Archivo de la etiqueta: calculo

Seminario de Resolución de Problemas: Funciones diferenciables y la derivada

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hemos platicado acerca de funciones continuas. A partir de ahí, platicamos de dos teoremas importantes para esta clase de funciones: el teorema del valor intermedio y el teorema del valor extremo. La siguiente clase de funciones que nos interesa es la de funciones diferenciables. Hablaremos de esta clase de funciones y de la derivada.

Como recordatorio, si $A\subset \mathbb{R}$ y $a$ es un punto en el interior de $A$, decimos que $f:A\to \mathbb{R}$ es diferenciable en $a$ si el límite $$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$ existe y es finito.

En ese caso, llamamos $f'(a)$ al valor de ese límite. Cuando $A$ es abierto y $f$ es diferenciable en todo punto $a$ de $A$, entonces simplemente decimos qur $f$ es diferenciable y podemos definir a la derivada $f’$ de $f$ como la función $f’:A\to \mathbb{R}$ tal que a cada punto lo manda al límite anterior.

Mencionaremos algunas propiedades básicas de funciones diferenciables y cómo se pueden usar para resolver problemas. Como en ocasiones anteriores, no hacemos mucho énfasis en la demostración de las propiedades básicas, pues se pueden encontrar en libros de texto, como el Cálculo de Spivak.

Propiedades básicas de funciones diferenciables

En la definición de diferenciabilidad, se calcula el límite $$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}.$$ Sin embargo, en algunas ocasiones es más sencillo calcular el límite $$\lim_{y\to x} \frac{f(x)-f(y)}{x-y}.$$ Estos dos límites son equivalentes, pues sólo difieren en el cambio de variable $y=x+h$. Dependiendo del problema que se esté estudiando, a veces conviene usar una notación u otra para simplificar las cuentas.

Como en el caso de la continuidad, la diferenciabilidad se comporta bien con las operaciones básicas.

Proposición. Si $f:(a,b)\to \mathbb{R}$ y $g:(a,b)\to \mathbb{R}$ son diferenciables, entonces $f+g$, $f-g$ y $fg$ son diferenciables. Tenemos que sus derivadas son
\begin{align*}
(f+g)’=f’+g’\\
(f-g)’=f’-g’\\
(fg)’=f’g+fg’.
\end{align*} Si $g(x)\neq 0$, entonces $f/g$ también es diferenciable en $x$, con derivada $$(f/g)’=\frac{f’g-fg’}{g^2}.$$

La proposición anterior se puede probar directamente de las definiciones. Se demuestra en un curso usual de cálculo, pero es un ejercicio recomendable hacer las demostraciones de nuevo.

La tercera igualdad se llama la regla del producto y la última la regla del cociente. En la regla del producto tenemos simetría, así que no importa cuál función derivamos primero. En la regla del cociente sí importa que derivemos primero a $f$ en el numerador. Para acordarse de ello, es fácil acordarse que $g$ va «al cuadrado» y como va al cuadrado, es «más fuerte», y «no se deja derivar primero».

Las funciones diferenciables son continuas, en el sentido de la siguiente proposición.

Proposición. Si $f:A\to \mathbb{R}$ es una función diferenciable en $x$, entonces es continua en $x$.

Demostración. En efecto,
\begin{align*}
\lim_{h\to 0}& f(a+h)-f(a) \\
= &\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \cdot h\\
=&\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \cdot \lim_{h\to 0} h\\
= &f'(a)\cdot 0 = 0,
\end{align*}

de modo que $$\lim_{h\to 0}f(a+h) = f(a),$$ en otras palabras, $$\lim_{x\to a} f(x)=f(a),$$ así que $f$ es continua en $a$.

$\square$

Una propiedad más es que las funciones diferenciables alcanzan su máximo en puntos en donde la derivada se anula. Damos un esbozo de la demostración de una parte de la proposición, pero recomendamos completar con cuidado el resto de la prueba, sobre todo cuidando que al pasar términos negativos multiplicando o dividiendo, se invierta la desigualdad correctamente.

Proposición. Si $f:(a,b)\to \mathbb{R}$ tiene un máximo o un mínimo en $x$, entonces $f'(x)=0$.

Sugerencia pre-demostración. Supón que $f'(x)\neq 0$. Divide en casos de acuerdo a si $f'(x)>0$ ó $f'(x)<0$. También, haz una figura que te ayude a entender lo que está sucediendo: si la derivada existe y es mayor que $0$ en un punto $x$, entonces cerca de $x$ la función se ve como si «tuviera pendiente positiva» y entonces tantito a la derecha crece y tantito a la izquierda decrece.

Esbozo de demostración. Procedemos por contradicción. Si $f'(x)=c>0$, entonces para $h>0$ suficientemente pequeño tenemos que $$\left|\frac{f(x+h)-f(x)}{h}-c\right|<c/2,$$ de modo que $\frac{f(x+h)-f(x)}{h}>c/2$, de donde $f(x+h)>f(x)+\frac{hc}{2}>f(x)$, lo que muestra que $x$ no es un máximo.

Del mismo modo, tomando $h<0$ suficientemente cercano a $0$, tenemos que $x$ no es un mínimo. Los casos en los que $f'(x)=c<0$ son parecidos.

$\square$

La proposición anterior nos permite usar la derivada para estudiar los valores extremos de una función, aunque no esté definida en un intervalo abierto. Si $f:[a,b]\to \mathbb{R}$ es diferenciable en $(a,b)$ y es continua en $[a,b]$, entonces sus valores extremos forzosamente están o bien en los extremos del intervalo (en $a$ o $b$), o bien en un punto $x\in (a,b)$ en donde la derivada es $0$. Esta es la estrategia que usaremos para mostrar los teoremas de Rolle y del valor medio.

Problemas resueltos de funciones diferenciables

Veamos algunos problemas en los que podemos aplicar las propiedades anteriores de funciones diferenciables.

Problema. Supongamos que la función $xf(x)$ es diferenciable en un punto $x_0\neq 0$ y que la función $f$ es continua en $x_0$. Muestra que $f$ es diferenciable en $x_0$.

Sugerencia pre-solución. Para mostrar que la expresión es diferenciable, usa la definición de diferenciabilidad con límite $x\to x_0$. En vez de tratar de encontrar el límite del cociente directamente, cambia el problema multiplicando y dividiendo por $xx_0$.

Solución. Primero, como $xf(x)$ es diferenciable en $x_0$, tenemos que el siguiente límite existe y es finito $$A:=\lim_{x\to x_0}\frac{xf(x)-x_0f(x_0)}{x-x_0}.$$

Tenemos que mostrar que el límite $$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$ existe. Para ello tomamos una $x$ suficientemente cerca de $x_0$, de modo que $x\neq 0$, y multiplicamos el numerador y denominador por $xx_0$, y luego sumamos y restamos $x_0^2f(x_0)$ en el numerador para obtener lo siguiente:

\begin{align*}
&\frac{f(x)-f(x_0)}{x-x_0} &\\
= &\frac{xx_0 f(x)-xx_0 f(x_0)}{xx_0 (x-x_0)}\\
=&\frac{xx_0 f(x)-x_0^2f(x_0)-xx_0 f(x_0)+x_0^2f(x_0)}{xx_0 (x-x_0)}\\
=&\frac{1}{x}\left(\frac{xf(x)-x_0f(x_0)}{x-x_0}\right) -\frac{f(x_0)}{x}.
\end{align*}

Tomando el límite cuando $x\to x_0$, tenemos que el primer sumando converge a $\frac{A}{x_0}$, por la diferenciabilidad de $xf(x)$ y que el segundo sumando converge a $\frac{f(x_0)}{x_0}$. De esta forma, $f$ es diferenciable en $x_0$.

$\square$

Problema. Sea $n$ un entero positivo y $a_1,\ldots, a_n$ números reales. Consideremos la función $$f(x)=a_1\sin x + a_2\sin 2x + \ldots + a_n \sin nx.$$ Muestra que si $|f(x)|\leq |\sin x|$ para todos los reales $x$, entonces $$|a_1+2a_2+\ldots+na_n|\leq 1.$$

Sugerencia pre-solución. Se puede hacer una prueba por inducción. Intenta hacerlo así. Luego, intenta modificar el problema poniendo a la expresión final del enunciado en términos de la derivada de $f$ en algún valor específico.

Solución. La derivada de $f$ es $$a_1\cos x+ 2a_2\cos 2x + \ldots + n a_n\cos nx,$$ que en $0$ es $$a_1+2a_2+\ldots+na_n,$$ que es precisamente el lado izquierdo de la desigualdad que queremos.

Por definición de derivada, tenemos que
\begin{align*}
|f'(0)|&=\lim_{x\to 0}\left|\frac{f(x)-f(0)}{x-0}\right|\\
&=\lim_{x\to 0} \left|\frac{f(x)}{x}\right|.
\end{align*}

Por la hipótesis del problema, la última expresión dentro del límite es menor o igual a $\left|\frac{\sin x}{x}\right |$. Como el límite de $\frac{\sin x}{x}$ cuando $x \to 0$ es $1$, tenemos que $$|f'(0)|\leq 1,$$ como queríamos.

$\square$

Problema. Supongamos que $f:\mathbb{R}\to \mathbb{R}$ es una función que satisface la ecuación funcional $f(x+y)=f(x)+f(y)$ para todo $x$ y $y$ en $\mathbb{R}$ y que $f$ es diferenciable en $0$. Muestra que $f$ es una función de la forma $f(x)=cx$ para $c$ un real.

Sugerencia pre-solución. Usa como paso intermedio para el problema mostrar que $f$ es diferenciable en todo real. Recuerda que una función que satisface la ecuación funcional del problema debe satisfacer que $f(x)=f(1)x$ para todo racional $x$. Esto se probaba con división por casos e inducción. Usa propiedades de funciones continuas.

Solución. Tomando $x=y=0$, tenemos que $f(0)=2f(0)$, de modo que $f(0)=0$. Mostremos que $f$ es diferenciable en todo real.

Como $f$ es diferenciable en $0$, tenemos que $$L:=\lim_{h\to 0} \frac{f(h)-f(0)}{h}=\lim_{h\to 0} \frac{f(h)}{h}$$ existe y es finito. Tomemos ahora cualquier real $r$. Por la ecuación funcional, tenemos que
\begin{align*}
f(r+h)-f(r)&=f(r)+f(h)-f(h)\\
&=f(r),
\end{align*}
de modo que $$\lim_{h\to 0} \frac{f(r+h)-f(r)}{h}=\lim_{h\to 0} f(h)=L.$$

Así, $f$ es diferenciable en todo real $r$. Por lo tanto, $f$ es contínua en todo real.

Anteriormente, cuando hablamos de inducción y de división por casos, vimos que una función que satisface la ecuación funcional $f(x+y)=f(x)+f(y)$ debe satisfacer que $f(x)=f(1) x$ para todo número racional $x$. Para cualquier real $r$ podemos encontrar una sucesión de racionales $\{x_n\}$ que convergen a $r$. Como $f$ es continua, tenemos que
\begin{align*}
f(r)&=\lim_{n\to \infty} f(x_n) \\
&= \lim_{n\to \infty} f(1) x_n \\
&= f(1) r.
\end{align*}

Esto muestra lo que queremos.

$\square$

Más problemas

Hay más ejemplos de problemas relacionados con la derivada en la Sección 6.3 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: El teorema del valor extremo

Por Fabian Ferrari

Introducción

En una entrada anterior, acerca de funciones continuas, mencionamos dos teoremas fundamentales que estas funciones satisfacen: el teorema del valor intermedio y el teorema del valor extremo. Ya hablamos acerca del teorema del valor intermedio en una entrada anterior. El objetivo de esta entrada es mencionar aplicaciones del teorema del valor extremo.

Como recordatorio, el teorema del valor extremo o teorema de los valores extremos nos dice que si una función $f(x)$ es continua en un intervalo cerrado $[a, b]$, entonces existen valores $c$ y $d$ en $[a, b]$ tales que $f(c) \leq f(x) \leq f(d)$ para toda $x$ en el intervalo $[a, b]$.

En otras palabras, lo que nos dice el teorema es que si una función es continua en un intervalo cerrado, tenemos que la función debe alcanzar un valor máximo y un valor mínimo dentro del intervalo.

Dos teoremas para funciones derivables

Aprovecharemos para mencionar dos teoremas importantes que se ocuparán más adelante. Las demostraciones de dichos teoremas tienen que ver con la aplicación del teorema del valor extremo, estos teoremas son el teorema de Rolle y el teorema del valor medio (no confundir con el teorema del valor intermedio).

Teorema de Rolle. Sean $a<b$ reales y $f:[a,b]\to\mathbb{R}$ una función continua en el intervalo $[a, b]$ y derivable en $(a, b)$. Se tiene que si $f(a)=f(b)$, entonces existe $c$ en $(a, b)$ tal que $f^\prime(c)=0$.

Sugerencia pre-demostración. Por el teorema del valor extremo, la función debe alcanzar un máximo y un mínimo en el intervalo. Divide en casos de acuerdo a dónde están estos valores, si en los extremos o no.

Demostración: Como $f(x)$ es una función continua en $[a, b]$, por el teorema del valor extremo tenemos que $f(x)$ alcanza un valor máximo y un valor mínimo en el intervalo $[a, b]$. Tenemos entonces los siguientes casos.

  • Caso i: Si el valor máximo y mínimo se encuentran en los extremos del intervalo, tenemos que la función $f(x)$ tiene que ser constante dado que $f(a)=f(b)$. y se tiene que $f^\prime(c)=0$ para todo $c$ en $[a, b]$.
  • Caso ii: Si el valor mínimo o máximo no están en los extremos. Sean $c_1$ y $c_2$ en $(a, b)$, los valores en los que la función alcanza su mínimo y máximo respectivamente. Alguno de estos no está en los extremos. Como $f(x)$ es derivable en $(a, b)$, tenemos que también va a ser derivable en alguno de los puntos $c_1$ y $c_2$, teniendo que $f^\prime(c_1)=0$ o $f^\prime(c_2)=0$, así que basta con tomar $c=c_1$ o $c=c_2$.

$\square$

Teorema del valor medio. Sean $a<b$ reales y $f:[a,b]\to\mathbb{R}$ una función continua en $[a, b]$ y diferenciable en $(a, b)$. Entonces existe un número $c$ en $(a, b)$ tal que

$\frac{f(b)-f(a)}{b-a}=f^\prime(c)$.

Demostración: Consideremos la siguiente función auxiliar:

$g(x)=(f(b)-f(a))x-(b-a)f(x)$

Tenemos que $g(x)$ es continua en $[a, b]$ y además es derivable en $(a,b)$. La derivada de $g(x)$ está dada por

$g^\prime(x)=f(b)-f(a)-(b-a)f^\prime(x)$

Como $g(x)$ es continua en $[a, b]$, tenemos que por el teorema del valor extremo, la función alcanza un máximo y un mínimo en el intervalo $[a, b]$. Haciendo las cuentas, $g(a)=g(b)$, de modo que si el máximo y mínimo ocurren en los extremos, entonces $g$ es constante y toda $c\in (a,b)$ satisface $g'(c)=0$

En otro caso, sea $c\in(a, b)$ el valor en donde $g(x)$ alcanza su mínimo o su máximo. Tenemos que $g^\prime(c)=0$.

Así, como $g^\prime(c)=f(b)-f(a)-(b-a)f^\prime(c)$, tenemos que:

$0=f(b)-f(a)-(b-a)f^\prime(c)$

$(b-a)f^\prime(c)=f(b)-f(a)$

$f^\prime(c)=\frac{f(b)-f(a)}{b-a}$

$\square$

Alternativamente, en la función anterior pudimos haber aplicado el teorema de Rolle directamente a la función $g$. En las siguientes entradas veremos aplicaciones de estos resultados a problemas concretos.

Aplicación del teorema del valor extremo a un problema

Problema. Se tiene un circulo de radio $r$, y una tangente $L$ que pasa por un punto $P$ de la circunferencia. De un punto cualquiera $R$ en la circunferencia se traza una paralela a $L$ que corta a la circunferencia en $Q$. Determina el área máxima que puede tener el triángulo $PQR$.

Sugerencia pre-solución. Antes que nada, haz una figura. Usa el teorema del valor extremo para asegurar la existencia del valor máximo. Para ello, necesitarás construir una función continua cuyo valor sea el área buscada. Puedes usar argumentos de simetría para conjeturar cuándo se alcanza el valor máximo.

Solución. Hacemos el siguiente diagrama para entender mejor el problema.

Diagrama del enunciado del problema

Fijémonos que las condiciones de la altura y la base del triángulo $PQR$ se pueden describir mediante la siguiente figura:

Condiciones para la altura y base del triángulo

Notemos que la altura del triángulo está dada por $r+h$, donde $h$ puede variar entre $-r$ y $r$. Este dibujo también nos es de ayuda para determinar el valor de la base. Por el teorema de Pitágoras y sabiendo que la distancia del centro $C$ a los puntos $R$ y $Q$ es igual a $r$, tenemos que la base del triángulo es igual a $2\sqrt{r^2-h^2}$.

Así, el área del triángulo está dada por $(\sqrt{r^2-h^2})(r+h)$, pero como $h$ varía, nos conviene ver el área en función de $h$.

$A(h)=\sqrt{r^2-h^2}(r+h),$

La función $A(h)$ es una función continua en el intervalo $[-r, r]$.

Notemos que cuando $h$ toma los valores de $-r$ y $r$, el valor del área es nulo, es decir que en estos valores alcanza el mínimo, lo cual quiere decir que por el teorema del valor extremo, el valor máximo lo alcanza en algún valor en $(-r, r)$.

Si derivamos la función $A(h)$, tenemos

$A^\prime(h)=\frac{r^2-rh-2h^2}{\sqrt{r^2-h^2}}.$

Como sabemos que hay un máximo en el intervalo $(-r, r)$ y la derivada en este punto máximo debe ser igual a cero, hacemos $A^\prime(h)=0$.

Así,

$\frac{r^2-rh-2h^2}{\sqrt{r^2-h^2}}=0.$

Resolviendo la ecuación tenemos que

$h=\frac{r}{2}.$

Así, el área máxima del triángulo $PQR$ es $$A=\sqrt{r^2-\left(\frac{r}{2}\right)^2}\left(r+\frac{r}{2}\right)=\frac{3\sqrt{3}r^2}{4}.$$

$\square$

Más ejemplos

Se pueden encontrar más problemas de aplicación del teorema del vaalor extremo en la Sección 6.4 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: El teorema del valor intermedio

Por Fabian Ferrari

Introducción

El teorema del valor intermedio nos dice que si $f: [a, b] \to \mathbb{R}$ es una función continua, entonces para todo $y$ entre $f(a)$ y $f(b)$, existe un número $c \in [a, b]$ tal que $f(c)=y$. La forma de pensar este teorema es que «las funciones continuas no se pueden saltar valores que quedan entre dos valores que ya tomaron», o bien «las funciones continuas no dan brincos en su imagen».

Veamos algunos problemas que se resuelven usando este teorema

Una aplicación directa del teorema del valor intermedio

Problema 1. Muestra que la ecuación $2x^3+7x^2-27x=-18$ tiene una solución en el intervalo $[-7,-5]$.

Sugerencia pre-solución. Formula un problema equivalente definiendo una función continua $f$ para la cual si $f(x)=0$, entonces $x$ es solución a la ecuación.

Solución. La ecuación la podemos ver como $2x^3+7x^2-27x+18=0$. Consideremos la función $$f(x)=2x^3+7x^2-27x+18.$$ Como $f(x)$ es una función polinomial, sabemos que es continua en $\mathbb{R}$, así que es continua en el intervalo $[-7,-5]$. Lo que queremos ver es que existe un $c$ entre $-7$ y $-5$, tal que $f(c)=0$. Para esto, tenemos que evaluar la función en $-7$ y en $-5$.

Tenemos que:

$f(-7)=-136$ y $f(-5)=78$.

Tenemos que $0$ está entre $-136$ y $78$. Así, por el teorema del valor intermedio, debe de existir un número $c$ entre $-7$ y $-5$ de tal forma que $f(c)=0$. Por lo tanto $2x^3+7x^2-27x=-18$ tiene una solución entre $-5$ y $-7$.

$\square$

Notemos que no se encontró el valor de la raíz de la ecuación, sin embargo mostramos la existencia de esta. Esta es una de las características del teorema del valor intermedio: exhibir la existencia de algo sin necesidad de encontrarlo explícitamente.

Definir una buena función

En ocasiones podemos definir dos funciones para un problema y hacerlas interactuar para obtener una sola función continua que nos permite resolver un problema.

Problema 2. Un montañista empezó a escalar una montaña el sábado a las 8:00 hrs y llegó a la cima a las 18:00 hrs del mismo día. Decidió pasar la noche en la cima de la montaña. El día domingo empezó a descender a las 8:00 hrs y llegó al punto de partida a las 18:00 hrs. Prueba que hubo una hora en la que en ambos días estuvo a la misma altura de la montaña.

Sugerencia pre-solución. Plantea el problema usando dos funciones continuas que denoten la altura conforme pasa el tiempo en ambos días. Tienes mucha flexibilidad, así que usa notación efectiva para simplificar los cálculos.

Solución. Veamos que para este problema, podemos establecer dos funciones continuas para describir el cambio de altura con respecto al tiempo en horas, una para el ascenso y otra para el descenso del montañista en ambos días.

Sean $h_1(t)$, y $h_2(t)$ las funciones que representan el ascenso y el descenso del montañista respectivamente. En otras palabras, $h_1(t)$ y $h_2(t)$ denotan la altura en la que está el montañista tras $t$ horas después de haber comenzado su ascenso y descenso, respectivamente. Como amabas funciones son continuas en el intervalo de tiempo $[0, 10]$ (esto es porque tardó $10$ horas para ascender y $10$ horas para descender), tenemos que la función $g(t)=h_2(t)-h_1(t)$ tiene que ser continua en $[0, 10]$ también.

Ahora bien, sea $M$ la altura en la cima de la montaña. Tenemos lo siguiente:

$h_1(0)=0$, $h_1(10)=M$ y $h_2(0)=M$, $h_2(10)=0$.

Así, $g(0)=M$ y $g(10)=-M$. A su vez, $0$ está entre $-M$ y $M$, por lo que aplicando el teorema del valor intermedio, debe de existir un $t_0$ en el intervalo $[0, 10]$ tal que $g(t_0)=0$.

Y como

$g(t)=h_2(t)-h_1(t)$,

entonces

$g(t_0)=h_2(t_0)-h_1(t_0)$

$0=h_2(t_0)-h_1(t_0)$

$h_1(t_0)=h_2(t_0).$

Con esto podemos concluir que en el tiempo $t_0$ el día domingo estuvo a la misma altura que el día sábado al tiempo $t_0$.

$\square$

Definir un buen intervalo

En algunas ocasiones no es directo qué valores tenemos que usar como los extremos del intervalo al que aplicaremos el teorema del valor intermedio. Un ingrediente adicional que se necesita en el siguiente problema es elegir de manera correcta el extremo derecho.

Problema 3. Prueba que si $n$ es un entero positivo y $x_0 > 0$, entonces existe un único número positivo $x$ tal que $x^n=x_0$.

Sugerencia pre-solución. Necesitarás modificar el problema un poco. Se quiere encontrar una solución a $x^n=x_0$. Limítate a encontrarla en el intervalo $[0,c]$ para una buena elección de $c$.

Solución. Sea $c$ un número mayor que $1$ de tal forma que $0<x_0<c$. Si consideramos la función $f(x)=x^n$, tenemos que dicha función es continua en el intervalo $[0, c]$, y tenemos que

$f(0)=0$ y $f(c)=c^n.$

Como $$0<x_0<c<c^n,$$ tenemos que $x_0$ está en el intervalo $(0,c)$, y por el teorema del valor intermedio, tenemos que existe $x$ en el intervalo $(0,c)$ tal que $f(x)=x_0$, que usando la definición de $f$ quiere decir que $$x^n=x_0.$$

No puede existir otro además de $x_0$ ya que la función $f(x)=x^n$ es creciente en el intervalo $[0,c]$.

$\square$

Más ejemplos

Puedes encontrar más problemas que se pueden resolver usando el teorema del valor intermedio en el libro Problem Solving Strategies de Loren Larson, en la Sección 6.2.

Seminario de Resolución de Problemas: Funciones continuas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores platicamos de propiedades aritméticas de los números enteros, del anillo de enteros módulo $n$ y de los números complejos. Vimos cómo pueden ser de utilidad para resolver problemas de matemáticas de distintos tipos. Ahora veremos temas de funciones continuas.

En esta entrada, y las subsecuentes, entraremos al mundo del cálculo y de la continuidad. En el transcurso de diez entradas veremos cómo aprovechar distintas herramientas de continuidad, cálculo diferencial e integral.

Seguiremos con la costumbre de no demostrar los teoremas principales que usemos, pero podemos recomendar al lector las siguientes fuentes para consultar los fundamentos

El orden de presentación de los temas viene del libro Problem Solving Strategies de Loren Larson.

Recordatorio de límites y continuidad

Sea $A$ un subconjunto de $\mathbb{R}$ y $f:A\to \mathbb{R}$ una función. Intuitivamente, el límite de $f(x)$ cuando $x$ tiende a $a$ es $c$ si al acercarnos a $x$ en $A$ tenemos que $f(x)$ se acerca a $c$.

De manera formal, tenemos que $$\lim_{x\to a} f(x) = c$$ si para todo $\epsilon>0$ tenemos que existe un $\delta >0$ tal que si $x\in A$ y $|x-a|<\delta$, entonces $|f(x)-c|<\epsilon$. Esta es la definición épsilon-delta. Otra forma de denotar lo mismo es decir que $f(x)\to c$ cuando $x\to a$. Los límites se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f(x)\to c$ y $g(x)\to d$ cuando $x\to a$, entonces

  • $f(x)+g(x)\to c+d$ cuando $x\to a$
  • $f(x)g(x)\to cd$ cuando $x\to a$
  • Si $d\neq 0$, $f(x)/g(x)\to c/d$ cuando $x\to a$

Definición. Sea $f:A\to \mathbb{R}$ una función real y $a\in A$. Decimos que $f$ es continua

  • en $a$ si $f(x)\to f(a)$ cuando $x\to a$.
  • en $S\subset A$ si es continua en todo $a\in S$.

Si $f$ es continua en $A$, simplemente decimos que es continua.

Como los límites se comportan bien con las operaciones, tenemos que las funciones continuas también se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f$ y $g$ son continuas en $a$, entonces

  • $f+g$ es continua en $a$
  • $fg$ es continua en $a$
  • Si $g(a)\neq 0$, $f/g$ es continua en $a$

Ejercicio. Muestra que $\frac{x^2+3x+1}{x+1}$ es continua para todo $x\neq -1$.

Sugerencia. No uses la definición épsilon-delta directamente en la función, pues será complicado. Demuestra que $f(x)=x$ es continua con la definición epsilon-delta y de ahí usa las demás propiedades enunciadas en las proposiciones.

Funciones continuas y sucesiones

Las funciones continuas y las sucesiones están cercanamente relacionadas. Recuerda que una sucesión de reales es un conjunto ordenado de reales, uno por cada entero positivo, al cual denotaremos así: $$\{x_n\}=\{x_1,x_2,x_3,x_4,\ldots\}.$$

Decimos que la sucesión $\{x_n\}$ converge a $c$, en símbolos $$\lim_{n\to \infty} x_n = c$$ si para cada $\epsilon >0$ existe un natural $N$ tal que si $n\geq N$, entonces $|x_n-c|<\epsilon$. También decimos esto como $x_n\to c$ cuando $n\to \infty$, o simplemente $x_n\to c$.

Teorema. La función $f:A\to \mathbb{R}$ es continua en $a\in A$ si y sólo si para toda sucesión de reales $\{x_n\}$ en $A$ tal que $\{x_n\}\to a$ se tiene que $f(x_n)\to f(a)$.

Este teorema tiene múltiples usos. Nos dice que para verificar que una sucesión sea continua en un punto $a$, nos basta ver qué le hace a todas las sucesiones que convergen a $a$. Si alguna de ellas no converge a $f(a)$, entonces la función no es continua. Si todas ellas convergen a $f(a)$, entonces la función sí es continua. Veamos un ejemplo de su aplicación

Problema. Considera la función $f:[0,1]\to \mathbb{R}$ la función tal que a cada irracional le asigna $0$ y a cada racional $p/q$ (expresado con $p$ y $q$ positivos y primos relativos) le asigna $1/q$. Estudia la continuidad de esta función.

Sugerencia pre-solución. La continuidad de la función se comporta distinto para los racionales y para los irracionales. Para ver qué sucede en los racionales, acércate con una sucesión de irracionales.

Solución. Demostraremos que $f$ es continua en los irracionales y no es continua en los racionales.

Tomemos un racional $r=p/q<1$. Observa que la sucesión $x_n=r+\frac{\sqrt{3}}{n}$ para $n$ suficientemente grande cae en $[0,1]$ y $x_n\to r$. Cada término de la sucesión es irracional. Así, $f(x_n)=0$ para todo término, de modo que $f(x_n)\to 0\neq 1/q = f(r)$. Esto muestra que $f$ no es continua en $r$. Para $r=1$ podemos hacer el mismo truco con $x_n=r-\frac{\sqrt{3}}{n}$ para ver que no es continua.

Tomemos ahora un número irracional $r\in[0,1]$. Tenemos que $f(r)=0$. Mostraremos que para toda sucesión $\{x_n\}$ tal que $x_n\to r$, tenemos que $f(x_n)\to 0$. Tomemos $M$ un entero positivo. Consideremos el conjunto $A_M$ de todos los números racionales en $[0,1]$ con denominador a lo más $M$.

Como $r$ es irracional, las distancias de $r$ a los números de $A_M$ son todas positivas, así que su mínimo es un real positivo $\epsilon$. Como $x_n\to r$, existe un $N$ tal que si $n\geq N$, entonces $|x_n-r|<\epsilon$. Así, para $n\geq N$, no se puede que $x_n$ esté en $A_M$. De este modo, para $n\geq N$ tenemos que $|f(x_n)|<1/M$. Esto muestra que $f(x_n)\to 0$. Así, $f$ es continua en los irracionales.

$\square$

Por supuesto, algunas veces es útil regresar a la definición epsilon-delta para funciones continuas.

Problema. Sea $f:\mathbb{R}\to\mathbb{R}$ una función inyectiva y continua tal que $f(2x-f(x))=x$ y tal que tiene por lo menos un punto fijo. Muestra que $f(x)=x$ para todo $x\in \mathbb{R}$.

Sugerencia pre-solución. Antes de intentar cualquier idea de cálculo, hay que demostrar que si se cumple $f(y)=y+r$, entonces $f(y+nr)=(y+nr)+r$. Para demostrar esto para $n$ negativa, usa inducción. Para $n$ positiva necesitarás jugar un poco con la hipótesis. Aplica la hipótesis $f(2x-f(x))=x$ para $x=f(z)$ y usa la inyectividad. De ahí obtendrás una igualdad que te servirá para encontrar $f(y+nr)$ para $n$ positivas.

Solución. La primera observación es que el conjunto de puntos fijos de una función continua es cerrado, pues si $\{x_n\}$ es una sucesión de puntos fijos que converge a un punto $c$, entonces por un lado $\{f(x_n)\}=\{x_n\}$ también converge a $c$, y por otro por continuidad converge a $f(c)$. Como los límites, cuando existen, son únicos, tenemos que $f(c)=c$.

Si $f(y)\neq y$ para alguna $y\in \mathbb{R}$, entonces tendremos $f(y)=y+r$ para alguna $r\neq 0$. Mostraremos que $f(y+nr)=(y+nr)+r$ para todo entero $n$. Aplicando la hipótesis $f(2x-f(x))=x$ para $x=y$, obtenemos que $f(y-r)=y=(y-r)+r$, de modo que inductivamente tenemos $f(y-nr)=(y-nr)+r$ para $n$ entero positivo.

Aplicando la hipótesis $f(2x-f(x))=x$ para $x=f(x)$ obtenemos $f(2f(z)-f(f(z)))=f(z)$, de modo que por inyectividad tenemos $2f(z)-f(f(z))=z$. Usando esta ecuación para $z=y$ obtenemos que $2f(y)-f(f(y))=y$, de donde $f(y+r)=2(y+r)-y=(y+r)+r$, y de aquí inductivamente $f(y+nr)=(y+nr)+r$ para $n$ enteros positivos. De esta forma, $f(y+nr)=(y+nr)+r$ para todo entero.

Ahora sí viene la parte en la que usamos la continuidad. Supongamos que $f(x)\neq x$. Sea $\epsilon=|f(x)-x|>0$. Como $f$ es continua en $x$, existe un $\delta>0$ que podemos suponer menor a $\frac{\epsilon}{4}$ tal que si $|z-x|<\delta$, entonces $|f(z)-f(x)|<\frac{\epsilon}{4}$.

Sea $x_0$ un punto frontera del conjunto de puntos fijos. Como $f$ es continua en $x_0$, podemos encontrar un $\alpha>0$ y $\alpha<\delta$ tal que si $|w-x_0|<\alpha$, entonces $|f(w)-f(x_0)|<\delta$. Como el conjunto de puntos fijos es cerrado, $x_0$ está en él. Ya que $x_0$ es punto frontera, existe un $y$ tal que $f(y)\neq y$ y $|x_0-y|\leq \alpha$. Para este $y$ tenemos por las cotas que hemos encontrado y la desigualdad del triángulo que $$|f(y)-y|\leq |f(y)-f(x_0)|+|x_0-y|\leq \delta +\alpha <2\delta.$$

Así, $r=f(y)-y$ es un número de norma entre $0$ y $2\delta$, de modo que existe una $n$ para la cual $y+nr \in (x-\delta,x+\delta)$. Por lo que probamos previamente, $f(y+nr)=(y+nr)+r$. A partir de todo esto concluimos que:

\begin{align*}
\epsilon&=|f(x)-x|\\
&\leq |f(x)-f(y+nr)|+|f(y+nr)-x|\\
&<\frac{\epsilon}{4}+|(y+nr)-x|+|r|\\
&<\frac{\epsilon}{4}+3\delta\\
&<\frac{\epsilon}{4}+\frac{3\epsilon}{4}=\epsilon.
\end{align*}

Esto es una contradicción, así que todos los reales deben ser puntos fijos de $f$.

$\square$

Dos teoremas importantes de continuidad

Las funciones continuas satisfacen dos propiedades muy importantes.

Teorema (teorema del valor intermedio). Sea $f:[a,b]\to \mathbb{R}$ una función continua. Entonces para todo $y$ entre $f(a)$ y $f(b)$ existe un real $c \in [a,b]$ tal que $f(c)=y$.

Aquí, si $f(a)\leq f(b)$ entonces «entre $f(a)$ y $f(b)$» quiere decir en el intervalo $[f(a),f(b)]$ y si $f(b)\leq f(a)$, quiere decir en el intervalo $[f(b),f(a)]$. Dicho en otras palabras, si una función continua toma dos valores, entonces toma todos los valores entre ellos.

Teorema (teorema del valor extremo). Sea $f:[a,b] \to \mathbb{R}$ una función continua. Entonces existen números $c$ y $d$ en $[a,b]$ para los cuales $f(c)\leq f(x) \leq f(d)$ para todos los $x$ en $[a,b]$.

Dicho de otra forma, una función continua definida en un intervalo cerrado «alcanza su máximo y su mínimo».

En siguientes entradas hablaremos de aplicaciones de estos teoremas. Por el momento sólo los enunciamos, y en la siguiente sección demostraremos uno de ellos.

El método de la bisección de intervalos

Una de las herramientas más útiles para trabajar con reales y con funciones continuas es el método de la bisección de intervalos. Se trata a grandes rasgos de lo siguiente:

  • Se comienza con un intervalo $[a,b]$. Definimos $a_0=a$ y $b_0=b$.
  • Partimos ese intervalo por su punto medio $m_0=m$ en dos intervalos $[a,m]$ y $[m,b]$. En alguno de esos dos pasa algo especial. Si es en el primero, definimos $a_1=a$, $b_1=m$. Si es en el segundo, definimos $a_1=m$, $b_1=b$, para conseguir un intervalo $[a_1,b_1]\subset [a_0,b_0]$ especial.
  • Continuamos recursivamente. Ya que definimos al intervalo $[a_n,b_n]$, consideramos a su punto medio $m_n$. De entre los intervalos $[a_n,m_n]$ y $[m_n,b_n]$ elegimos a uno de ellos que sea «especial» para definir $[a_{n+1},b_{n+1}]$.

Los $a_i$ forman una sucesión no decreciente acotada superiormente por $b$ y los $b_i$ una sucesión no creciente acotada inferiormente por $a$. De esta forma, ambas sucesiones tienen un límite. Además, notemos que $|b_n-a_n|=|b-a|/2^n$, de modo que $|b_n-a_n|\to 0$, por lo que ambas situaciones convergen al mismo límite $L$, y este límite está en todos los intervalos $[a_n,b_n]$. Si elegimos a los intervalos $[a_n,b_n]$ de manera correcta, podemos hacer que este límite $L$ tenga propiedades especiales.

Veamos cómo aplicar esta idea para demostrar el teorema del valor extremo.

Demostración (teorema del valor extremo). Comenzamos con una función contínua $f:[a,b]\to \mathbb{R}$. Basta con probar que $f$ alcanza su máximo, pues para ver que alcanza su mínimo basta aplicar las siguientes ideas a $-f$.

Usaremos el método de bisección de intervalos. Definimos $a_0=a$ y $b_0=b$. Suponiendo que ya definimos $a_n$ y $b_n$, consideremos el punto medio $m_n$ del intervalo $[a_n,b_n]$.

  • Si algún $x$ en $[a_n,m_n]$ cumple que $f(x)\geq f(y)$ para todo $y\in [m_n,b_n]$, elegimos $a_{n+1}=a_n$ y $b_{n+1}=m_n$.
  • En otro caso, para todo $x$ en $[a_n,m_n]$ tenemos algún $y\in [m_n,b_n]$ que cumple $f(x)<f(y)$ y elegimos $a_{n+1}=m_n$ y $b_{n+1}=b_n$.

En cualquier caso, notemos que se cumple que «para cualquier $x$ en el intervalo no elegido hay una $y$ en el intervalo sí elegido tal que $f(y)\geq f(x)$».

Como discutimos anteriormente, las sucesiones $\{a_n\}$ y $\{b_n\}$ convergen a un mismo límite $d$. Afirmamos que $f(d)\geq f(x)$ para todo $x$ en $[a,b]$. Si $x=d$, esto es claro. Si no, $x\neq d$ y definimos $x_0=x$.

Vamos a definir recursivamente una sucesión $\{x_n\}$ para la cual $$f(x_0)\leq f(x_1)\leq f(x_2)\leq f(x_3)\leq \ldots$$ mediante un proceso que haremos mientras $x_n\neq d$.

Ya que definimos $x_n$ tal que $x_n\neq d$, notemos que $d$ y $x_n$ están en el mismo intervalo $[a_0,b_0]$, pero como son distintos existe un primer $m\geq 1$ tal que en el intervalo $[a_m,b_m]$ está $d$ pero $x_n$ no. Como es la menor $m$, sí están ambos en el intervalo $[a_{m-1},b_{m-1}]$.

Por cómo definimos la elección de intervalos, hay un $y$ en el intervalo $[a_m,b_m]$ tal que $f(y)\geq f(x_n)$. Si $y=d$, terminamos (por la cadena de desigualdades). Si no, definimos $x_{n+1}$ como este $y$. Así, cuando el proceso se detiene, terminamos por la cadena de desigualdades. Si el proceso no se detiene, tenemos una sucesión infinita $\{x_n\}$ que converge a $d$, de modo que $f(d)=\lim{f(x_n)}\geq f(x_0)=f(x)$, pues cada término es mayor o igual a $f(x_0)$. Esto muestra la desigualdad $f(d)\geq f(x)$ que queríamos.

$\square$

Más problemas

Se pueden encontrar más problemas de este tema en la Sección 6.1 del libro Problem Solving through Problems de Loren Larson.

Teorema de la función inversa: motivación y ejemplo

Por Leonardo Ignacio Martínez Sandoval

Introducción

Imagina, por un momento, que en un futuro trabajas en la Agencia Espacial Mexicana (AEM). De repente, llega la directora y trae una función en las manos. «Para una misión crítica necesito que me conviertas esta función en una función invertible, cuanto antes posible». Te da la función. Le respondes «Ok, directora y, ¿cómo la quiere o qué?». Pero es demasiado tarde. Ya salió y hay que ponerse a trabajar. Entonces tomas la función, la pones en el gis y comienzas a estudiarla en el pizarrón.

Resulta que es una función de varias variables. Específicamente, es la función que pasa de coordenadas polares a coordenadas cartesianas. Es decir, es la función $F:\mathbb{R}^2 \to \mathbb{R}^2$ dada por:

$$F(r,\theta)=(r\cos\theta, r \sin\theta).$$

La función sí es suprayectiva, así que ya va parte del trabajo hecho. Pero el problema es que no es inyectiva. Por ejemplo,

$$F\left(1,\frac{\pi}{2}\right)=\left(\cos\frac{\pi}{2},\sin\frac{\pi}{2}\right)=(0,1)=F\left(1,\frac{5\pi}{2}\right).$$

Peor aún, para todo $\theta \in \mathbb{R}$ se tiene que $F(0,\theta)=(0,0)$.

Pero la situación no es tan terrible. Una forma de solucionarla es restringir el dominio de la función. Si en vez de pensarla en una función $F:\mathbb{R}^2\to \mathbb{R}^2$ la pensamos como una restricción $F:U\to V$ para algunos conjuntos $U$ y $V$, entonces muy posiblemente la podamos «convertir» en una función biyectiva.

No podemos ser demasiado arbitrarios. Por ejemplo, si tomamos $U=\{(0,0)\}$ y $V=\{(0,0)\}$, entonces claramente la restricción es una biyección, pero está muy chafa: sólo nos quedamos con un punto. Por esta razón, vamos a poner una meta un poco más ambiciosa y a la vez más concreta: lograr que $U$ y $V$ sean conjuntos abiertos alrededor de los puntos $x$ y $y:=F(x)$ para algún $x\in \mathbb{R}^2$. Si lo logramos, habremos encontrado una biyección «cerquita de $x$» en conjuntos «más gorditos». Para algunos puntos $x$ lo podemos hacer, y para algunos otros puntos $x$ es imposible. Veamos ejemplos de ambas situaciones.

Si $x=\left(\sqrt{2},\frac{\pi}{4}\right)$, entonces $y=\left(\sqrt{2}\cos \frac{\pi}{4}, \sqrt{2}\sin\frac{\pi}{4}\right)=(1,1)$. En este caso, podemos elegir una vecindad pequeña $U$ alrededor de $x$ y tomar $V:=F(U)$, pues los otros puntos $w$ con $F(x)=F(w)$ están lejos (están a brincos verticales de tamaño $2\pi$ de $x$). Para resolver el problema de la AEM, basta restringir $F$ a $U$.

Sin embargo, si $x=\left(0, \frac{\pi}{4}\right)$, entonces $y=(0,0)$. Sin importar qué tan pequeña tomemos la vecindad abierta $U$ alrededor de $x$, vamos a seguir tomando puntos $w$ sobre la recta $r=0$, para los cuales sucede $F(x)=0=F(w)$. Si la directora de la AEM insiste en que haya un punto con $r=0$, entonces no hay invertibilidad en todo un abierto alrededor de este punto. Esperemos que la misión no dependa de eso.

Aplicando el teorema de la función inversa

El teorema de la función inversa es una herramienta que da condiciones suficientes para que una función $F:\mathbb{R}^n\to \mathbb{R}^n$ pueda invertirse localmente «cerca» de un punto de su dominio. Podemos utilizar este resultado cuando la función que estudiamos es «bien portada», donde esto quiere decir que sea continuamente diferenciable. Si bien hay ligeras variantes en la literatura, el enunciado que presento aquí es el siguiente:

Teorema de la función inversa

Sea $F:\mathbb{R}^n\to \mathbb{R}^n$ una función de clase $\mathcal{C}^1$ con matriz Jacobiana $DF$. Supongamos que $F(a)=b$ y que $DF(a)$ es invertible. Entonces existen vecindades abiertas $U$ y $V$ de $a$ y $b$ respectivamente para las cuales:

a) $F:U\to V$ es una biyección,
b) su inversa $F^{-1}:V\to U$ es de clase $\mathcal{C}^1$ y
c) $DF^{-1}(b)=DF(a)^{-1}$.

En otra entrada hablo de la intuición de este teorema, así como de su demostración. Por el momento sólo me enfocaré en dar un ejemplo de cómo podemos usarlo.

Regresemos al ejemplo de la Agencia Espacial Mexicana. La función que tenemos es $F:\mathbb{R}^2\to \mathbb{R}^2$ que está dada por

$$F(r,\theta)=(F_1(r,\theta),F_2(r,\theta))=(r\cos\theta, r \sin\theta).$$

Para usar el teorema de la función inversa, tenemos que estudiar la invertibilidad de $DF$, su matriz Jacobiana. Esta está construida a partir de las derivadas parciales de las funciones coordenadas como sigue:

$$DF(r,\theta)= \begin{pmatrix}
\frac{\partial F_1}{\partial r}(r,\theta) & \frac{\partial F_1}{\partial \theta}(r,\theta)\\
\frac{\partial F_2}{\partial r}(r,\theta) & \frac{\partial F_2}{\partial \theta}(r,\theta)
\end{pmatrix}= \begin{pmatrix}
\cos \theta & -r\sin \theta\\
\sin \theta & r \cos \theta.
\end{pmatrix} $$

Para estudiar su invertibilidad, notamos que su determinante es

\begin{align*}
\det(DF(r,\theta))&=\cos \theta \cdot r\cos \theta – \sin \theta \cdot (-r\sin \theta) \\
&= r\cos^2\theta+r\sin^2\theta \\
&= r,
\end{align*}

y que es distinto de $0$ si y sólo si $r\neq 0$. Esto coincide con las observaciones que hicimos «a mano»: la función es invertible localmente en $(r,\theta)$ si $r\neq 0$. Cuando $r=0$, la invertibilidad no está garantizada.

El teorema de la función inversa tiene más implicaciones. Nos dice además que la inversa $F^{-1}$ también es continuamente diferenciable y que su derivada es la inversa de $F$. Como ejemplo, consideremos el punto $\left(\sqrt{2},\frac{\pi}{4}\right)$. Tenemos que

$$F\left(\sqrt{2},\frac{\pi}{4}\right) = (1,1),$$

que

$$DF\left(\sqrt{2},\frac{\pi}{4}\right) = \begin{pmatrix}
\frac{1}{\sqrt{2}}& -1\\
\frac{1}{\sqrt{2}} & 1
\end{pmatrix},$$

y que $\det\left(DF\left(\sqrt{2},\frac{\pi}{4}\right)\right)=\sqrt{2}$.

Así, $F$ es invertible localmente alrededor de $
\left(\sqrt{2},\frac{\pi}{4}\right)$, su inversa es continuamente diferenciable y además

$$D(F^{-1})(1,1)=DF\left(\sqrt{2},\frac{\pi}{4}\right)^{-1} =\frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 1\\
-\frac{1}{\sqrt{2}}& \frac{1}{\sqrt{2}}
\end{pmatrix}.$$

Esto termina la motivación y el ejemplo del teorema de la función inversa. Si quieres entender un poco mejor la intuición detrás del teorema, así como su demostración, puedes darte una vuelta por esta otra entrada.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario: