Archivo de la etiqueta: matrices invertibles

Álgebra Lineal I: Matrices invertibles

Por Julio Sampietro

Introducción

Siguiendo el hilo de la entrada pasada, por la correspondencia entre transformaciones lineales y matrices así como la composición y su producto, podemos traducir el problema de invertibilidad de transformaciones lineales en términos de matrices, a las que llamaremos matrices invertibles. Es decir, si tenemos $\varphi: F^n\to F^n$, $\psi: F^n\to F^n$ transformaciones lineales tales que

\begin{align*}
\varphi\circ \psi= Id_{F^n}, \hspace{2mm} \psi \circ \varphi=Id_{F^n}
\end{align*}

¿cómo se traduce esto en términos de sus matrices asociadas?

Veremos que la respuesta yace en matrices que tienen inverso multiplicativo, a diferencia de un campo $F$, donde todo $x$ tiene un $x^{-1}$, cuando trabajamos con matrices no todas tienen una matriz inversa y las que si son de especial importancia.

Definición de matrices invertibles

Definición. Decimos que una matriz $A\in M_n (F)$ es invertible o bien no singular si existe una matriz $B\in M_n(F)$ tal que

\begin{align*}
AB=BA=I_n
\end{align*}

Ejemplo. Veamos que la matriz $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ es invertible. Para ello, tenemos que exhibir una matriz $B$ tal que $AB=I_2=BA$. Proponemos a la matriz $B=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Haciendo la multiplicación con la regla del producto, tenemos que

\begin{align*}
AB&=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot (-1) + 1\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot (-1)+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

¡Aún no hemos terminado! Para satisfacer la definición, también tenemos que mostrar que $BA=I_2$:

\begin{align*}
BA&=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + (-1) \cdot 0 & 1 \cdot 1 + (-1)\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot 1+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

Ahora sí, podemos concluir que la matriz $A$ es invertible.

$\square$

Observación. Una primera cosa que hay que notar es que en la definición se pide que tanto $AB$ como $BA$ sean la matriz identidad $I_n$. Es importante verificar ambas, pues como sabemos, el producto de matrices no siempre conmuta.

Otra observación importante es que si la matriz $B$ como en la definición existe, entonces es necesariamente única: En efecto, si $C\in M_n(F)$ es otra matriz tal que

\begin{align*}
AC=CA=I_n,
\end{align*}

entonces manipulando las expresiones en juego:

\begin{align*}
C&= I_n C \\&= (BA)C\\
&=B(AC)\\&= B I_n \\&=B.
\end{align*}

Entonces no hay ambigüedad al hablar de la matriz inversa de $A$. Ya no tiene mucho sentido usar una letra diferente para ella. Simplemente la denotaremos por $A^{-1}$.

Primeras propiedades de matrices invertibles

Resumimos algunas propiedades de las matrices invertibles en la siguiente proposición.

Proposición.

  1. Para $c\in F$ es un escalar distinto de cero, se tiene que $c I_n$ es invertible.
  2. Si $A$ es invertible, entonces $A^{-1}$ también lo es, y $\left(A^{-1}\right)^{-1}=A$
  3. Si $A,B\in M_n(F)$ son invertibles, entonces $AB$ también lo es y

    \begin{align*}
    \left(AB\right)^{-1}= B^{-1}A^{-1}.
    \end{align*}

Demostración:

  1. Como $c\neq 0$ y $F$ es un campo, entonces existe $c^{-1}$ en $F$ y así $c^{-1} I_n$ satisface (por la compatibilidad del producto por escalares de esta entrada)

    \begin{align*}
    (cI_n)\cdot (c^{-1}I_n)&= (cc^{-1})\cdot (I_n I_n)\\&= I_n\\
    &= (c^{-1} c) \cdot(I_n)\\&= (c^{-1} I_n) \cdot (c I_n).
    \end{align*}
    Luego $c^{-1}I_n$ es la matriz inversa de $c I_n$.
  2. Para evitar alguna confusión con la notación, denotemos a $A^{-1}$ por $B$. Así

    \begin{align*}
    AB=BA=I_n.
    \end{align*}
    Luego $B$ es invertible y su inversa es $A$.
  3. Si $A,B\in M_n(F)$ son invertibles entonces existen $A^{-1}$ y $B^{-1}$. Sea $C= B^{-1} A^{-1}$. Así

    \begin{align*}
    (AB)C=ABB^{-1}A^{-1}= A I_n A^{-1}= AA^{-1} =I_n.
    \end{align*}
    Y análogamente

    \begin{align*}
    C(AB)= B^{-1}A^{-1} A B= B^{-1} I_n B= B^{-1} B=I_n.
    \end{align*}
    Mostrando así que $AB$ es invertible con inversa $C$.

$\square$

Observación. Es importante notar que el ‘sacar inverso’ invierte el orden de los productos. Es decir, en el producto $AB$ aparece primero $A$ y luego $B$, mientras que el inverso $(AB)^{-1}$ es $B^{-1}A^{-1}$, en donde aparece primero $B^{-1}$ y luego $A^{-1}$. Esto es muy importante en vista de que la multiplicación de matrices no es conmutativa y por lo tanto en general

\begin{align*}
(AB)^{-1}\neq A^{-1} B^{-1}.
\end{align*}

También es importante notar que si bien la invertibilidad se preserva bajo productos (el producto de matrices invertibles es invertible) ésta no se preserva bajo sumas. Por ejemplo, tanto $I_n$ como $-I_n$ son invertibles en virtud del teorema, sin embargo su suma es $I_n+(-I_n)=O_n$, que no es invertible.

Ya hablamos de cuándo una matriz $A$ en $M_n(F)$ es invertible. ¿Qué sucede si consideramos a todas las matrices invertibles en $M_n(F)$? Introducimos el siguiente objeto de importancia fundamental en muchas áreas de las matemáticas:

Definición. El conjunto de matrices invertibles $A\in M_n(F)$ es llamado el grupo lineal general y es denotado por $GL_n(F)$.

En la tarea moral hay un ejercicio en el que se pide mostrar que $GL_n(F)$ es un grupo bajo la operación de producto de matrices. En realidad en este curso no hablaremos mucho de $GL_n(F)$ como grupo. Pero es importante que sepas de su existencia y que conozcas su notación, pues será importante en tu preparación matemática futura.

Invirtiendo matrices

Si bien el concepto de invertibilidad es sencillo de introducir, gran parte de la herramienta para determinar (irónicamente, a través de los determinantes) la invertibilidad de una matriz o propiedades relacionadas (por ejemplo, una computación efectiva de matrices inversas) todavía no está a nuestra disposición. Por tanto, lo único que podemos hacer es uso de ‘fuerza bruta’ para encontrar las inversas de matrices invertibles, y eso haremos en los siguientes ejemplos para al menos familiarizarnos con los cálculos.

Problema. Sea la matriz $A=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}$. ¿Es $A$ invertible? De serlo, calcula su inversa.

Solución. Como mencionamos, con la teoría que hemos desarrollado hasta ahora solo podemos atacar el problema directamente. Buscamos una matriz

\begin{align*}
B= \begin{pmatrix} a & b & c\\ x & y & z\\ u & v & w\end{pmatrix}
\end{align*}

tal que $AB=I_3=BA$. Usando la regla del producto, calculamos

\begin{align*}
AB=\begin{pmatrix} x & y & z\\ a & b &c \\ u & v & w \end{pmatrix}.
\end{align*}

Igualando esta matriz a $I_3$ obtenemos las condiciones

\begin{align*}
\begin{cases} x=b=w=1\\ y=z=a=c=u=v=0. \end{cases}
\end{align*}

Esto muestra que una buena candidata a ser la inversa de $A$ es la matriz

\begin{align*}
A^{-1}= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Falta un paso más: hay que verificar que $BA=I_3$. Afortunadamente esto es cierto. Su verificación queda como tarea moral.

$\triangle$

Resaltamos que el método usado no es eficiente, y tampoco es general (pues funcionó solo por la particularidad de la matriz $A$). Dicho esto, exhibimos un método que puede ser útil cuando la matriz por invertir es suficientemente ‘bonita’ (por ejemplo si tiene muchos ceros).

Sea $A\in M_n(F)$ una matriz y $b\in F^n$ un vector. Supongamos que el sistema $AX=b$ en el vector variable $X$ tiene una única solución $X\in F^n$. Un resultado que probaremos más adelante nos dice que entonces $A$ es invertible y que la solución es $X=A^{-1}b$ (es decir, que podemos ‘despejar’ $X$ multiplicando por $A^{-1}$ del lado izquierdo ambos lados). Así, si el sistema resulta fácil de resolver, podemos obtener una expresión de $A^{-1}$ en términos de cualquier vector $b$, y ésto basta para determinar a $A^{-1}$. En la práctica, la resolución del sistema mostrará que

\begin{align*}
A^{-1} b = \begin{pmatrix}
c_{11}b_1 + c_{12} b_2 +\dots + c_{1n}b_n\\
c_{21}b_1+c_{22}b_2 + \dots + c_{2n} b_n\\
\vdots\\
c_{n1} b_1 + c_{n2} b_2 +\dots + c_{nn}b_n
\end{pmatrix}
\end{align*}

para algunos escalares $c_{ij}$ independientes de $b$. Escogiendo $b=e_i$ el $i-$ésimo vector de la base canónica, el lado izquierdo es simplemente la $i-$ésima columna de $A^{-1}$ y el lado derecho es la $i-$ésima columna de $[c_{ij}]$. Como ambas matrices son iguales columna a columna, deducimos que

\begin{align*}
A^{-1}=[c_{ij}]
\end{align*}

Subrayamos que, una vez el sistema resuelto, el resto es relativamente sencillo pues solo es fijarnos en los coeficientes. La dificultad reside entonces en resolver el sistema $AX=b$, y la dificultad de este sistema depende fuertemente de la matriz $A$, por lo que nos limitaremos por lo pronto a ejemplos sencillos.

Retomemos el problema anterior para ver cómo funciona este método recién expuesto.

Problema. Resuelve el problema anterior usando el método que acabamos de describir.

Solución. Sea $b=\begin{pmatrix} b_1 \\ b_2 \\ b3 \end{pmatrix}\in F^3$, tratemos de resolver $AX=b$ para $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. El sistema se escribe entonces

\begin{align*}
\begin{pmatrix} b_1 \\ b_2 \\ b_3\end{pmatrix}=AX= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} x_2 \\ x_1 \\ x_3\end{pmatrix}.
\end{align*}

O equivalentemente

\begin{align*}
\begin{cases} x_1=b_2\\ x_2= b_1 \\ x_3=b_3.\end{cases}
\end{align*}

Como el sistema siempre se puede resolver dado $b\in F^3$, podemos afirmar que $A$ es invertible, y tenemos que

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1\\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} b_2\\ b_1 \\ b_3\end{pmatrix}= \begin{pmatrix} 0\cdot b_1 + 1\cdot b_2 + 0 \cdot b_3\\ 1\cdot b_1 +0\cdot b_2 +0\cdot b_3\\ 0\cdot b_1 + 0\cdot b_2 +1\cdot b_3\end{pmatrix}. \end{align*}

Fijándonos en los coeficientes del lado derecho, vemos que la primera fila de $A^{-1}$ es $(0 \ 1 \ 0)$, la segunda $(1\ 0 \ 0)$ y la tercera $(0\ 0\ 1)$. Luego

\begin{align*}
A^{-1}=\begin{pmatrix}
0 & 1& 0\\
1 & 0&0\\
0 & 0 & 1\end{pmatrix}\end{align*}

$\triangle$

Problema. Sea la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 1 &1 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix} \end{align*}

Demuestre que $A$ es invertible y encuentre su inversa.

Solución. Usamos el mismo método. Sea $b= \begin{pmatrix} b_1\\ b_2 \\ b_3 \\ b_4 \end{pmatrix}\in F^4$ y resolvemos $AX=b$ con $X=\begin{pmatrix} x_1\\ x_2 \\ x_3 \\ x_4\end{pmatrix}$. Esta vez el sistema asociado es el siguiente (omitimos los cálculos de la regla del producto):

\begin{align*}
\begin{cases}
x_1+x_2+x_3+x_4=b_1\\
x_2+x_3+x_4=b_2\\
x_3+x_4=b_3\\
x_4=b_4
\end{cases}.
\end{align*}

Este sistema lo podemos resolver de manera más o menos sencilla: De la última ecuación tenemos que $x_4=b_4$, luego sustituyendo en la penúltima obtenemos $x_3+b_4=b_3$ o bien $x_3=b_3-b_4$. Sustituyendo esto a su vez en la segunda ecuación obtenemos que $x_2+b_3=b_2$, es decir $x_2=b_2-b_3$ y finalmente $x_1= b_1-b_2$. Así el sistema siempre tiene solución y estas están dadas por

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\end{pmatrix} = \begin{pmatrix} b_1-b_2\\ b_2-b_3\\ b_3-b_4\\ b_4 \end{pmatrix}.
\end{align*}

De esto se sigue que (fijándonos en los coeficientes) la primera fila de $A^{-1}$ es $(1\ -1 \ 0 \ 0)$, y análogamente obtenemos las demás, de manera que

\begin{align*}
A^{-1}=\begin{pmatrix}
1 & -1 & 0 &0\\
0 & 1 & -1 & 0\\
0&0 &1 &-1\\
0 & 0 & 0 &1
\end{pmatrix}.
\end{align*}

Un buen ejercicio es verificar que en efecto con esta inversa propuesta se cumple que $AA^{-1}=I_4=A^{-1}A$.

$\triangle$

Matrices invertibles diagonales

Concluimos esta sección con un último problema de matrices invertibles. Para resolverlo no usamos el método expuesto, sino un argumento particular para las matrices diagonales.

Problema. Demuestre que una matriz diagonal $A\in M_n(F)$ es invertible si y sólo si todas sus entradas en la diagonal son distintas de cero. Más aún, de ser el caso, $A^{-1}$ también es diagonal.

Solución. Sea $A=[a_{ij}]\in M_n(F)$ una matriz diagonal y $B=[b_{ij}]\in M_n(F)$ cualquier matriz. Usando la regla del producto tenemos que

\begin{align*}
(AB)_{ij}= \sum_{k=1}^{n} a_{ik} b_{kj}.
\end{align*}

Como $a_{ik}=0$ para $k\neq i$ (por ser $A$ diagonal) muchos de los términos en la suma desaparecen y nos quedamos con

\begin{align*}
(AB)_{ij}= a_{ii} b_{ij}
\end{align*}

y de manera similar se puede verificar que

\begin{align*}
(BA)_{ij}=a_{jj}b_{ij}.
\end{align*}

Aprovechemos estas observaciones para proponer a la inversa de $A$.

Si $a_{ii}\neq 0$ para todo $i\in \{1,\dots, n\}$ entonces podemos considerar a $B$ como la matriz diagonal con entradas $b_{ii}=\frac{1}{a_{ii}}$. Las fórmulas que acabamos de calcular nos dan que $AB=BA=I_n$ y así $A$ es invertible y su inversa $B$ es diagonal.

Conversamente, supongamos que $A$ es invertible y diagonal. Así, existe una matriz $B$ tal que $AB=BA=I_n$. Luego para toda $i\in \{1, \dots, n\}$ se cumple

\begin{align*}
1= (I_n)_{ii}= (AB)_{ii}= a_{ii}b_{ii}
\end{align*}

Así $a_{ii}\neq 0$ para $i\in \{1, \dots, n\}$ y así todas las entradas en la diagonal son distintas de cero.

$\square$

Más adelante…

En esta entrada hablamos del concepto de matrices invertibles, vimos algunas de sus propiedades y esbozamos un método para encontrar la inversa de una matriz. Hay mejores métodos para encontrar dicha inversa. Uno de ellos, que es muy rápido, es el método de reducción gaussiana, que sirve para mucho más que invertir matrices. Para llegar a él, aún tenemos que desarrollar algo de teoría. Pero antes de eso, hablaremos de otros tipos particulares de matrices.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Aunque para determinar inversos de matrices generales necesitamos desarrollar más teoría, las matrices invertibles de $2\times 2$ son fáciles de entender. Muestra que si se tiene una matriz $A$ en $M_2(F)$ con entradas $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ y $ad-bc\neq 0$, entonces la matriz $$B=\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ es la inversa de $A$. Para ello verifica explícitamente usando la regla del producto que tanto $AB=I_2$, como que $BA=I_2$.
  • En el primer problema de invertir matrices, muestra que $BA$ también es $I_3$.
  • La matriz $$A=\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \sqrt{2}\end{pmatrix}$$ es invertible. Encuentra su inversa.
  • Verifica que $GL_n(F)$ es en efecto un grupo bajo la operación de multiplicación de matrices. Debes mostrar que:
    • El producto de dos matrices invertibles es invertible.
    • Existe un neutro multiplicativo $E$ (¿quién sería?).
    • Para matriz $A$ en $GL_n(F)$ existe una matriz $B$ en $GL_n(F)$ tal que $AB=BA=E$.
  • Explica por qué la matriz $O_n$ no es invertible. Explica por que si una matriz en $M_n(F)$ tiene una columna (o fila) tal que todas sus entradas sen iguales a $0$, entonces la matriz no es invertible. Este ejercicio lo puedes hacer directamente de la definición, sin tener que recurrir a herramientas más fuertes.
  • Generaliza el penúltimo problema a una matriz de tamaño $n\times n$ con puros unos sobre y por encima de la diagonal, es decir, para la cual $[a_{ij}]=1$ si $j\geq i$ y $0$ en otro caso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Por Blanca Radillo

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema 1. Considera los vectores

$v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)$

en $\mathbb{R}^4$. Prueba que para cualquier elección de $x\in\mathbb{R}$, los vectores $v_1,v_2,v_3$ son linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son $v_1,v_2,v_3$, es decir,

$A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Sabemos que $v_1,v_2,v_3$ son linealmente independiente si y sólo si $\text{dim(span}(v_1,v_2,v_3))=3$, ya que $\text{rank}(A)=3$, y eso es equivalente (por la clase del lunes) a demostrar que $A$ tiene una submatriz de $3\times 3$ invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,$

lo que implica que es invertible, y por lo tanto $v_1,v_2, v_3$ son vectores linealmente independientes.

$\square$

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre $\mathbb{R}$ o sobre $\mathbb{C}$. Como $\mathbb{R}\subset \mathbb{C}$, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en $\mathbb{R}$ se cumplen en $\mathbb{C}$. En este caso particular, si las soluciones de una matriz en $M_{m,n}(\mathbb{R})$ son soluciones de la misma matriz pero vista como elemento en $M_{m,n}(\mathbb{C})$. El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea $A\in M_{m,n}(F)$ y sea $F_1$ un campo contenido en $F$. Consideremos el sistema lineal $AX=0$. Si el sistema tiene una solución no trivial en $F_1^n$, entonces tiene una solución no trivial en $F^n$.

Demostración. Dado que el sistema tiene una solución no trivial en $F_1^n$, $r:=\text{rank}(A) < n$ vista como elemento en $M_{m,n}(F_1)$. Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a $A$ como elemento de $M_{m,n}(F_1)$ o de $M_{m,n}(F)$. Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de $F^n$ de dimensión $n-r>0$. Por lo tanto, el sistema $AX=0$ tiene una solución no trivial en $F^n$.

$\square$

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. 2 Sea $S_a$ el siguiente sistema lineal:

$\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.$

Encuentra los valores de $a$ para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como $AX=b$ donde

$A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$

Notemos que

$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,$

entonces si $a\neq 1/8$, $A$ es invertible, y por lo tanto $\text{rank}(A)=3$, mientras que si $a=1/8$, $A$ no es invertible y $\text{rank}(A)=2$ ya que la submatriz es invertible

$\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.$

Además, si la matriz $(A,b)$ es igual a

$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},$

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, $\text{rank}(A,b)=3$.

Aplicando el Teorema de Rouché-Capelli, para $a=1/8$, el sistema $AX=b$ no tiene soluciones. También podemos concluir que como $\text{rank}(A)=3$ para todo $a\neq 1/8$, el sistema tiene exactamente una solución. (Y $AX=b$ nunca tiene infinitas soluciones).

$\triangle$

Problema 3. Sean $a,b,c$ números reales dados. Resuelve el sistema lineal

$\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.$

Solución. La matriz del sistema es

$A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.$

No es difícil ver que $\text{det}(A)=4abc$. Si $abc\neq 0$, usando la regla de Cramer, la única solución al sistema está dada por

$x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}$

$y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},$

resolviendo los determinantes obtenemos que

$x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.$

Ahora, si $abc=0$, entonces $A$ no es invertible ($\text{rank}(A)<3$). El sistema es consistente si y sólo si $\text{rank}(A)=\text{rank}(A,b)$.

Sin pérdida de generalidad, decimos que $a=0$ (pues $abc=0$). Esto reduce el sistema a

$\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.$

El sistema es consistente si $b=c$ y distintos de cero. En este caso, tenemos que $b(2x+y+z)=1$ y $b(y+z)=1$, implicando $x=0$, $y+z=1/b$. De manera similar, obtenemos las posibles soluciones si $b=0$ o si $c=0$.

Resumiendo:

  • Si $abc\neq 0$, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) $a=0$ y $b=c \neq 0$; caso 2) $b=0$ y $a=c\neq 0$; caso 3) $c=0$ y $a=b\neq 0$, tenemos infinitas soluciones descritas como, para todo $w\in \mathbb{R}$: caso 1) $(0,w,1/b-w)$; caso 2) $(w,0,1/a-w)$; caso 3) $(w,1/a-w,0)$.
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para $a,b,c$, el sistema no es consistente.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Determinantes en sistemas de ecuaciones lineales y regla de Cramer

Por Leonardo Ignacio Martínez Sandoval

Introducción

Con la teoría que hemos desarrollado acerca de espacios vectoriales, de determinantes y con las herramientas que hemos adquirido para calcularlos, podemos volver a visitar el tema de sistemas de ecuaciones lineales y verlo desde una perspectiva más completa. Los determinantes en sistemas de ecuaciones lineales nos sirven para varias cosas.

Por un lado, sirven para encontrar el rango de una matriz. El rango está relacionado con la dimensión del espacio de soluciones a un sistema lineal de ecuaciones. Esto es parte del contenido del importante teorema de Rouché-Capelli que enunciaremos y demostraremos.

Por otro lado, cuando tenemos sistemas lineales con matriz asociada cuadrada e invertible, podemos usar determinantes para encontrar las soluciones. A esto se le conoce como las fórmulas de Cramer o la regla de Cramer. También enunciaremos y demostraremos esto. La regla de Cramer es parcialmente útil en términos prácticos, pues para sistemas concretos conviene más usar reducción gaussiana. Sin embargo, es muy importante en términos teóricos, cuando se quieren probar propiedades de las soluciones a un sistema de ecuaciones.

Rango de una matriz y determinantes

Recuerda que el rango de una matriz $A$ en $M_{m,n}(F)$ es, por definición, la dimensión del espacio vectorial que es la imagen de la transformación $X\mapsto AX$ de $F^n\to F^m$. Anteriormente, mostramos que esto coincide con la dimensión del espacio vectorial generado por los vectores columna de $A$. Como el rango de una matriz coincide con su transpuesta, entonces también es la dimensión del espacio vectorial generado por los vectores fila de $A$.

Lo que veremos ahora es que podemos determinar el rango de una matriz $A$ calculando algunos determinantes de matrices pequeñas asociadas a $A$. Una submatriz de $A$ es una matriz que se obtiene de eliminar algunas filas o columnas de $A$.

Teorema. Sea $A$ una matriz en $M_{m,n}(F)$. El rango de $A$ es igual al tamaño de la submatriz cuadrada más grande de $A$ que sea invertible.

Demostración. Llamemos $C_1,\ldots,C_n$ a las columnas de $A$. Sabemos que $$r=\dim \text{span}(C_1,\ldots,C_n).$$

Mostraremos primero que hay una submatriz cuadrada de tamaño $r$. Por el lema de Steinitz, podemos escoger $r$ enteros $1\leq i_1<\ldots<i_r\leq n$ tal que las columnas $C_{i_1},\ldots,C_{i_r}$ de $A$ cumplen $$\text{span}(C_1,\ldots,C_n)=\text{span}(C_{i_1},\ldots,C_{i_r}).$$ Así, la matriz $B$ hecha por columnas $C_{i_1},\ldots,C_{i_r}$ está en $M_{m,r}(F)$ y es de rango $r$.

Ahora podemos calcular el rango de $B$ por filas. Si $F_1,\ldots,F_m$ son las filas de $B$, tenemos que $$r=\dim \text{span}(F_1,\ldots,F_m).$$ De nuevo, por el lema de Steinitz, existen enteros $1\leq j_1<\ldots<j_r\leq m$ tales que $$\text{span}(F_1,\ldots,F_m)=\text{span}(F_{i_1},\ldots,F_{i_r}).$$ De esta forma, la matriz $C$ hecha por las filas $F_{j_1},\ldots,F_{j_r}$ está en $M_r(F)$ y es de rango $r$. Por lo tanto, $C$ es una matriz cuadrada de tamaño $r$ y es invertible.

Esta matriz $C$ es una submatriz de $A$ pues se obtiene al eliminar de $A$ todas las columnas en posiciones distintas a $i_1,\ldots,i_r$ y todas las filas en posiciones distintas a $j_1,\ldots,j_r$. Esto muestra una parte de lo que queremos.

Ahora mostraremos que si $B$ es una submatriz de $A$ cuadrada e invertible de tamaño $d$, entonces $d\leq r$. En efecto, tomemos una $B$ así. Sus columnas son linealmente independientes. Si $i_1<\ldots<i_n$ corresponden a los índices de las columnas de $A$ que se preservan al pasar a $B$, entonces las columnas $C_{i_1},\ldots,C_{i_d}$ de $A$ son linealmente independientes, ya que si hubiera una combinación no trivial de ellas igual a cero, entonces la habría de las columnas de $B$, lo cual sería una contradicción a que son linealmente independientes.

De esta forma,
\begin{align*}
d&=\dim \text{span}(C_{i_1},\ldots,C_{i_d})\\
&\leq \dim \text{span} (C_1,\ldots,C_d)\\
&=r,
\end{align*}

que es la desigualdad que nos faltaba para terminar la prueba.

$\square$

Ejemplo. Supongamos que queremos encontrar el rango de la siguiente matriz en $M_{3,5}(\mathbb{R})$: $$A=\begin{pmatrix}4 & 5 & -4 & 7 & 2\\ 0 & -3 & -1 & 0 & 9\\ 0 & -5 & 0 & 9 & -3 \end{pmatrix}.$$

Por propiedades de rango que vimos anteriormente, ya sabemos que su rango es a lo más el mínimo de sus dimensiones, así que su rango es como mucho $\min(3,5)=3$.

Por otro lado, notemos que si eliminamos la segunda y cuarta columnas, entonces obtenemos la submatriz cuadrada $$\begin{pmatrix} 4 & -4 & 2\\ 0 & -1 & 9\\ 0 & 0 & -3\end{pmatrix}.$$ Esta es una matriz triangular superior, así que su determinante es el producto de las diagonales, que es $4\cdot (-1)\cdot (-3)=12$.

Como el determinante no es cero, es una matriz invertible de tamaño $3$. Por la proposición anterior, el rango de $A$ debe ser entonces mayor o igual a $3$. Juntando las dos desigualdades que encontramos, el rango de $A$ debe ser igual a $3$.

$\triangle$

Estas ideas nos servirán al aplicar determinantes en sistemas de ecuaciones.

Teorema de Rouché-Capelli

Recordemos que un sistema lineal de ecuaciones con $m$ ecuaciones y $n$ incógnitas es de la forma

\begin{align*}
a_{11}x_1 + a_{12} x_2 + \ldots + a_{1n}x_n &= b_1\\
a_{21}x_1 + a_{22} x_2 + \ldots + a_{2n}x_n &= b_2\\
\vdots&\\
a_{m1}x_1 + a_{m2} x_2 + \ldots + a_{mn}x_n &= b_m,
\end{align*}

lo cual se puede reescribir en términos matriciales tomando una matriz, un vector de escalares y un vector de incógnitas así:
\begin{align*}
A&=\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},\\
b&=\begin{pmatrix}b_1\\ \vdots\\ b_m\end{pmatrix} \text{ y }\; X=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix},
\end{align*} y reescribiendo el sistema como $$AX=b.$$

Si $C_1,\ldots, C_n$ son las columnas de la matriz $A$, también sabemos que $$AX=x_1C_1+\ldots + x_nC_n,$$ de modo que el sistema de ecuaciones puede ser escrito como $$x_1C_1+\ldots + x_nC_n=b.$$

Esto nos da una intuición fuerte de lo que es un sistema lineal de ecuaciones: se trata de determinar si $b$ está en el espacio generado por las columnas de $A$, y si es así, ver todas las formas en las que podemos obtenerlo.

El teorema de la sección anterior nos permite aplicar determinantes en sistemas de ecuaciones lineales mediante el siguiente resultado.

Teorema (Rouché-Capelli). Sean $A\in M_n(F)$ y $b\in F^m$. Sea $(A|b)$ la matriz en $M_{n,n+1}(F)$ obtenida de agregar a $b$ como columna hasta la derecha de la matriz $A$. Entonces:

  • El sistema lineal de ecuaciones $AX=b$ tiene al menos una solución si y sólo si $\rank(A)=\rank((A|b))$.
  • El conjunto de soluciones $\mathcal{S}_h$ al sistema homogéneo es un subespacio de $F^n$ de dimensión $n-\rank(A)$.

Demostración. Por la discusión previa, el sistema tiene una solución si y sólo si $b$ es una combinación lineal de las columnas de $A$. De esta forma, si existe una solución, entonces $\rank(A)=\rank((A|b))$, pues el espacio generado por las columnas de $A$ sería el mismo que el de las columnas de $(A|b)$.

Por otro lado, si $\rank(A)=\rank((A|b))$ es porque las columnas de $A$ y las de $(A|b)$ generan el mismo espacio, de modo que $b$ está en el espacio vectorial generado por las columnas. Esto prueba la primer parte.

Para la segunda parte, el sistema homogéneo es $AX=0$, de modo que el conjunto solución es precisamente el kernel de la transformación $T:F^n\to F^m$ tal que $X\mapsto AX$. Por el teorema de rango-nulidad, tenemos que $$\dim \mathcal{S}_h = n-\dim \text{Im}(T)=n-\text{rank}(A).$$ Esto termina la demostración.

$\square$

Como discutimos con anterioridad, ya que tenemos una solución $x_0$ para el sistema de ecuaciones $AX=b$, entonces todas las soluciones son el conjunto $$x_0+\mathcal S_h:=\{x_0 + x: x\in \mathcal S_h\}.$$ En otras palabras, cualquier solución al sistema se puede obtener sumando a $x_0$ una solución al sistema lineal homogéneo asociado.

Ejemplo. Consideremos el siguiente sistema de ecuaciones en $\mathbb{R}$ en tres variables:
\begin{align*}
2x+3y-z=1\\
3x-y+2z=0\\
3x+10y-5z=0
\end{align*}

Afirmamos que el sistema no tiene solución. La matriz asociada es $A=\begin{pmatrix} 2 & 3 & -1\\ 3 & -1 & 2 \\ 3 & 10 & -5\end{pmatrix}$. Por lo que sabemos de determinantes de $3\times 3$, podemos calcular su determinante como
\begin{align*}
\begin{vmatrix}
2 & 3 & -1\\ 3 & -1 & 2 \\ 3 & 10 & -5
\end{vmatrix} &= (2)(-1)(-5)+(3)(10)(-1)+(3)(3)(2)\\
&-(-1)(-1)(3)-(2)(10)(2)-(3)(3)(-5)\\
&=10-30+18-3-40+45\\
&=0.
\end{align*}

Esto muestra que $A$ no es invertible, y que por lo tanto tiene rango a lo más $2$. Como $$\begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix} = (2)(-1)-(3)(3)=-11$$ es un subdeterminante no cero de tamaño 2, entonces $A$ tiene rango $2$.

Ahora consideremos la matriz $$(A|b)=\begin{pmatrix} 2 & 3 & -1 & 1\\ 3 & -1 & 2 & 0 \\ 3 & 10 & -5 & 0\end{pmatrix}.$$ Eliminemos la tercer columna. Podemos calcular al siguiente subdeterminante de $3\times 3$ por expansión de Laplace en la última columna:

\begin{align*}
\begin{vmatrix}
2 & 3 & 1\\ 3 & -1 & 0 \\ 3 & 10 & 0
\end{vmatrix} &= 1 \cdot \begin{vmatrix} 3 & -1 \\ 3 & 10 \end{vmatrix} – 0 \begin{vmatrix} 2 & 3 \\ 3 & 10 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix}\\
&= 1 \cdot (3\cdot 10 + 1\cdot 3)\\
&=33.
\end{align*}

De esta forma, $(A|b)$ tiene una submatriz de $3\times 3$ invertible, y por lo tanto tiene rango al menos $3$. Como tiene $3$ filas, su rango es a lo más $3$. Con esto concluimos que su rango es exactamente $3$. Conluimos que $$\text{rank} A = 2 \neq 3 = \text{rank} (A|b),$$ de modo que por el teorema de Rouché-Capelli, el sistema de ecuaciones no tiene solución.

$\triangle$

Antes de ver un ejemplo en el que el sistema sí tiene solución, pensemos qué sucede en este caso. Si la matriz $A$ es de rango $r$, por el teorema de la sección pasada podemos encontrar una submatriz cuadrada $B$ de tamaño $r$ que es invertible. Tras una permutación de las variables o de las ecuaciones, podemos suponer sin perder generalidad que corresponde a las variables $x_1,\ldots,x_r$ y a las primeras $r$ ecuaciones. De esta forma, el sistema $AX=b$ se resume en el siguiente sistema de ecuaciones equivalente:

\begin{align*}
a_{11}x_1 + a_{12} x_2 + \ldots + a_{1r}x_r &= b_1-a_{1,r+1}x_{r+1}-\ldots -a_{1,n} x_n\\
a_{21}x_1 + a_{22} x_2 + \ldots + a_{2r}x_r &= b_2-a_{2,r+1}x_{r+1}-\ldots -a_{2,n} x_n\\
\vdots\\
a_{r1}x_1 + a_{r2} x_2 + \ldots + a_{rr}x_r &= b_m-a_{r,r+1}x_{r+1}-\ldots -a_{r,n} x_n,
\end{align*}

Aquí $x_{r+1},\ldots,x_n$ son lo que antes llamábamos las variables libres y $x_1,\ldots,x_r$ son lo que llamábamos variables pivote. Como la submatriz $B$ correspondiente al lado izquierdo es invertible, para cualquier elección de las variables libres podemos encontrar una única solución para las variables pivote. Ya habíamos probado la existencia y unicidad de cierta solución. Pero de hecho, hay una forma explícita de resolver sistemas de ecuaciones correspondientes a matrices cuadradas. Esto es el contenido de la siguiente sección.

Fórmulas de Cramer para sistemas cuadrados

El siguiente teorema es otra aplicación de determinantes en sistemas de ecuaciones lineales. Nos habla de las soluciones de un sistema lineal $AX=b$ en donde $A$ es una matriz cuadrada e invertible.

Teorema (fórmulas de Cramer). Sea $A$ una matriz invertible en $M_n(F)$ y $b=(b_1,\ldots,b_n)$ un vector en $F^n$. Entonces el sistema lineal de ecuaciones $AX=b$ tiene una única solución $X=(x_1,\ldots,x_n)$ dada por $$x_i=\frac{\det A_i}{\det A},$$ en donde $A_i$ es la matriz obtenida al reemplazar la $i$-ésima columna de $A$ por el vector columna $b$.

Demostración. La existencia y unicidad de la solución ya las habíamos mostrado anteriormente, cuando vimos que la única solución está dada por $$X=(x_1,\ldots,x_n)=A^{-1}b.$$

Si $C_1,\ldots,C_n$ son las columnas de $A$, que $(x_1,\ldots,x_n)$ sea solución al sistema quiere decir que $$x_1C_1+\ldots+x_nC_n=b.$$

El determinante pensado como una función en $n$ vectores columna es $n$-lineal, de modo que usando la linealidad en la $i$-ésima entrada y que el determinantes es alternante, tenemos que:
\begin{align*}
\det A_i &= \det(C_1,\ldots,C_{i-1},b,C_{i+1},\ldots,C_n)\\
&= \det(C_1,\ldots,C_{i-1},\sum_{j=1}^n x_j C_j,C_{i+1},\ldots,C_n)\\
&=\sum_{j=1}^n x_j \det(C_1,\ldots,C_{i-1},C_j,C_{i+1},\ldots,C_n)\\
&=x_i \det(C_1,\ldots,C_{i-1},C_i,C_{i+1},\ldots,C_n)\\
&=x_i \det A
\end{align*}

Como $A$ es invertible, su determinante no es $0$, de modo que $$x_i=\frac{\det A_i}{\det A},$$ como queríamos.

$\square$

Veamos un ejemplo concreto de la aplicación de las fórmulas de Cramer.

Ejemplo. Consideremos el siguiente sistema de ecuaciones en $\mathbb{R}$ en tres variables:
\begin{align*}
2x+3y-z=1\\
3x-y+2z=0\\
3x+10y-5z=3
\end{align*}

En un ejemplo anterior vimos que la matriz asociada $A=\begin{pmatrix} 2 & 3 & -1\\ 3 & -1 & 2 \\ 3 & 10 & -5\end{pmatrix}$ tiene rango $2$. Se puede verificar que la matriz aumentada $$(A|b)=\begin{pmatrix} 2 & 3 & -1 & 1\\ 3 & -1 & 2 & 0 \\ 3 & 10 & -5 & 3 \end{pmatrix}$$ también tiene rango $2$. Por el teorema de Rouché-Capelli, debe existir una solución al sistema de ecuaciones $AX=b$, y el sistema homogéneo tiene espacio de soluciones de dimensión $3-2=1$.

Como la submatriz de las primeras dos filas y columnas es invertible por tener determinante $2(-1)-(3)(3)=-11\neq 0$, entonces el sistema de ecuaciones original es equivalente al subsistema

\begin{align*}
2x+3y=1+z\\
3x-y=-2z.
\end{align*}

Para encontrar su solución, fijamos una $z$ arbitraria. Usando la regla de Cramer, la solución al sistema

está dada por
\begin{align*}
x&=\frac{\begin{vmatrix} 1+z & 3 \\ -2z & -1 \end{vmatrix}}{-11}=\frac{1-5z}{11}\\
y&=\frac{\begin{vmatrix} 2 & 1+z \\ 3 & -2z \end{vmatrix}}{-11}=\frac{3+7z}{11}.
\end{align*}

De esta forma, las soluciones al sistema original están dadas por $$\left(\frac{1-5z}{11}, \frac{3+7z}{11},z\right)=\left(\frac{1}{11},\frac{3}{11},0\right) + z \left(-\frac{5}{11},\frac{7}{11},1\right).$$

Observa que en efecto el espacio de soluciones del sistema homogéneo es de dimensión $1$, pues está generado por el vector $$\left(-\frac{5}{11},\frac{7}{11},1\right),$$ y que todas las soluciones al sistema original son una de estas soluciones, más la solución particular $$\left(\frac{1}{11},\frac{3}{11},0\right).$$

$\square$

Para terminar, veamos un ejemplo muy sencillo de cómo usar las fórmulas de Cramer en un sistema de ecuaciones de $2\times 2$ con un parámetro $\theta$. La intepretación geométrica del siguiente sistema de ecuaciones es «encuentra el punto $(x,y)$ del plano tal que al rotarse en $\theta$ alrededor del origen, llega al punto $(a,b)$ » .

Problema. Sea $a,b,\theta$ números reales. Encuentra las soluciones $x,y$ al sistema de ecuaciones
\begin{align*}
x \cos \theta – y \sin \theta = a\\
x \sin \theta + y \cos \theta = b.
\end{align*}

Solución. La matriz asociada al sistema es $$A=\begin{pmatrix} \cos \theta & -\sin\theta \\ \sin \theta & \cos \theta\end{pmatrix}$$ que tiene determinante $$\det A = \cos ^2 \theta + \sin^2 \theta = 1.$$

De acuerdo al teorema de Cramer, las soluciones al sistema están dadas por:

\begin{align*}
x&=\frac{\begin{vmatrix}a & -\sin \theta\\ b & \cos \theta \end{vmatrix}}{\det A} = a\cos \theta + b\sin \theta\\
y&=\frac{\begin{vmatrix}\cos \theta & a \\ \sin \theta & b \end{vmatrix}}{\det A} = b\cos \theta – a\sin \theta.
\end{align*}

$\triangle$

Hay herramientas en línea que te permiten ver de manera interactiva cómo usar las fórmulas de Cramer para sistemas de ecuaciones en los reales. Una de ellas es el Cramer’s Rule Calculator de matrix RESHISH, en donde puedes ver la solución por pasos para ejemplos que tú fijes.

Más adelante…

En esta entrada volvimos a hablar de sistemas de ecuaciones lineales, pero ahora que ya sabemos determinantes, pudimos verlo con un enfoque diferente al que habíamos utilizado para abordar el tema en la primera unidad. También hablamos de la regla de Cramer, una herramienta muy poderosa cuando estamos intentando resolver sistemas de ecuaciones.

Ahora, vamos a ver cómo se usa lo que vimos en esta entrada resolviendo varios ejemplos. Después, empezaremos a abordar el tema de eigenvalores y eigenvectores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Determina el rango de la matriz $$A=\begin{pmatrix} 2 & 0 & -1 \\ 3 & -2 & 4 \\ 5 & -2 & 3 \\ -1 & 2 & -5 \end{pmatrix}.$$
  • Para la matriz $A$ del inciso anterior, resuelve los sistemas de ecuaciones lineales $AX=\begin{pmatrix}5\\8\\3\\2\end{pmatrix}$ y $AX=\begin{pmatrix}5\\8\\13\\-3\end{pmatrix}$.
  • Verifica que la matriz aumentada en el último ejemplo en efecto tiene rango $2$.
  • Muestra que si $A$ es una matriz en $M_n(\mathbb{R})$ con entradas enteras y de determinante $1$, y $b$ es un vector en $R^n$ con entradas enteras, entonces la solución $X$ del sistema de ecuaciones $AX=b$ tiene entradas enteras.
  • ¿Cómo puedes usar la regla de Cramer para encontrar la inversa de una matriz invertible $A$?
  • Considera un sistema de ecuaciones con coeficientes en un campo $F_1$ y una extensión de campo $F_2$. Muestra que si el sistema tiene una solución en $F_2$, entonces también tiene una solución en $F_1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de definición y propiedades de determinantes

Por Blanca Radillo

Introducción

En esta entrada haremos una serie de problemas que nos ayudarán como repaso de los temas vistos durante las últimas dos semanas. Mostraremos algunas propiedades bastante interesantes acerca de las transformaciones alternantes y antisimétricas, así como de la transformación estrella de esta semana: el determinante.

Problemas de transformaciones antisimétricas

En la entrada del miércoles 6 de mayo, hablábamos sobre la equivalencia entre transformaciones alternantes y antisimétricas, justo resaltamos que ésto no es cierto si el campo $F$ es $\mathbb{Z}_2$, y el siguiente ejemplo lo expone:

Ejemplo. Sea $f:\mathbb{Z}_2 \times \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ definido como $f(x,y)=xy$. Claramente $f$ es bilineal, pero no es alternate ya que $f(1,1)=1\neq 0$. Por otro lado, $f$ es antisimétrica, porque $f(x,y)+f(y,x)=xy+yx=2xy=0$.

$\triangle$

De manera natural surge la pregunta: ¿cómo podemos construir una transformación $d$-lineal antisimétrica o alternante? El siguiente problema muestra un camino para obtener una transformación antisimétrica dada un mapeo $d$-lineal $f$.

Problema. Sea $f:V^d \rightarrow W$ una transformación $d$-lineal. Demuestra que

$A(f):=\sum_{\sigma \in S_d} \text{sign}(\sigma) \sigma (f)$

es un mapeo $d$-lineal antisimétrico.

Solución. Es fácil ver que $A(f)$ es una transformación $d$-lineal, dado que $A(f)$ es una combinación lineal de mapeos $d$-lineales. Queremos probar que, para $\tau \in S_d$, $\tau (A(f))=\text{sign}(\tau) A(f)$. Notemos que

\begin{align*}
\tau(A(f)) &= \sum_{\sigma \in S_d} \text{sign}(\sigma) \tau(\sigma(f)) \\
&= \sum_{\sigma \in S_d} \text{sign}(\sigma) (\tau\sigma)(f).
\end{align*}

Usando el hecho que $\text{sign}(\tau)\text{sign}(\sigma)=\text{sign}(\tau\sigma)$ y que $\{ \tau \sigma : \sigma \in S_d \}=S_d$, obtenemos que

\begin{align*}
\text{sign}(\tau)\tau(A(f)) &= \sum_{\sigma \in S_d} \text{sign}(\tau\sigma) (\tau\sigma)(f) \\
&= \sum_{\eta \in S_d} \text{sign}(\eta) (\eta)(f) =A(f).
\end{align*}

Por lo tanto, $\tau(A(f))=\text{sign}(\tau)A(f)$.

$\square$

Problemas de determinantes

Ahora continuando con la discusiones del determinante, sabemos que éste es una forma $n$-lineal alternante, y además que cualquier otra forma $n$-lineal alternante varía de $\det(b_1,\ldots,b_n)$ únicamente por un factor multiplicativo. Otro resultado interesante ese teorema es el siguiente:

Problema 1. Sea $V$ un espacio vectorial sobre $F$ de dimensión finita. Sea $e_1,\ldots,e_n$ una base de $V$ y sea $T:V\rightarrow V$ una transformación lineal. Demuestra que para todo $v_1,\ldots,v_n\in V$ tenemos que

$\sum_{i=1}^n \det(v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots, v_n) =\text{Tr}(T)\cdot \det(v_1,\ldots,v_n),$

donde todos los determinantes están calculados en la base canónica y $\text{Tr}(T)$ es la traza de la matriz de $T$ (con respecto a la base canónica).

Solución. Definimos el mapeo $\phi:V^n\rightarrow F$ como

$\phi(v_1,\ldots,v_n)=\sum_{i=1}^n \det(v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots,v_n).$

Esta transformación es la suma de transformaciones $n$-lineales, por lo tanto $\phi$ es $n$-lineal. Más aún, es alternante, ya que si asumimos, por ejemplo, que $v_1=v_2$, entonces

\begin{align*}
\phi(v_1,v_1,v_3,\ldots,v_n) &=\det(T(v_1),v_1,v_3,\ldots,v_n)+ \det(v_1,T(v_1),v_3,\ldots,v_n) \\
&+ \sum_{i=3}^n \det(v_1,v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots,v_n) \\
&= \det(T(v_1),v_1,v_3,\ldots,v_n)+ \det(v_1,T(v_1),v_3,\ldots,v_n) \\
&= \det(T(v_1),v_1,v_3,\ldots,v_n)- \det(T(v_1),v_1,v_3,\ldots,v_n) \\
&=0,
\end{align*}

debido a que el determinante es antisimétrico.

Por el último teorema visto en la clase del viernes pasado, existe escalar $\alpha$ tal que

$\phi(v_1,\ldots,v_n)=\alpha \det(v_1,\ldots,v_n)$

para todo $v_1,\ldots,v_n$. Sea $A=[a_{ij}]$ la matriz de $T$ con respecto a la base canónica. Si tomamos $v_1=e_1,\ldots,v_n=e_n$, por el mismo teorema tenemos que

\begin{align*}
\alpha &= \phi(e_1,\ldots,e_n) \\
&=\sum_{i=1}^n \det(e_1,\ldots,e_{i-1},\sum_{j=1}^n a_{ji}e_j, e_{i+1},\ldots,e_n)\\
&=\sum_{i=1}^n \sum_{j=1}^n a_{ji}\det(e_1,\ldots,e_{i-1},e_j,e_{i+1},\ldots,e_n) \\
&= \sum_{i=1}^n a_{ii} = \text{Tr}(T).
\end{align*}

Por lo tanto, obtenemos lo que queremos.

$\square$

Por último, los siguientes dos problemas nos ilustran como podemos obtener información de las matrices de manera fácil y «bonita», usando algunas propiedades de los determinantes vistas en la sesión del martes pasado.

Problema 2. Sea $n$ un número impar y sean $A,B\in M_n(\mathbb{R})$ matrices tal que $A^2+B^2=0_n$. Prueba que la matriz $AB-BA$ no es invertible.

Solución. Notemos que

$(A+iB)(A-iB)=A^2+B^2+i(BA-AB)=i(BA-AB).$

Por la propiedad del determinante de un producto, tenemos que

$\det(A+iB)\det(A-iB)=i^n \det(BA-AB).$

Suponemos que $AB-BA$ es invertible, entonces $\det(BA-AB)\neq 0$. Además sabemos que

$\det(A-iB)=\det(\overline{A+iB})=\overline{\det(A+iB)},$

esto implica que $|\det(A+iB)|^2=i^n\det(BA-AB).$ Como consecuencia, $i^n$ es un número real, contradiciendo al hecho que $n$ es impar. Por lo tanto $\det(BA-AB)=0$.

$\square$

Problema 3. Para $1\leq i,j\leq n$, definimos $a_{ij}$ como el número de divisores positivos en común de $i$ y $j$ y definimos $b_{ij}$ igual a 1 si $j$ divide $i$ e igual a 0 si no.

  1. Probar que $A=B\cdot ^t B$, donde $A=[a_{ij}]$ y $B=[b_{ij}]$.
  2. ¿Qué podemos decir de la forma de $B$?
  3. Calcula $\det(A)$.

Solución. 1) Fijando $i,j$ tenemos que

$\det(B\cdot ^t B)_{ij}=\sum{k=1}^n b_{ik}b_{jk}.$

Notemos que $b_{ik}b_{jk}$ no es cero ($b_{ij},b_{jk}=1$) si y sólo si $k$ divide a $i$ y a $j$, esto implica que la cantidad de términos de la suma no ceros corresponde exactamente con la cantidad de los divisores en común que tengan $i$ y $j$. Por lo tanto $\det(B\cdot ^tB)_{ij}=a_{ij}$.

2) Si $i<j$, no es posible que $j$ divida a $i$. Entonces $b_{ij}=0$ para todo $i<j$, esto significa que $B$ es, al menos, triangular inferior. Un dato más que podemos asegurar es que $b_{ii}=1$ para toda $i$, por lo tanto, al menos, todos los términos de la diagonal de $B$ son iguales a 1.

3) Dada la propiedad multiplicativa del determinante, dado que $\det(B)=\det(^tB)$ y usando el inciso (1), tenemos que $\det(A)=\det(B\cdot ^tB)=(\det B)^2.$ Pero por el inciso (2), $\det B=1$, concluimos que $\det A=1$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases duales, recetas y una matriz invertible

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior definimos el espacio dual de un espacio vectorial $V$. Así mismo, definimos las formas coordenadas, que son formas lineales asociadas a una base $B$ de $V$. Lo que hace la $i$-ésima forma coordenada en un vector $v$ es «leer» el $i$-ésimo coeficiente de $v$ expresado en la base $B$. Nos gustaría ver que estas formas coordenadas conforman bases del espacio dual.

Más concretamente, el objetivo de esta entrada es mostrar el teorema que enunciamos al final de la entrada anterior, hablar de problemas prácticos de bases duales y de mostrar un resultado interesante que relaciona bases, bases duales y la invertibilidad de una matriz.

Pequeño recordatorio

Como recordatorio, dada una base $B=\{e_1,\ldots,e_n\}$ de un espacio vectorial $V$ de dimensión finita $n$, podemos construir $n$ formas coordenadas $e_1^\ast,\ldots,e_n^\ast$ que quedan totalmente determinadas por lo que le hacen a los elementos de $B$ y esto es, por definición, lo siguiente:

$$
e_i^\ast(e_j)=
\begin{cases}
1\quad \text{ si $i=j$,}\\
0\quad \text{ si $i\neq j$.}
\end{cases}
$$

Recordemos también que dado un vector $v$ en $V$ podíamos construir a la forma lineal «evaluar en $v$», que era la forma $\text{ev}_v:V^\ast \to F$ dada por $\text{ev}_v(f)=f(v)$. Como manda elementos de $V^\ast$ a $F$, entonces pertenece a $V^{\ast \ast}$. A partir de esta definición, construimos la bidualidad canónica $\iota:V\to V^{\ast \ast}$ que manda $v$ a $\text{ev}_v$.

Finalmente, recordemos que dada una forma lineal $l$ y un vector $v$, usamos la notación $\langle l,v\rangle = l(v)$, y que esta notación es lineal en cada una de sus entradas. Todo esto lo puedes revisar a detalle en la entrada anterior.

El teorema de bases duales

El resultado que enunciamos previamente y que probaremos ahora es el siguiente.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B=\{e_1,\ldots,e_n\}$ una base de $V$. Entonces el conjunto de formas coordenadas $B^\ast=\{e_1^\ast, \ldots,e_n^\ast\}$ es una base de $V^\ast$. En particular, $V^\ast$ es de dimensión finita $n$. Además, la bidualidad canónica $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales.

Antes de comenzar, convéncete de que cada una de las $e_i^\ast$ son formas lineales, es decir, transformaciones lineales de $V$ a $F$.

Demostración. Veremos que $B^\ast=\{e_1^\ast,\ldots,e_n^\ast\}$ es un conjunto linealmente independiente y que genera a $V^\ast$. Veamos lo primero. Tomemos una combinación lineal igual a cero, $$z:=\alpha_1 e_1^\ast + \alpha_2 e_2^\ast+\ldots + \alpha_n e_n^\ast=0.$$ Para cada $i=1,2,\ldots,n$, podemos evaluar la forma lineal $z$ en $e_i$.

Por un lado, $z(e_i)=0$, pues estamos suponiendo que la combinación lineal de $e_i^\ast$’s es (la forma lineal) cero. Por otro lado, analizando término a término y usando que los $e_i^\ast$ son la base dual, tenemos que si $i\neq j$ entonces $e_j^\ast(e_i)$ es cero, y si $i=j$, es $1$.

Así que el único término que queda es $\alpha_i e_i^\ast(e_i)=\alpha_i$. Juntando ambas observaciones, $\alpha_i=z(e_i)=0$, de modo que todos los coeficientes de la combinación lineal son cero. Asi, $B^\ast$ es linealmente independiente.

Ahora veremos que $B^\ast$ genera a $V^\ast$. Tomemos una forma lineal arbitraria $l$, es decir, un elemento en $V^\ast$. Al evaluarla en $e_1,e_2,\ldots,e_n$ obtenemos escalares $$\langle l, e_1\rangle,\langle l, e_2\rangle,\ldots,\langle l, e_n\rangle. $$ Afirmamos que estos son los coeficientes que nos ayudarán a poner a $l$ como combinación lineal de elementos de $B^\ast$. En efecto, para cualquier vector $v$ tenemos que

\begin{align*}
\left(\sum_{i=1}^n\langle l, e_i \rangle e_i^\ast\right) (v)
&= \sum_{i=1}^{n} \langle l, e_i \rangle \langle e_i^\ast, v \rangle \\
&= \sum_{i=1}^{n} \langle l, \langle e_i^\ast, v \rangle e_i \rangle \\
&=\left \langle l, \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i \right \rangle\\
&= \langle l, v \rangle\\
&= l(v).
\end{align*}

La primer igualdad es por la definición de suma de transformaciones lineales. En la segunda usamos la linealidad de la segunda entrada para meter el escalar $\langle e_i^\ast , v\rangle$. La siguiente es de nuevo por la linealidad de la segunda entrada. En la penúltima igualdad usamos que justo $\langle e_i^\ast , v\rangle$ es el coeficiente que acompaña a $e_i$ cuando escribimos a $v$ con la base $B$. Esto muestra que $B^\ast$ genera a $V^\ast$.

Así, $B^\ast$ es base de $V^\ast$. Como $B^\ast$ tiene $n$ elementos, entonces $V^\ast$ tiene dimensión $n$.

La última parte del teorema consiste en ver que $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales. Por lo que acabamos de demostrar, $$\dim V = \dim V^\ast = \dim V^{\ast \ast}.$$ Así que basta con mostrar que $\iota$ es inyectiva pues, de ser así, mandaría a una base de $V$ a un conjunto linealmente independiente de $V^{\ast \ast}$ con $n$ elementos, que sabemos que es suficiente para que sea base. Como $\iota$ es transformación lineal, basta mostrar que el único vector que se va a la forma lineal $0$ de $V^\ast$ es el $0$ de $V$.

Supongamos que $v$ es tal que $\text{ev}_v=0$. Vamos a mostrar que $v=0$. Si $\text{ev}_v=0$, en particular para las formas coordenadas $e_i^\ast$ tenemos que $ \text{ev}_v(e_i^\ast)=0$. En otras palabras, $e_i^\ast(v)=0$ para toda $i$. Es decir, todas las coordenadas de $v$ en la base $B$ son $0$. Así, $v=0$. Con esto terminamos la prueba.

$\square$

La demostración anterior muestra cómo encontrar las coordenadas de una forma lineal $l$ en términos de la base $B^\ast$: basta con evaluar $l$ en los elementos de la base $B$. Recopilamos esto y la igualdad dual como una proposición aparte, pues resulta ser útil en varios contextos.

Proposición. Sea $V$ un espacio vectorial de dimensión finita $n$, $B=\{e_1,\ldots, e_n\}$ una base de $V$ y $B^\ast=\{e_1^\ast,\ldots,e_n^\ast\}$ la base dual. Entonces, para todo vector $v$ en $V$ y para toda forma lineal $l:V\to F$, tenemos que
\begin{align*}
v&= \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i \quad \text{ y }\\
l&= \sum_{i=1}^{n} \langle l, e_i \rangle e_i^\ast.
\end{align*}

La traza de una matriz en $M_n(F)$ es la suma de las entradas en su diagonal principal. Es sencillo verificar que la función $\text{tr}:M_n(F)\to F$ que manda a cada matriz a su traza es una forma lineal, es decir, un elemento de $M_n(F)^\ast$.

Ejemplo. Considera el espacio vectorial de matrices $M_3(\mathbb{R})$. Sea $B=\{E_{ij}\}$ su base canónica. Expresa a la forma lineal traza en términos de la base dual $B^\ast$.

Solución. Tenemos que $\text{tr}(E_{ii})=1$ y que si $i\neq j$, entonces $\text{tr}(E_{ij})=0$. De esta forma, usando la fórmula de la proposición anterior,
\begin{align*}
\text{tr}&=\sum_{i,j} \text{tr}(E_{ij}) E_{ij}^\ast\\
&=E_{11}^\ast + E_{22}^\ast + E_{33}^\ast.
\end{align*} Observa que, en efecto, esta igualdad es correcta. Lo que hace $E_{ii}^\ast$ por definición es obtener la entrada $a_{ii}$ de una matriz $A=[a_{ij}]$.

La igualdad que encontramos dice que «para obtener la traza hay que extraer las entradas $a_{11}$, $a_{22}$, $a_{33}$ de $A$ y sumarlas». En efecto, eso es justo lo que hace la traza.

$\triangle$

Algunos problemas prácticos de bases duales

Ya que introdujimos el concepto de espacio dual y de base dual, hay algunos problemas prácticos que puede que queramos resolver.

  • Dada una base $v_1,\ldots,v_n$ de $F^n$, ¿cómo podemos encontrar a la base dual $v_1^\ast, \ldots, v_n^\ast$ en términos de la base dual $e_1^\ast, \ldots, e_n^\ast$ de la base canónica?
  • Dada una base $L=\{l_1,\ldots, l_n\}$ de $V^\ast$, ¿es posible encontrar una base $B$ de $V$ tal que $B^\ast = L$? De ser así, ¿cómo encontramos esta base?

A continuación mencionamos cómo resolver ambos problemas. Las demostraciones se quedan como tarea moral. En la siguiente entrada veremos problemas ejemplo resueltos.

  • La receta para resolver el primer problema es poner a $v_1,\ldots, v_n$ como vectores columna de una matriz $A$. Las coordenadas de $v_1^\ast,\ldots, v_n^\ast$ en términos de la base $e_1^\ast,\ldots,e_n^\ast$ están dados por las filas de la matriz $A^{-1}$.
  • La receta para resolver el segundo problema es tomar una base $B’=\{e_1,\ldots, e_n\}$ cualquiera de $V$ y considerar la matriz $A$ con entradas $A=[l_i(e_j)]$. La matriz $A^{-1}$ tiene como columnas a los vectores de coordenadas de la base $B$ que buscamos con respecto a la base $B’$.

¿Por qué la matriz $A$ de la segunda receta es invertible? Esto lo mostramos en la siguiente sección.

Un teorema de bases, bases duales e invertibilidad de matrices

La demostración del siguiente teorema usa varias ideas que hemos estado desarrollando con anterioridad. Usamos que:

  • Si $V$ es de dimensión finita $n$ y $B$ es un conjunto de $n$ vectores de $V$, entonces basta con que $B$ sea linealmente independiente para ser base. Esto lo puedes repasar en la entrada del lema de intercambio de Steinitz.
  • Una matriz cuadrada $A$ es invertible si y sólo si el sistema de ecuaciones $AX=0$ sólo tiene la solución trivial $X=0$. Esto lo puedes repasar en la entrada de equivalencias de matrices invertibles.
  • Una matriz cuadrada $A$ es invertible si y sólo si su transpuesta lo es.
  • El hecho de que la bidualidad canónica $\iota$ es un isomorfismo entre $V$ y $V^{\ast \ast}$.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ sobre el campo $F$. Sea $B=\{v_1,\ldots, v_n\}$ un conjunto de vectores en $V$ y $L=\{l_1,\ldots, l_n\}$ un conjunto de elementos de $V^\ast$, es decir, de formas lineales en $V$. Consideremos a la matriz $A$ en $M_n(F)$ dada por $$A=[l_i(v_j)].$$ La matriz $A$ es invertible si y sólo si $B$ es una base de $V$ y $L$ es una base de $V^\ast$.

Demostración. Mostraremos primero que si $B$ no es base, entonces $A$ no es invertible. Como $B$ tiene $n$ elementos y no es base, entonces no es linealmente independiente, así que existe una combinación lineal no trivial $$\alpha_1 v_1+\ldots+\alpha_n v_n=0.$$ De esta forma, si definimos $v=(\alpha_1,\ldots, \alpha_n)$, este es un vector no cero, y además, la $i$-ésima entrada de $Av$ es $$\alpha_1 l_i(v_1)+\ldots+\alpha_n l_i(v_n) = l_i(\alpha_1 v_1 + \ldots + \alpha_n v_n) = 0.$$ De este modo, $AX=0$ tiene una no solución trivial y por lo tanto no es invertible.

De manera similar, si $L$ no es base, entonces hay una combinación lineal no trivial $$\beta_1 L_1 + \ldots + \beta_n L_n =0$$ y entonces el vector $w=(\beta_1,\ldots,\beta_n)$ es una solución no trivial a la ecuación $^t A X=0$, por lo que $^t A$ no es invertible, y por lo tanto $A$ tampoco lo es.

Ahora veremos que si $L$ y $B$ son bases, entonces $A$ es invertible. Si $A$ no fuera invertible, entonces tendríamos una solución no trivial $(\alpha_1,\ldots,\alpha_n)$ a la ecuación $AX=0$. Como vimos arriba, esto quiere decir que para cada $i$ tenemos que $$ l_i(\alpha_1 v_1 + \ldots + \alpha_n v_n) = 0.$$ Como $l_i$ es base de $V^\ast$, esto implica que $l(\alpha_1 v_1 + \ldots + \alpha_n v_n)=0$ para toda forma lineal $l$, y como la bidualidad canónica es un isomorfismo, tenemos que $$\alpha_1 v_1 + \ldots + \alpha_n v_n=0.$$ Esto es imposible, pues es una combinación lineal no trivial de los elementos de $B$, que por ser base, son linealmente independientes.

$\square$

Más adelante…

Esta entrada es un poco abstracta, pues habla de bastantes transformaciones aplicadas a transformaciones, y eso puede resultar un poco confuso. Se verán problemas para aterrizar estas ideas. La importancia de entenderlas y manejarlas correctamente es que serán de utilidad más adelante, cuando hablemos de los espacios ortogonales, de transposición de transformaciones lineales y de hiperplanos.

La teoría de dualidad también tiene amplias aplicaciones en otras áreas de las matemáticas. En cierto sentido, la dualidad que vemos aquí es también la que aparece en espacios proyectivos. Está fuertemente relacionada con la dualidad que aparece en teoremas importantes de optimización lineal, que permiten en ocasiones reformular un problema difícil en términos de uno más fácil, pero con el mismo punto óptimo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Usa la definición de linealidad para ver que las formas coordenadas $e_i^\ast$ en efecto son formas lineales.
  • Muestra que $\iota:V \to V^{\ast \ast}$, la bidualidad canónica, es una transformación lineal.
  • Justifica por qué la primer receta resuelve el primer problema práctico de bases duales.
  • Justifica por qué la segunda receta resuelve el segundo problema práctico de bases duales.
  • Sean $a_0,a_1,\ldots,a_n$ reales distintos. Considera el espacio vectorial $V=\mathbb{R}_n[x]$ de polinomios con coeficientes reales y grado a lo más $n$. Muestra que las funciones $\text{ev}_{a_i}:V\to \mathbb{R}$ tales que $\text{ev}_{a_i}(f)=f(a_i)$ son formas lineales linealmente independientes, y que por lo tanto son una base de $V^\ast$. Usa esta base, la base canónica de $V$ y el teorema de la última sección para mostrar que la matriz $$\begin{pmatrix} 1 & a_0 & a_0 ^2 & \ldots & a_0^n\\ 1 & a_1 & a_1^2 & \ldots & a_1^n\\ 1 & a_2 & a_2^2 & \ldots & a_2^n\\ & \vdots & & \ddots & \vdots \\ 1 & a_n & a_n^2 & \ldots & a_n^n\end{pmatrix}$$ es invertible.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»