideremos el sistema
\[
\begin{cases}
12x + 9y = 7 \\
4x + 3y = 8.
\end{cases}
\]
Podemos ver que cada una de las ecuaciones, de manera individual, tienen soluciones, y hasta podríamos encontrar todas las posibles soluciones (¿puedes dar un par de ejemplos de cada una?). Sin embargo, no existen valores de $x$ y $y$ que resuelvan ambas ecuaciones al mismo tiempo. Esto lo podemos observar porque, si multiplicamos la segunda ecuación por $3$, obtendremos el sistema
\[
\begin{cases}
12x + 9y = 7 \\
12x + 9y = 24.
\end{cases}
\]
Si hubiera alguna solución, podríamos igualar ambas ecuaciones y llegar a que $7=24$, una contradicción.

Interpretación geométrica

El primer conjunto solución que encontramos arriba se puede reescribir en términos de cada variable $y$ y $z$ usando la suma y producto escalar que estudiamos en entradas anteriores de la siguiente manera:

\begin{align*}
S&=\left\{\left( \frac{-3y+z+5}{2}, y, z \right):y,z\in \mathbb{R}\right\}\\
&=\left\{y(-3/2,1,0) + z(1/2,0,1) + (5/2,0,0):y,z\in \mathbb{R}\right\}.
\end{align*}

Posiblemente hayas visto expresiones en algún curso de geometría analítica. Lo anterior es un plano en $\mathbb{R}^3$ que pasa por el punto $(5/2,0,0)$ y generado a partir de ese punto por los vectores $(-3/2,1,0)$ y $(1/2,0,1)$.

Del mismo modo, en el segundo ejemplo que vimos arriba el sistema de ecuaciones puede reescribirse como:

\begin{align*}
R&=\{(-z-1/3,-z+1,z):z\in \mathbb{R}\}\\
&=\{(-1/3,1,0)+z(-1,-1,1):z\in \mathbb{R}\},
\end{align*}

que posiblemente identifiques como la recta en $\mathbb{R}^3$ que parte del punto $(-1/3,1,0)$ y tiene dirección $(-1,-1,1)$.

Forma matricial de un sistema de ecuaciones

Como vimos en una entrada previa, dos vectores del mismo tamaño son iguales si y sólo si sus respectivas entradas son iguales. Una consecuencia de esta definición es que el sistema de ecuaciones
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se cumple si y sólo si
\[
\begin{pmatrix}
a_{11}x_1 + a_{12}x_2 + \cdots a_{1n}x_n \\
a_{21}x_1 + a_{22}x_2 + \cdots a_{2n}x_n \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots a_{mn}x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Más aún, observemos que el lado izquierdo de esta igualdad lo podemos reescribir como un producto de matriz con vector de la siguiente manera
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix},
\]
lo cual podemos denotar como
\[
Ax = b.
\]

Entonces, podemos decir que nuestro sistema tiene solución si existe un vector $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ tal que $Ax = b$, donde
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\quad
\text{y}
\quad
b
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

A la expresión $Ax=b$ le llamamos la forma matricial del sistema de ecuaciones.

Ejemplo de la utilidad de la forma matricial

La forma matricial de un sistema de ecuaciones es sumamente útil, como veremos en las siguientes entradas. Pero veamos un pequeño ejemplo de una de sus aplicaciones. Supongamos que sabemos que la matriz $A$ es invertible con inversa $A^{-1}$. Recordemos que entonces se cumple que$A^{-1}A = \mathcal{I}$. Gracias a esto, podemos comenzar con la forma matricial del sistema de ecuaciones y deducir lo siguiente:
\begin{align*}
&Ax = b \\
\Rightarrow & A^{-1}Ax = A^{-1}b \\
\Rightarrow &x = A^{-1}b.
\end{align*}

Es decir, si conocemos la matriz inversa de $A$, ¡podemos obtener de manera única el vector que resuelve el sistema de ecuaciones mediante una multiplicación de matriz por vector!

Aún cuando no hemos visto el método general para saber si una matriz tiene inversa, ya vimos previamente qué sucede con una matriz de $2\times 2$
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]

Así, verifiquemos mediante un ejemplo que el método que mostramos sirve para encontrar soluciones de sistemas de ecuaciones. Consideremos el sistema de ecuaciones
\[
\begin{cases}
2x + 8y &= 9 \\
-3x + 4y &= 2.
\end{cases}
\]

Este sistema puede ser representado en forma matricial como
\[
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
9 \\
2
\end{pmatrix}.
\]

Como recordarás de entradas pasadas, la matriz inversa de $\begin{pmatrix} 2 & 8 \\ -3 & 4 \end{pmatrix}$ es
\[
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}^{-1}
=
\frac{1}{2\cdot4 – 8\cdot(-3)}
\begin{pmatrix}
4 & -8 \\
3 & 2
\end{pmatrix}
=
\frac{1}{32}
\begin{pmatrix}
4 & -8 \\
3 & 2
\end{pmatrix}
=
\begin{pmatrix}
1/8 & -1/4 \\
3/32 & 1/16
\end{pmatrix}.
\]

Entonces si multiplicamos esta por matriz por la izquierda a ambos lados de la ecuación
\[
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
9 \\
2
\end{pmatrix},
\]
obtendremos
\begin{align*}
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
&=
\begin{pmatrix}
9 \\
2
\end{pmatrix}
\\[5pt]
\begin{pmatrix}
1/8 & -1/4 \\
3/32 & 1/16
\end{pmatrix}
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
&=
\begin{pmatrix}
1/8 & -1/4 \\
3/32 & 1/16
\end{pmatrix}
\begin{pmatrix}
9 \\
2
\end{pmatrix}
\\[5pt]
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
&=
\begin{pmatrix}
5/8 \\
31/32
\end{pmatrix},
\end{align*}
lo que equivale a $x = 5/8$, $y = 31/32$; la solución del sistema. ¡Verifica que es solución!

Más adelante…

En esta entrada repasamos los conceptos y definiciones sobre sistemas de ecuaciones lineales, y nos adentramos a ver cómo existe una relación directa entre los sistemas de ecuaciones lineales y el producto de una matriz por un vector, así como que las matrices invertibles guardan relación con la solución del sistema.

Que la matriz asociada a un sistema de ecuaciones sea invertible en realidad no pasa tanto, y se tienen que desarrollar métodos más generales para resolver sistemas de ecuaciones. En la siguiente entrada conoceremos un algoritmo que nos permitirá resolver sistemas de ecuaciones con una cantidad arbitraria de variables y ecuaciones, y determinar exactamente cómo se ven todas las soluciones.

Tarea moral

  1. Usa el método de las variables libres y las variables pivote para describir al conjunto solución del siguiente sistema de ecuaciones y descríbelo geométricamente. Tendrás que elegir apropiadamente el orden en el que vas fijando las variables.
    \begin{cases}
    w+2x + 8y + 3z&= 0 \\
    -3x + 4y + z&= -1\\
    x+z&=2.\\
    \end{cases}
  2. Usa el método de la inversa para resolver los siguientes tres sistemas de ecuaciones:
    \[
    \begin{cases}
    2x + 8y &= 4 \\
    -3x + 4y &= 1,
    \end{cases} \quad \begin{cases}
    2x + 8y &= 3 \\
    -3x + 4y &= -2,
    \end{cases} \quad \begin{cases}
    2x + 8y &= 1 \\
    -3x + 4y &= -1.
    \end{cases}
    \]
  3. Intenta usar el método de las variables libres y pivote en el siguiente sistema de ecuaciones y explica qué dificultad tiene intentar usarlo directamente:
    \[
    \begin{cases}
    x + y &= 4 \\
    y+z &= 1\\
    z+x&=2.
    \end{cases}
    \]
    ¿Cómo describirías a un sistema de ecuaciones en el cuál se puede hacer el método de variables libres y pivote cómodamente?
  4. Considera un sistema de ecuaciones en forma matricial $Ax=b$. Demuestra que si $x$ y $x’$ son soluciones a este sistema, entonces $\frac{x+x’}{2}$ también lo es. Explica cómo puedes usar esto para a partir de dos soluciones $x$ y $x’$ distintas conseguir una infinidad de soluciones. Concluye que cualquier sistema de ecuaciones lineales o bien no tiene solución, o bien tiene una única solución, o bien tiene una infinidad de soluciones.
  5. Encuentra una matriz no invertible $A$ y un vector $b$ tales que el sistema de ecuaciones $Ax=b$ sí tenga solución. En ese sistema que diste, ¿la solución es única o puedes encontrar otra?

Entradas relacionadas