Archivo de la etiqueta: matrices

Álgebra Lineal II: El teorema de descomposición polar real

Por Ayax Calderón

Introducción

En la entrada anterior enunciamos y demostramos el teorema espectral para matrices simétricas reales. Una de las consecuencias de este teorema es el teorema de descomposición polar. Se puede pensar en el teorema de descomposición polar como al análogo a un resultado muy conocido de números complejos: cualquier número complejo se puede pensar de la forma $z=e^{i\theta}r$ con $r\geq 0$ real. Geométricamente, el complejo se obtiene «rotando tanto como el argumento y luego alargando de acuerdo a la norma».

Así mismo, veremos que toda matriz $A$ tendrá una expresión de la forma $A=US$ donde $U$ es una matriz ortogonal (que juega el papel de «la rotación») y $S$ es una matriz simétrica positiva (que por el teorema espectral recordemos que es básicamente «alargar en varias direcciones»). Este resultado es increíble: ¡nos dice cómo son todas, todas las matrices reales en términos de matrices muy sencillas: las ortogonales (que conocemos muy bien) y las simétricas (que por el teorema espectral también conocemos muy bien)!

Caso invertible del teorema de descomposición polar

Recordemos un resultado de la entrada anterior, que era una de las partes de nuestro teorema de clasificación de matrices positivas. Nos dice que las matrices simétricas positivas «tienen raíz cuadrada».

Proposición. Sea $A$ una matriz simétrica positiva. Entonces existe una matriz simétrica $B$ tal que $B^2=A$.

Como recordatorio, para obtener a $B$ lo que hicimos fue diagonalizar a $A$ de la forma $A=P^{-1}DP$ con $D$ matriz diagonal cuyas entradas eran $\lambda_1,\ldots,\lambda_n$ los eigenvalores de $A$. Como $A$ era positiva, sus eigenvalores eran no negativos, así que podíamos construir $D’$ con entradas $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}$. Después, vimos que $B=P^{-1}D’P$ servía para que $B^2=A$. Observa que además $B$ es positiva pues sus eigenvalores son no negativos.

Como observación adicional, si $A$ fuera positiva definida entonces sus eigenvalores serían positivos, y entonces $B$ también tendría eigenvalores positivos. Así, $B$ sería positiva definida también. De hecho, se puede demostrar que en este caso la matriz $B$ es única (bajo la condición de ser simétrica positiva definida y raíz de $A$). Probar esto queda como parte de los ejercicios de la entrada.

Estamos listos para enunciar y demostrar el teorema de descomposición polar en el caso de matrices invertibles.

Teorema (De descomposición polar, caso invertible). Sea $A\in M_n(\mathbb{R})$ una matriz invertible. Entonces existe una única pareja $(U,S)$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva definida para la que se cumple que $A=US$.

Demostración. Tomemos $A\in M_n(\mathbb{R})$ una matriz invertible. La matriz $^tAA$ es simétrica y positiva definida. Por la discusión anterior, existe una única matriz simétrica positiva definida $S$ tal que $^tAA=S^2$. Como $A$ es invertible, $S$ también lo es, así que definamos $$U=AS^{-1}.$$

Afirmamos que $(U,S)$ cumplen con lo requerido. Ya justificamos que $S$ es simétrica positiva definida. Además, de $U=AS^{-1}$ se obtiene inmediatamente $US=A$. Sólo falta verificar que $U$ es ortogonal. Para ello, al multiplicarla con su transpuesta obtenemos lo siguiente:
\begin{align*}
^tUU&=\hspace{.5mm}^tS^{-1}\hspace{.5mm}^tAAS^{-1}\\
&=S^{-1}S^2S^{-1}\\
&=I_n.
\end{align*}

Veamos ahora la unicidad. Supongamos que $A=U’S’$ con $U’$ ortogonal y $S’$ simétrica positiva definida, Entonces
$$^tAA=S’\hspace{.5mm}^tU’U’S’={S’}^2.$$

De esta manera, $S’$ es precisamente la raíz cuadrada de $^tAA$, que por la discusión anterior es única. Deducimos entonces que $S’=S$ y por lo tanto $U’=A{S’}^{-1}=AS^{-1}=U$.

$\square$

Caso general del teorema de descomposición polar

Es natural preguntarse qué sucede cuando la matriz $A$ no es invertible. Resulta que en ese caso aún podemos encontrar una descomposición, aunque perdemos un poco de las propiedades de las matrices y la unicidad. Por ejemplo, si $A=O_n$, entonces $A=UO_n$ para cualquier matriz ortogonal $U$ y entonces tenemos muchas posibles descomposiciones.

Teorema (De descomposición polar, caso general). Cualquier matriz $A\in M_n(\mathbb{R})$ se puede escribir de la forma $A=US$ con $U$ una matriz ortogonal y $S$ una matriz simétrica positiva.

¿Por qué falla nuestra demostración? Todavía tenemos que $^tAA$ es positiva, así que podríamos tomar una raíz cuadrada $S$. El problema es que como $A$ no es invertible, entonces $S$ tampoco lo es. Por ello, no podemos definir $U=AS^{-1}$ como lo hicimos con anterioridad. Sin embargo, podemos ser astutos y «cambiar tantito» a $A$ para que sí se vuelva invertible. De hecho, podemos tomar muchas matrices que se acercan a $A$ y sí son invertibles. Con ello podemos usar un «argumento al límite». Formalicemos estas ideas.

Demostración. Consideremos las matrices $A_k=A+\frac{1}{k}I_n$. Recordemos que $\det(A+\lambda I_n)$ es un polinomio de grado $n$ así que tiene a lo más $n$ raíces. Por ello, existe un $k_0$ tal que para toda $k>k_0$ la matriz $A_k$ es invertible. Al aplicar el teorema de descomposición polar a cada una de dichas $A_k$, obtenemos una matriz ortogonal $U_k$ y una simétrica positiva definida $S_k$ tales que

$$A_k=U_kS_k.$$

Las entradas de cada $U_k$ cumplen que están en el intervalo $[-1,1]$ (pues la suma de las entradas de cada fila es igual a $1$). Así, $U_k$ es una sucesión de matrices en el compacto de matrices con entradas $[-1,1]$. En un compacto toda sucesión tiene una subsucesión convergente, así que podemos elegir una subsucesión de estas matrices, digamos $U_{k_1}, U_{k_2},\ldots$ que converge a una matriz $U$.

Se puede ver que el producto de matrices es continúo y obtener inversas de matrices también es continuo (por ejemplo, por las fórmulas de inversa por matriz de adjuntos). De este modo, aplicando límite $j\to \infty$ a la igualdad $^tU_{k_j}U_{k_j}=I_n$ obtenemos que $^tU=I_n$, de modo que $U$ es ortogonal.

Del mismo modo, como trasponer es continuo, $S_{k_1}, S_{k_2},\ldots$ converge a una matriz simétrica $S$. Finalmente, usando nuevamente la continuidad del producto de matrices obtenemos

\begin{align*}
A&=\lim_{j\to \infty} A_{k_j}\\
&=\lim_{j\to \infty} U_{k_j} S_{k_j}\\
&=US.
\end{align*}

Sólo nos falta demostrar que $S$ es positiva, pero si tomamos $X\in\mathbb{R}^n$, entonces pasando al límite $j\to \infty$ en la desigualdad $^tXS_{k_j}X > 0$ obtenemos $^tXSX\geq 0$. Aquí es donde se podría perder que $S$ es positiva definida, pero seguimos teniendo que $S$ es positiva.

$\square$

Más adelante…

Tanto el teorema espectral como el teorema de descomposición polar son resultados de caracterización fundamentales en álgebra lineal y finalmente nos dan una respuesta a la pregunta de, geométricamente, cómo son todas las posibles transformaciones lineales. En las siguientes secciones se esbozarán los resultados análogos para el caso complejo.

Después de ello, en la cuarta unidad del curso cubriremos otro teorema que nos permitirá decir «cómo son todas las matrices». Quizás no todas las matrices sean directamente similares a una matriz diagonal. Pero enunciaremos y demostraremos el teorema de Jordan que dirá que cualquier matriz es similar a una «casi diagonal», a la que llamaremos diagonal por bloques.

Tarea moral

  1. Sean que $A$ y $B$ son matrices simétricas. Demuestra que $A$ y $B$ conmutan si y sólo si existe una misma matriz $P$ tal que $PAP^{-1}$ y $PBP^{-1}$ son diagonales (a esto se le conoce como que $A$ y $B$ sean «simultáneamente diagonalizables»)
  2. Usando el ejercicio anterior, demuestra que si $A$ es simétrica positiva definida, y se cumple $B^2=A=C^2$ con $B$ y $C$ matrices simétricas positivas definidas, entonces $B=C$.
  3. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que $^tAA=^tBB$. Demuestra que existe una matriz ortogonal $U\in M_n(\mathbb{R})$ tal que $B=UA$.
  4. Encuentra la descomposición polar de $$\begin{pmatrix}
    11 & -5\\
    -2 & 10 \end{pmatrix}.$$
  5. Sea $A$ una matriz cuadrada con descomposición polar $A=WP$. Demuestra que $A$ es normal si y sólo si $WP^2=P^2W$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Matrices positivas y congruencia de matrices

Por Diego Ligani Rodríguez Trejo

Introducción

Ya hablamos de las matrices asociadas a formas bilineales (y sesquilineales), y de formas cuadráticas (y cuadráticas hermitianas). Así mismo, tomamos un pequeño paréntesis para recordar qué es un producto interior y un espacio euclideano. Además, vimos las nociones análogas para el caso complejo.

Lo que haremos ahora es conectar ambas ideas. Extenderemos nuestras nociones de positivo y positivo definido al mundo de las matrices. Además, veremos que estas nociones son invariantes bajo una relación de equivalencia que surge muy naturalmente de los cambios de matriz para formas bilineales (y sesquilineales).

Congruencia de matrices

En las entradas de matrices de formas bilineales y matrices de formas sesquilineales vimos cómo obtener matrices asociadas a una misma forma bilineal (o sesquilineal) usando distintas bases. Dos matrices $A$ y $A’$ representaban a la misma forma bilineal en distintas bases si y sólo si existía una matriz de cambio de base $P$ tal que $$A’= \text{ }^tP A P,$$ en el caso real, o bien tal que $$A’=P^\ast A P,$$ en el caso complejo.

Definición. Sean $A$ y $B$ matrices simétricas en $M_n(\mathbb{R})$. Diremos que $A$ es congruente a $B$ si existe una matriz invertible $P$ en $M_n(\mathbb{R})$ tal que $$A=\text{ } ^tP B P.$$

Definición. Sean $A$ y $B$ matrices hermitianas en $M_n(\mathbb{C})$. Diremos que $A$ es congruente a $B$ si existe una matriz invertible $P$ en $M_n(\mathbb{C})$ tal que $$A=P^\ast B P.$$

Las definiciones anteriores están restringidas a las matrices simétricas (o hermitianas, respectivamente). Se podrían dar definiciones un poco más generales. Sin embargo, a partir de ahora nos enfocaremos únicamente a resultados que podamos enunciar para matrices simétricas (o hermitianas, respectivamente).

Proposición. La relación «ser congruentes» es una relación de equivalencia, tanto en el caso real, como en el caso complejo.

Demostración. Daremos la demostración en el caso real. El caso complejo queda como ejercicio. Empecemos con la reflexividad. Esto es claro ya que la matriz identidad $I_n$ es invertible y se tiene la igualdad

\begin{align*} A=\text{ } ^tI_nAI_n.\end{align*}

Para la simetría, supongamos que tenemos matrices $A$ y $B$ en $M_n(\mathbb{R})$ tales que $A$ es congruente a $B$ con la matriz invertible $P$ de $M_n(\mathbb{R})$, es decir, tales que

\begin{align*} A=\text{ } ^tPBP.\end{align*}

Como $P$ es invertible, su transpuesta también. De hecho, $(^tP)^{-1}=\text{ } ^t(P^{-1})$. Así, podemos multiplicar por la inversa de $^tP$ a la izquierda y la por la inversa de $P$ a la derecha para obtener

\begin{align*} ^t(P^{-1})AP^{-1}=B.\end{align*}

Esto muestra que $B$ es congruente a $A$.

Finalmente, veamos la transitividad. Supongamos que $A$ es congruente a $B$ mediante la matriz invertible $P$ y que $B$ es congruente a $C$ mediante la matriz invertible $Q$. Tendríamos entonces las igualdades

\begin{align*}
A&= \text{ }^t PBP,\\
B&= \text{ }^t QCQ,
\end{align*}

de donde $$A= \text{ }^tP \text{ }^tQCQP= \text{ }^t (QP) C (QP).$$ Esto muestra que $A$ es congruente a $C$ mediante la matriz $QP$, que como es producto de invertibles también es invertible.

$\square$

Clasificación de matrices simétricas por congruencia

¿Será posible para cualquier matriz simétrica encontrar una matriz congruente muy sencilla? La respuesta es que sí. El siguiente teorema puede pensarse como una versión matricial del teorema de Gauss.

Teorema. Cualquier matriz simétrica en $M_n(\mathbb{R})$ es congruente a una matriz diagonal.

Demostración. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$ y sea $q$ la forma cuadrática en $\mathbb{R}^n$ asociada a $A$ en la base canónica, es decir, aquella tal que $$q(X)=\text{ }^tXAX,$$ para cualquier vector $X\in \mathbb{R}^n$.

Lo que tenemos que hacer es encontrar una base de $\mathbb{R}^n$ en la cual la matriz asociada a $q$ sea diagonal. Haremos esto mediante el teorema de Gauss. Por ese resultado, existen reales $\alpha_1,\ldots,\alpha_r$ y formas lineales linealmente independientes $l_1,\ldots,l_r$ tales que $$q(x)=\sum_{i=1}^r \alpha_i l_i(x)^2.$$

Completemos $l_1,\ldots,l_r$ a una base $l_1,\ldots,l_n$ de $(\mathbb{R}^n)^\ast$. Tomemos la base $u_1,\ldots, u_n$ de $\mathbb{R}^n$ dual a $l_1,\ldots,l_n$. Esta es la base que nos ayudará. Recordemos que la definición de base dual hace que tengamos

\begin{align*} l_i(u_j)=
\begin{cases}
1\quad \text{ si $i=j$,}\\
0\quad \text{ si $i\neq j$,}
\end{cases}
\end{align*}

y que por lo tanto las funciones $l_i$ «lean» las coordenadas de un vector en la base de las $u_i$. Tomemos un vector cualquiera $x\in \mathbb{R}^n$ y escribámoslo en la base de las $u_i$ como $x=\sum_{i=1}^n x_iu_i$. Definiendo $\alpha_{r+1}=\ldots=\alpha_n=0$, tenemos que:

\begin{align*}
q(x)&= \sum_{i=1}^n \alpha _i l_i(x)^2\\
&= \sum_{i=1}^n \alpha_i x_i^2.
\end{align*}

Esto nos dice que la matriz asociada a $q$ con respecto a la base $u_1, \ldots, u_n$ es la matriz diagonal $D$ que tiene en la diagonal a los coeficientes $\alpha_i$. Esto muestra lo que queríamos.

$\square$

El teorema también tiene una versión compleja.

Teorema. Cualquier matriz hermitiana en $M_n(\mathbb{C})$ es congruente a una matriz diagonal.

La demostración es similar. Usa el teorema de Gauss complejo. Por esta razón, queda como ejercicio.

Estos resultados parecen una curiosidad algebraica. Sin embargo, pronto veremos que tienen consecuencias importantes como la clasificación de todos los productos interiores (y los productos interiores hermitianos).

Matrices positivas y positivas definidas

En entradas anteriores definimos qué quiere decir que una forma bilineal (o sesquilineal) sea positiva o positiva definida. Podemos dar una definición análoga para matrices. Nos enfocaremos sólo en matrices simétricas (en el caso real) y en matrices hermitianas (en el caso complejo).

Definición. Una matriz simétrica $A$ en $M_n(\mathbb{R})$ es positiva si para cualquier $X\in \mathbb{R}^n$ se tiene que $^tXAX\geq 0$. Es positiva definida si se da esta desigualdad y además la igualdad sucede sólo con $X=0$.

Definición. Una matriz hermitiana $A$ en $M_n(\mathbb{C})$ es positiva si para cualquier $X\in \mathbb{C}^n$ se tiene que $X^\ast AX\geq 0$. Es positiva definida si se da esta desigualdad y además la igualdad sucede sólo con $X=0$.

Es sencillo ver que entonces una matriz $A$ real (o compleja) que sea positiva definida da un producto interior (o bien un producto interior hermitiano) en $\mathbb{R}^n$ (o bien en $\mathbb{C}^n$) dado por $\langle X,Y\rangle = \text{ } ^tX A Y$, (o bien por $\langle X,Y\rangle = X^\ast A Y$). Y viceversa, un producto interior (o producto interior hermitiano) tiene representaciones matriciales que son positivas definidas. Esto no depende de la base elegida.

Proposición. Si $A,B \in M_n(\mathbb{R})$ son matrices congruentes y $A$ es una matriz positiva, entonces $B$ también lo es.

Demostración. Supongamos que la congruencia se da mediante la matriz invertible $P$ de la siguiente manera: $$B=\text{ }^t P A P.$$

Tomemos un vector $X\in \mathbb{R}^n$. Tenemos que:

\begin{align*}
^t X B X &= \text{ }^t X \text{ } ^t P A P X\\
&=\text{ } ^t(PX) A (PX)\\
&\geq 0.
\end{align*}

En la última igualdad estamos usando que $A$ es positiva. Esto muestra lo que queremos.

$\square$

Dicho en otras palabras, en el mundo real las congruencias preservan las positividades de matrices. También puede demostrarse que las congruencias preservan las positividades definitivas. Y así mismo, se tienen resultados análogos para el caso complejo. En la sección de ejercicios viene uno de estos resultados.

Clasificación de matrices positivas

Es sencillo ver si una matriz real diagonal $D$ es positiva. Todas las entradas en su diagonal deben de ser mayores o iguales a cero. En efecto, si su $i$-ésima entrada en la diagonal fuera un número $d_{ii}<0$, entonces para el $i$-ésimo vector canónico $e_i$ de $\mathbb{R}^n$ tendríamos $^te_i D e_i=d_{ii}<0$, lo cual sería una contradicción.

Combinando esto con todo lo hecho en esta entrada, obtenemos un teorema de clasificación de matrices positivas.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. $A$ es congruente a una matriz diagonal con puras entradas mayores o iguales a cero.
  3. $A$ puede ser escrita de la forma $^tBB$ para alguna matriz $B\in M_n(\mathbb{R})$.

Demostración. 1) implica 2). Sabemos que $A$ es congruente a una matriz diagonal. Como $A$ es positiva, dicha matriz diagonal también lo es. Por el comentario antes del enunciado del teorema, dicha matriz diagonal debe tener únicamente entradas mayores o iguales que 0.

2) implica 3). Supongamos que $A=\text{ }^t P D P$, en donde $P$ es invertible y $D$ tiene únicamente entradas no negativas $d_1,\ldots,d_n$ en la diagonal. Definamos a $S$ como la matriz diagonal de entradas $\sqrt{d_1}, \ldots, \sqrt{d_n}$. Tenemos que $$D=S^2=SS=\text{ }^tSS.$$ De este modo, definiendo $B=SP$ obtenemos \begin{align*}A&= \text{ }^t P D P\\ &= ( \text{ }^t P \text{ }^t S) (SP) \\&= \text{ }^t (SP) SP \\&= \text{ }^t B B,\end{align*} como queríamos.

3) implica 1). Supongamos que $A= \text{ }^t B B$ para alguna matriz $B$. Para cualquier $X\in \mathbb{R}^n$ tendríamos que $$ \text{ }^t X A X = \text{ }^t (BX) BX = \norm{BX}\geq 0.$$ Aquí la norma es con respecto al producto interior canónico de $\mathbb{R}^n$. Esto es lo que queríamos.

$\square$

También existe un teorema análogo que clasifica las matrices positivas definidas.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva definida.
  2. $A$ es congruente a una matriz diagonal con puras entradas diagonales positivas.
  3. $A$ puede ser escrita de la forma $^tBB$ para alguna matriz $B\in M_n(\mathbb{R})$ invertible.

Y, así mismo, existen análogos para matrices hermitianas con entradas en los complejos.

Más adelante…

En esta entrada definimos la relación de congruencia de matrices. Vimos qué son las matrices positivas y las positivas definidas. Además, vimos que la congruencia preserva estas nociones.

Podemos ser mucho más finos con nuestro análisis. Si tenemos una matriz simétrica, por los resultados de esta entrada es congruente a una matriz diagonal. Podemos fijarnos en cuántas entradas positivas, cuántas negativas y cuántas cero hay en esta diagonal. En la siguiente entrada veremos que las congruencias también preservan estas cantidades.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Demuestra que cualquier matriz hermitiana en $M_n(\mathbb{C})$ es congruente a una matriz diagonal.
  2. Demuestra que si $A$ es una matriz en $M_n(\mathbb{C})$ hermitiana y positiva definida, y $B$ es una matriz en $M_n(\mathbb{C})$ hermitiana y congruente a $A$, entonces $B$ también es positiva definida.
  3. Sea $n \geq 1$ y $A=[a_{ij}] \in M_n(\mathbb{R})$ definida por $a_{ij}=min(i,j)$, prueba que $A$ es simétrica y definida positiva.
  4. Sea $A=[a_{ij}] \in M_n(\mathbb{R})$ tal que $a_{ij}=1$ si $i \neq j$ y $a_{ii} > 1$ si $1 \leq i \leq n$. Prueba que $A$ es simétrica y definida positiva.
  5. Demuestra que una matriz hermitiana $A\in M_n(\mathbb{C})$ es positiva si y sólo si puede ser escrita de la forma $A=BB^\ast$ para alguna matriz $B\in M_n(\mathbb{C})$, y que es positiva definida si y sólo si tiene una expresión así con $B$ invertible.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Matrices de formas bilineales

Por Diego Ligani Rodríguez Trejo

Introducción

Al principio de esta unidad, especialmente en la entrada del teorema de Gauss empezamos a hablar de una relación entre formas bilineales y matrices. Aquí formalizaremos esta relación. Veremos cómo se define la matriz asociada a una forma bilineal y cómo podemos traducir operaciones con la forma bilineal en operaciones con su matriz asociada.

Matriz asociada a una forma bilineal y una forma cuadrática

En toda esta entrada, $V$ es un espacio vectorial sobre $\mathbb{R}$ de dimensión finita.

Definición. Sea $ e_1, \cdots , e_n$ una base de $V$ y $b: V \times V \rightarrow \mathbb{R}$ una forma bilineal de $V$. La matriz de $b$ con respecto a la base $e_1,\ldots, e_n$ es la matriz

\begin{align*} A=[a_{ij}] \text{ con } a_{ij}=b(e_i,e_j),\end{align*}

para todo $i,j$ tal que $1 \leq i,j \leq n$.

Para definir la forma matricial de una forma cuadrática tenemos que ser un poco más cuidadosos. Hay más de una forma bilineal que puede generar a una misma forma cuadrática. Sin embargo, por la identidad de polarización tenemos que esta forma bilineal es única si pedimos adicionalmente que sea simétrica. De aquí obtenemos la siguiente definición.

Definición. Sea $e_1, \cdots , e_n$ una base de $V$ y $q$ una forma cuadrática de $V$, la matriz de $q$ con respecto a la base $e_1, \ldots, e_n$ es la matriz de su forma polar en esa misma base.

Problema. Sea $V=\mathbb{R}^3$ y $q$ dada como sigue
\begin{align*} q(x)=x_1x_2+x_2x_3+x_3x_1,\end{align*}

para cada $x=(x_1,x_2,x_3)\in \mathbb{R}^3$.

Encuentra su matriz asociada $A$ en la base canónica y su matriz asociada $B$ en la base \begin{align*}u_1&=(1,1,0),\\ u_2&=(1,0,1),\\ u_3&=(0,1,1).\end{align*}

Solución. Primero, mediante la identidad de polarización tenemos que la forma polar $b$ de $q$ cumple que $b(x,x’)$ es

\begin{align*} \frac{x’_1x_2+x’_2x_1+x’_1x_3+x’_3x_1+x’_2x_3+x’_3x_2}{2} ,\end{align*}

para $x=(x_1,x_2,x_3)$ y $x’=(x’_1,x’_2,x’_3)$.

Ahora, calculemos qué le hace esta forma bilineal a la base canónica de par en par.

\begin{align*}
&b(e_1,e_1)=b(e_2,e_2)=b(e_3,e_3)=0 \\
\text{y} \quad &b(e_1,e_2)=b(e_1,e_3)=b(e_2,e_3)=\frac{1}{2}.
\end{align*}

Por lo que su matriz asociada en la base canónica es

\begin{align*} A=\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}\end{align*}

Por otro lado, calculando lo que $b$ le hace a nuestra otra base

\begin{align*}
&b(u_1,u_1)=b(u_2,u_2)=b(u_3,u_3)=1 \\
\text{y} \quad &b(u_1,u_2)=b(u_1,u_3)=b(u_2,u_3)=\frac{3}{2}
\end{align*}

Y construyendo esta otra matriz:

\begin{align*}
B=\begin{pmatrix} 1 & \frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & 1 & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2} & 1
\end{pmatrix}
\end{align*}

$\triangle$

Evaluar la forma bilineal con su matriz

En la entrada del teorema de Gauss vimos que si $b$ es una forma bilineal de $V$ y $e_1,\ldots,e_n$ es una base, entonces para cualesquiera vectores

\begin{align*}
x&=x_1e_1+\ldots+x_ne_n\\
y&=y_1e_1+\ldots+y_ne_n
\end{align*}

tenemos que $$b(x,y)=\sum_{i=1}^n \sum_{j=1}^n x_i y_j b(e_i,e_j).$$

Por la regla del producto de matrices, la expresión de la derecha es precisamente lo que se obtiene al realizar la siguiente operación:

$$^t{X} \begin{pmatrix}b(e_1,e_1) & b(e_1,e_2) & \ldots & b(e_1,e_n)\\ b(e_2,e_1) & b(e_2,e_2) & \ldots & b(e_2,e_n)\\ \vdots & & \ddots & \vdots \\ b(e_n,e_1) & b(e_n,e_2) & \ldots & b(e_n,e_n) \end{pmatrix} Y,$$

donde $X=(x_1,\ldots,x_n)$ y $Y=(y_1,\ldots,y_n)$.

Notemos que en medio tenemos justo la forma matricial de $b$ en la base $e_1,\ldots,e_n$. Al lado izquierdo tenemos al transpuesto del vector de coordenadas de $x$ en la base $e_1,\ldots, e_n$ y al lado derecho tenemos al vector de coordenadas de $y$ en esta misma base. Hemos demostrado lo siguiente.

Proposición. Sea $b$ una forma bilineal de $V$ y $\beta$ una base de $V$. Sea $A$ la matriz de $b$ en la base $\beta$. Sean $X$ y $Y$ los vectores de coordenadas de vectores $x$ y $y$ de $V$ en la base $\beta$, respectivamente. Entonces $$b(x,y)=\text{}^tXAY.$$

Algunas consecuencias de la proposición anterior son:

  • Una forma bilineal es simétrica si y sólo si su matriz en una base cualquiera es simétrica.
  • Si fijamos la base $\beta$ y la forma bilineal $b$, entonces la matriz que hace que $b(x,y)=\text{}^tXAY$ para todos $x,y$ es única.

La discusión anterior nos permite comenzar con una forma bilineal $b$ y una base $\beta$ y obtener una (y sólo una) matriz. Partiendo de una matriz y una base $\beta$ también podemos obtener una forma bilineal mediante la regla $$b(x,y)=\text{}^tXAY.$$

Cambios de base

En los resultados anteriores al fijar un espacio vectorial $V$ de dimensión $n$ y una base $\beta$ obtenemos una asociación biyectiva (de hecho un isomorfismo) entre formas bilineales de $V$ y matrices en $M_n(\mathbb{R})$.

Sin embargo, al cambiar la base de $V$, la matriz que representa a una forma bilineal puede cambiar.

Proposición. Supongamos que una forma bilineal $b$ tiene asociada una matriz $A$ con respecto a una base $\beta$ y una matriz $A’$ con respecto a otra base $\beta’$. Sea $P$ la matriz de cambio de base de $\beta$ a $\beta’$. Entonces
\begin{align*} A’=\text{ } ^tPAP.\end{align*}

Demostración. Sean $x,y \in V$ dos vectores cualesquiera. Escribamos $\beta = \{u_1, \cdots , u_n\}$ y $\beta’ = \{u’_1, \cdots , u’_n\}$. Usando $\beta$ escribamos

\begin{align*} x=x_1u_1 + \cdots + x_nu_n.\end{align*}

Definamos a $X$ como el vector columna de las coordenadas de $x$ en la base $\beta$, es decir:

$$X=\begin{pmatrix} x_1 \\
\vdots \\
x_n \end{pmatrix}.$$

Definimos análogamente a $X’, Y, Y’$ como los vectores columnas de coordenadas de $x$ en la base $\beta’$, de $y$ en la base $\beta$ y de $y$ en la base $\beta’$, respectivamente.

Sabemos entonces que

\begin{align*} b(x,y)= \text{ }^tXAY= \text{ }^tX’A’Y’\end{align*}

Además, sabemos que

\begin{align*}
X&=PX’\\
Y&=PY’
\end{align*}

De aquí se tiene la siguiente cadena de igualdades:

\begin{align*}
\text{ }^tX’A’Y’&= b(x,y)\\
&=\text{ }^tXAY\\
&=\text{ }^t(PX’)A(PY’)\\
&=\text{ }^tX’\text{ }^tPAPY’.
\end{align*}

Fijándonos en los extremos

\begin{align*} \text{ }^tX’A’Y’=\text{ }^tX’\text{ }^tPAPY’. \end{align*}

Por la unicidad de la matriz que representa a $b$ en la base $\beta’$, finalmente concluimos que

\begin{align*} A’=\text{ } ^tPAP.\end{align*}

$\square$

Más adelante…

Esta es una pequeña introducción a la relación entre las formas bilineales (y cuadráticas por extensión) y las matrices. Podemos ver que ésta nos dio otra manera de entender y calcular a las formas bilineales. Algo que no hemos explorado es el poder que esta relación nos entrega al aplicar todo lo que conocemos acerca de matrices a las matrices asociadas a una forma bilineal. Antes de llegar a eso, primero veremos el análogo complejo de lo que acabamos de estudiar.

Otro problema que enfrentamos es la dependencia de las matrices a su base. Aunque este no es un problema que podamos evitar, nos gustaría encontrar propiedades que se mantengan sin importar la base que sea elegida. Esto lo abordaremos un poco más adelante. De hecho, cuando lo hagamos estaremos listos para enunciar y demostrar un resultado muy interesante: la ley de inercia de Sylvester.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{R}^3$ y definamos $q: V \rightarrow \mathbb{R}$
    \begin{align*} q(x,y,z)= (x+2y+3z)^2+(y+z)^2. \end{align*}
    Prueba que $q$ es cuadrática y encuentra su forma polar. ¿Es esta forma cuadrática $q$ positiva definida? ¿Es positiva?
  2. Encuentra la matriz $A$ asociada a la forma cuadrática $q$ del ejercicio anterior con respecto a la base canónica y la matriz $B$ asociada a $q$ con respecto a la base $(1,1,1), (0,-1,-1),(0,0,2)$.
  3. Encuentra las matrices de cambio de base entre la base canónica y la base del inciso anterior. Verifica que se cumple el resultado de cambios de base.
  4. Encuentra una expresión de Gauss para $q$.
  5. Encuentra el rango de $A$ y de $B$. Encuentra el determinante de $A$ y de $B$ ¿Notas algo en particular?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Transformaciones ortogonales, isometrías y sus propiedades

Por Ayax Calderón

Introducción

En entradas anteriores hemos estudiado algunas transformaciones lineales especiales con respecto a la transformación adjunta asociada. Estudiamos, por ejemplo, las transformaciones normales que son aquellas que conmutan con su adjunta. El siguiente paso es estudiar las transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

Isometrías y transformaciones ortogonales

Definición. Sean $V_1,V_2$ espacios euclidianos con productos interiores $\langle \cdot, \cdot \rangle_1$ y $\langle \cdot, \cdot \rangle_2$, y con correspondientes normas $||\cdot||_1$ y $||\cdot||_2$. Una isometría entre $V_1$ y $V_2$ es un isomorfismo $T:V_1\to V_2$ tal que para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$

Por lo tanto, una isometría es una transformación lineal biyectiva que preserva el producto interior. El siguiente problema nos da una mejor idea de esta preservación.

Problema. Sea $T:V_1\to V_2$ un isomorfismo de espacios vectoriales. Las siguientes dos condiciones son equivalentes.

  1. $\langle T(x),T(y) \rangle_2 = \langle x,y \rangle_1 $ para cualesquiera $x,y\in V_1$.
  2. $||T(x)||_2=||x||_1$ para cualquier $x\in V_1$.

Solución. $(1)\Rightarrow (2).$ Tomando $y=x$ se obtiene
$$||T(x)||_2^2=||x||_1^2$$ y por lo tanto $||T(x)||_2=||x||_1$, lo cual muestra el inciso 2.

$(2) \Rightarrow (1).$ Usando la identidad de polarización y la linealidad de $T$, podemos mostrar que
\begin{align*}
\langle T(x), T(y) \rangle_2 &=\frac{||T(x)+T(y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&= \frac{||T(x+y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&=\frac{||x+y||_2^2-||x||_2^2 – ||y||_2^2}{2}=\langle x,y \rangle_1,
\end{align*} lo cual muestra 1.

$\square$

Observación. Si $T$ es una transformación como la del problema anterior, entonces $T$ es automáticamente inyectiva: si $T(x)=0$, entonces $||T(x)||_2=0$, de donde $||x||_1=0$ y por lo tanto $x=0$. Recuerda que si $T$ es transformación lineal y $\text{ker}(T)=\{0\}$, entonces $T$ es inyectiva.

Definición. Sea $V$ un espacio euclidiano. Diremos que una transformación lineal $T:V\to V$ es ortogonal si $T$ es una isometría de $V$ en $V$. En otras palabras, $T$ es ortogonal si $T$ es biyectiva y para cualesquiera $x,y\in V$ se tiene que $$\langle T(x), T(y) \rangle = \langle x,y \rangle.$$

Nota que la biyectividad de $T$ es consecuencia de la relación anterior, gracias a la observación. Por lo tanto $T$ es ortogonal si y sólo si $T$ preserva el producto interior.

Similarmente, diremos que una matriz $A\in M_n(\mathbb{R})$ es ortogonal si
$$A^tA=I_n.$$

Estas nociones de ortogonalidad parecen algo distintas entre sí, pero la siguiente sección ayudará a entender la conexión que existe entre ellas.

Ejemplo. La matriz $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es ortogonal, pues $$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\triangle$

Equivalencias de transformaciones ortogonales

Entendamos un poco más qué quiere decir que una matriz $A\in M_n(\mathbb{R})$ sea ortogonal. Supongamos que sus filas son $R_1,\dots,R_n$. Notemos que la entrada $(i,j)$ de la matriz $A^tA$ es precisamente el producto punto $\langle R_i, R_j \rangle$. De esta manera, pedir que $$A^tA=I_n$$ es equivalente a pedir que $$\langle R_i, R_j \rangle = \begin{cases} 1 &\text{si $i=j$}\\ 0 & \text{en otro caso.}\end{cases}.$$

Esto es exactamente lo mismo que pedir que los vectores $R_1,\ldots,R_n$ formen una base ortonormal de $\mathbb{R}^n$.

También, de la igualdad $A^tA=I_n$ obtenemos que $A$ y $^tA$ son inversas, de modo que también tenemos $^tAA=I_n$, de donde $^tA$ también es ortogonal. Así, las filas de $^tA$ también son una base ortonormal de $\mathbb{R}^n$, pero estas filas son precisamente las columnas de $A$. Por lo tanto, prácticamente hemos probado el siguiente teorema.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz y considera a $\mathbb{R}^n$ con el producto interior canónico. Las siguientes afirmaciones son equivalentes:

  1. $A$ es ortogonal.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  4. Para cualquier $x\in\mathbb{R}^n$ se tiene $$||Ax||=||x||.$$

Las afirmaciones restantes quedan como tarea moral. Tenemos un resultado muy similar para el caso de transformaciones lineales.

Teorema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal. Demuestra que las siguientes afirmaciones son equivalentes:

  1. $T$ es ortogonal, es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T=Id$.

Demostración.$(1) \Rightarrow (2).$ Haciendo la sustitución $x=y$.

$(2) \Rightarrow (3).$ Usando polarización (haz los detalles de tarea moral)

$(3) \Rightarrow (1).$ Pensemos que $2$ se satisface. Entonces

\begin{align*}
\langle T^*\circ T(x)-x,y \rangle&=\langle y, T^*(T(x)) \rangle-\langle x,y \rangle\\
&= \langle T(x),T(y) \rangle – \langle x,y \rangle=0
\end{align*}

para cualesquiera $x,y \in V$ y por lo tanto $T^*(T(x))=x$, lo que prueba $(4)$.

$(4) \Rightarrow (1).$ Si $(4)$ se satisface, entonces $T$ es biyectiva, con inversa $T^*$, por lo que bastará ver que se cumple $(3)$ (pues a su vez implica $(2)$. Notemos que para cualquier $x\in V$ tenemos: $$||T(x)||^2=\langle T(x),T(x) \rangle =\langle x,T^*(T(x)) \rangle=\langle x,x \rangle=||x||^2.$$ Se concluye el resultado deseado.

$\square$

Las transformaciones ortogonales forman un grupo

Las propiedades anteriores nos hablan de una transformación ortogonal. Sin embargo, al tomar un espacio vectorial $V$ y considerar todas las posibles transformaciones ortogonales, tenemos una estructura algebraica bonita: un grupo. Este es el contenido del siguiente teorema.

Teorema. Sea $V$ un espacio euclideano y $O(V)$ el conjunto de transformaciones ortogonales de $V$. Se tiene que $O(V)$ es un grupo bajo composición. En otras palabras, la composición de dos transformaciones ortogonales es una transformación ortogonal y la inversa de una transformación ortogonal es una transformación ortogonal.

Demostración. Veamos la cerradura por composición. Sean $T_1,T_2$ transformaciones lineales ortogonales de $V$. Entonces $T_1\circ T_2$ es lineal y además
$$||(T_1\circ T_2)(x)||=||T_1(T_2(x))||=||T_2(x)||=||x||$$
para todo $x\in V$. Por lo tanto $T_1\circ T_2$ es una transformación lineal ortogonal.

Análogamente tenemos que si $T$ es ortogonal, entonces
$$||x||=||T(T^{-1}(x))||=||T^{-1}(x)||$$
para todo $x\in V$, lo que muestra que $T^{-1}$ es ortogonal.

$\square$

Definición. A $O(V)$ se le conoce como el grupo ortogonal de $V$.

Más adelante…

En esta entrada definimos y estudiamos las transformaciones ortogonales. También hablamos de las matrices ortogonales. Dimos algunas caracterizaciones para este tipo de transformaciones. Vimos que las transformaciones ortogonales de un espacio vectorial forman un grupo $O(V)$.

Las transformaciones que fijan el producto interior también fijan la norma y las distancias, de modo que geométricamente son muy importantes. En cierto sentido, entender quiénes son las transformaciones ortogonales de un espacio vectorial nos ayuda a entender «de qué maneras podemos cambiarlo linealmente, pero sin cambiar su métrica». En las siguientes entradas entenderemos con más profundidad al grupo $O(\mathbb{R}^n)$, el cual nos dará un excelente ejemplo de este fenómeno.

Tarea moral

  1. Verifica que la matriz
    $$A=\begin{pmatrix}
    \frac{3}{5} & \frac{4}{5}\\
    -\frac{4}{5} & \frac{3}{5}
    \end{pmatrix}$$ es ortogonal.
  2. Sea $\beta$ una base ortnormal de un espacio euclidiano $V$ y sea $\beta’$ otra base de $V$. Sea $P$ la matriz de cambio de base de $\beta$ a $\beta’$. Demuestra que $\beta’$ es ortonormal si y sólo si $P$ es ortogonal.
  3. Termina las demostraciones de las caracterizaciones de matrices ortogonales y de transformaciones ortogonales.
  4. Demuestra que el producto de matrices ortogonales es también una matriz ortogonal.
  5. Encuentra todas las posibles transformaciones ortogonales de $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Teorema de Gauss

Por Diego Ligani Rodríguez Trejo

Introducción

En la entrada anterior vimos un recordatorio de las formas bilineales, cuadráticas y sus polares. En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices.

Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.

Preparaciones para el teorema de Gauss

Antes de empezar con el teorema, veamos una propiedad de las formas cuadráticas en $\mathbb{R}^n$. Tomemos $e_1,\ldots, e_n$ la base canónica de $\mathbb{R}^n$. Tomemos $q$ una forma cuadrática de $\mathbb{R}^n$ y $b$ su forma polar.

Cualquier vector $x=(x_1,\ldots,x_n)$ de $\mathbb{R}^n$ se escribe como $ (x_1,\ldots,x_n)=\sum_{i=1}^n x_i e_i$. Por lo que hicimos en la entrada anterior tenemos entonces:

$$q(x)=b(x,x)=\sum_{i=1}^n \sum_{j=1}^n x_i x_j b(e_i, e_j).$$

Para simplificar la notación definamos $a_{ij}:=b(e_i,e_j)$. Podemos «ver» todos los sumandos en la siguiente expresión:

\begin{align*} q(x)& =x_1^2a_{11}+ x_1x_2a_{12} + \dots + x_1x_na_{1n} \\
&+x_2x_1a_{21}+ x_2^2a_{22} + \dots +x_2x_na_{2n} \\
&\vdots \qquad \qquad \qquad \qquad \qquad \qquad \\
&+x_nx_1a_{n1} + x_nx_2a_{n2} + \dots + x_n^2 a_{nn} \end{align*}

Aquí hay algunos términos «puros» de la forma $a_{ii}x_i^2$. Se encuentran en la «diagonal». Tenemos también algunos términos «mixtos» de la forma $a_{ij}x_ix_j$ con $i\neq j$. Por la simetría de $b$, en los términos mixtos tenemos $a_{ij}=a_{ji}$. Al separar en términos puros y mixtos obtenemos entonces la siguiente expresión:

\begin{align}q(x)= \sum_{i=1}^na_{ii}x_i^2+ 2\sum_{1 \leq i < j \leq n} a_{ij} x_i x_j .\end{align}

Usaremos esto más abajo.

Teorema de Gauss de formas cuadráticas

Teorema. Sea $q$ una forma cuadrática en $V=\mathbb{R}^n$. Existen reales $\alpha_1, \dots , \alpha_r $ y formas lineales $l_1, \dots l_r$ de $V$ linealmente independientes tales que, para todo $x \in V$ se tiene
$$q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2.$$

Recordemos que la independencia lineal de las formas $l_1,\ldots,l_r$ sucede en el espacio dual $V^*$.

Demostración. Procedamos por inducción sobre $n$. De la igualdad $(1)$, cuando $n=1$ la forma cuadrática es de la forma $q(x)=a_{11}x_1^2$. Al definir $\alpha_1=a_{11}$ y $l_1(x)=x_1$ obtenemos la forma deseada.

Supongamos que el teorema se cumple para $n-1$. De la igualdad $(1)$ sabemos que $q$ se puede escribir como sigue:

\begin{align*} q(x)= \sum_{i=1}^n a_{ii} x_i^2 + 2\sum_{1 \leq i < j \leq n} a_{ij} x_ix_j. \end{align*}

Tenemos tres posibilidades:

  • Que todos los $a_{ii}$ y todos los $a_{ij}$ sean cero. Este caso es inmediato pues entonces $q$ es la forma cuadrática cero y podemos tomar $l_1(x)=x_1$ y $\alpha_1=0$.
  • Que algún $a_{ii}$ sea distinto de cero.
  • Que todos los $a_{ii}$ sean cero, pero algún $a_{ij}$ sea distinto de cero.

Hagamos cada uno de los últimos dos casos por separado. Comencemos por el caso en el que algún $a_{ii}$ es distinto de cero. Sin pérdida de generalidad (¿por qué?) podemos suponer que es $a_{nn}$.

Apartando los términos que tienen $x_n$ de los que no obtenemos:

\begin{align*} \sum_{i=1}^n a_{ii}x_i^2=a_{nn} x_n^2 + \sum_{i=1}^{n-1} a_{ii} x_i^2. \end{align*}

y

\begin{align*} 2\sum_{1 \leq i < j \leq n} a_{ij}x_ix_j= 2\left(\sum_{i=1}^{n-1} a_{in} x_i\right)x_n + 2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j\end{align*}

Con esto

\begin{align*} q(x)=a_{nn}x_n^2 + 2\left(\sum_{i=1}^{n-1} a_{in} x_i\right)x_n + \sum_{i=1}^{n-1} a_{ii} x_i^2 + 2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j .\end{align*}

Si bien esta expresión se ve complicada, en realidad podemos pensar que en términos de la variable $x_n$ es «simplemente una cuadrática». Basados en los primeros dos términos podemos completar un binomio al cuadrado como sigue:

\begin{align*} q(x)= a_{nn} \left(x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2- a_{nn}\left(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2 + \sum_{i=1}^{n-1} a_{ii}x_i^2+2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j.\end{align*}

Notemos que la expresión

\begin{align*} – a_{nn}\left(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2 + \sum_{i=1}^{n-1} a_{ii}x_i^2+2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j \end{align*}

ya no tiene a la variable $x_n$ y que de hecho es una forma cuadrática en las variables $x_1,\ldots, x_{n-1}$ (¿por qué?). De este modo, podemos aplicarle hipótesis inductiva para obtener que existen escalares $\alpha_1,\ldots, \alpha_r$ y formas lineales $l’_1,\ldots,l’_r$ linalmente independientes de $\mathbb{R}^{n-1}$ tales que

\begin{align*} q'(x_1,\dots , x_{n-1})= \sum_{i=1}^r \alpha_i (l_i'(x))^2.\end{align*}

Si bien estas $l’_i$ son formas lineales de $\mathbb{R}^{n-1}$, también podemos pensarlas como formas lineales de $\mathbb{R}^n$. Formalmente, tomamos $l_i:\mathbb{R}^n\to \mathbb{R}$ dada por $l_i(x_1,\ldots,x_n)=l’_i(x_1,\ldots,x_{n-1})$. Para finalizar, definimos

\begin{align*} l_{r+1}(x_1, \dots , x_n)= x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \text{,} \qquad \alpha_{r+1}=a_{nn}.\end{align*}

De aquí, obtenemos la expresión deseada para $q$:

\begin{align*} q(x)= \sum_{i=1}^{r+1} \alpha_i (l_i(x))^2 \end{align*}

Falta argumentar por qué las $l_i$ son linealmente independientes. Si una combinación lineal de ellas da cero, como $l_{r+1}$ es la única que involucra a $x_n$, entonces su coeficiente debe ser cero. Así, obtendríamos una combinación lineal de $l_1,\ldots,l_r$ igualada a cero. Pero esta es una combinación lineal de $l’_1,\ldots,l’_r$. Por hipótesis inductiva, estas son linealmente independientes así que todos los coeficientes deben ser cero.

Lo anterior termina el caso para cuando hay algún «término puro». Falta el caso en el que todos los «términos puros» tienen coeficiente cero, pero hay por lo menos un «término mixto». Por la igualdad $(1)$ tenemos que la forma cuadrática se ve así:

\begin{align*}q(x)= 2\sum_{1 \leq i < j \leq n} a_{ij} x_i x_j .\end{align*}

Sin pérdida de generalidad podemos suponer que el término mixto que no es cero es el $a_{n-1,n}$ (¿por qué?). La idea es ahora separar a los términos que tienen $x_{n-1}$ ó $x_n$ de los que no, y utilizar la siguientes identidades algebraicas que se valen para cualesquiera $A,B,C, D, E$ (haz las cuentas):

\begin{align} Ax_{n-1}x_n+Bx_{n-1}+Cx_n=A\left(x_{n-1}+\frac{C}{A}\right) \left(x_n+\frac{B}{A}\right)-\frac{BC}{A},\end{align}

\begin{align} DE= \frac{1}{4}(D+E)^2 – \frac{1}{4} (D-E)^2.\end{align}

Al realizar la separación nos queda:

\begin{align*} q(x)= 2a_{n-1,n}x_{n-1}x_n +2\sum_{i=1}^{n-2}a_{in}x_ix_n+ 2\sum_{i=1}^{n-2}a_{i,n-1}x_ix_{n-1} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij}. \end{align*}

Así, podemos usar la identidad $(2)$ con los siguientes valores

\begin{align*}
A &=2a_{n-1.n},\\
B&=2\sum_{i=1}^{n-2}a_{i,n-1}x_i,\\
C&=2\sum_{i=1}^{n-2}a_{i,n}x_i
\end{align*}

para obtener que $q$ es:

\begin{align*} A\left(x_{n-1}+\frac{C}{A}\right) \left(x_n+\frac{B}{A}\right)-\frac{BC}{A} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij} \end{align*}

Al primer sumando podemos reescribirlo usando la identidad $(3)$ como

\begin{align*}\frac{A}{4}\left(x_{n-1}+x_n+\frac{B+C}{A}\right)^2-\frac{A}{4}\left( x_{n-1}-x_n-\frac{B-C}{A}\right)^2 \end{align*}

A la expresión conformada por los últimos dos sumandos le podemos aplicar hipótesis inductiva (¿por qué?) para escribirla de la forma \begin{align*} q'(x_1, \dots , x_{n-2})= \sum_{i=1}^r \alpha’_i (l’_i(x_1, \dots , x_{n-2}))^2 \end{align*} con $l’_1,\ldots, l’_r$ formas lineales linealmente independientes de $\mathbb{R}^{n-2}$. Como en el caso anterior, podemos «convertir» estas formas lineales a formas lineales $l_1,\ldots,l_r$ en $\mathbb{R}^n$. Al agregar las siguientes dos formas lineales

\begin{align*}
l_{r+1}(x)&= x_{n-1}+x_n+\frac{B+C}{A}\\
l_{r+2}(x)&= x_{n-1}-x_n-\frac{B-C}{A}
\end{align*}

y tomar $\alpha_{r+1}=\frac{A}{4}$, $\alpha_{r+2}=-\frac{A}{4}$, obtenemos la expresión deseada:
\begin{align*} q(x)= \sum_{i=1}^{r+2} \alpha_i (l_i(x))^2. \end{align*}

La demostración de que en efecto $l_1,\ldots,l_{r+2}$ son linealmente independientes queda como ejercicio.

Así por principio de inducción tenemos que el teorema de Gauss se cumple para cualquier forma cuadrática $q$ en $\mathbb{R}^n$ para todo $n\geq 1$ entero.

$\square$

Más adelante…

Debido a la longitud de esta demostración, los ejemplos serán reservados para la siguiente entrada.

Las formas cuadráticas, aunque interesantes, muestran estar limitadas por cómo las definimos, ya que se definen sólo en espacios vectoriales reales. En las siguientes entradas expandiremos un poco esta definición para también abarcar al menos espacios vectoriales complejos y luego nos enfocaremos en un tipo especial de éstas.

Además, al principio de la entrada se dieron pistas a que existe una relación entre formas bilineales y matrices, esto será explorado posteriormente.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $q$ una forma cuadrática en $\mathbb{R}^n$ y $x=(x_1, \dots, x_n)$. Muestra que \begin{align*} q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \text{ con } a_{ij}=b(e_i,e_j). \end{align*}
  2. Sea $A$ la matriz con entradas $a_{ij}$ dadas en el problema anterior. ¿Qué podrías afirmar acerca de $A$ sin importar la $q$ elegida?
  3. Sea $A=[a_{ij}]$ una matriz simétrica en $M_n(\mathbb{R})$ y definamos
    \begin{align*} q: \mathbb{R}^n \rightarrow \mathbb{R} \text{ dada por } q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \end{align*} ¿Es $q$ así definida una forma cuadrática? ¿Es necesario que $A$ sea simétrica?
  4. Demuestra que las formas lineales definidas en el segundo caso de la demostración del teorema de Gauss en efecto son linealmente independientes.
  5. Sean $\alpha _1, \dots , \alpha_r $ números reales y $l_1 , \dots , l_r$ formas lineales, linealmente independientes en $\mathbb{R}^n$ y $x \in \mathbb{R}^n$. Definamos $q$ como sigue:
    \begin{align*} q(x)=\sum_i^n \alpha_i l_i(x)\end{align*}
    ¿Es $q$ así definida una forma cuadrática en $\mathbb{R}^n$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»