Archivo de la etiqueta: álgebra lineal

Álgebra Lineal II: Adjunta de una transformación lineal

Por Ayax Calderón

Introducción

En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales. De entrada, las definiciones para cada uno de estos conceptos parecerán simplemente un juego algebraico. Sin embargo, poco a poco descubriremos que pidiendo a las transformaciones lineales cierta propiedad con respecto a su adjunta, podemos recuperar muchas propiedades geométricas bonitas que satisfacen.

Un ejemplo de esto serán las transformaciones ortogonales. Estas serán las transformaciones que, a grandes rasgos, no cambian la norma. Daremos un teorema de clasificación para este tipo de transformaciones: veremos que sólo son reflexiones o rotaciones en ciertos ejes. Después estudiaremos las transformaciones simétricas y veremos un resultado fantástico: el teorema espectral. Este teorema nos garantizará que toda transformación simétrica en $\mathbb{R}$ puede ser diagonalizada, y de hecho a través de una transformación ortogonal.

El párrafo anterior nos dice que las transformaciones ortogonales y las simétricas serán «fáciles de entender» en algún sentido. Esto parece limitado a unas familias muy particulares de transformaciones. Sin embargo, cerraremos la unidad con un teorema muy importante: el teorema de descomposición polar. Gracias a él lograremos entender lo que hace cualquier transformación lineal. Tenemos un camino muy interesante por recorrer. Comencemos entonces con la idea de la adjunta de una transformación lineal.

La adjunta de una transformación lineal

Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Tomemos una transformación lineal $T:V \to V$. Para cada $y\in V$, la transformación $x\mapsto \langle T(x),y\rangle$ es una forma lineal. Del teorema de representación de Riesz se sigue que existe un único vector $T^*(y)\in V$ tal que
$$\langle T(x),y\rangle=\langle T^*(y),x\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x\in V.$$

Esta asignación de este vector $T^\ast$ es lineal, ya que al vector $ry_1+y_2$ para $r$ escalar y $y_1,y_2$ en $V$ se le asigna la forma lineal $x\mapsto \langle T(x),ry_1+y_2\rangle=r\langle(T(x),y_1\rangle + \langle (T(x),y_2)$, que se puede verificar que le corresponde en la representación de Riesz el vector $rT^\ast(y_1)+T^\ast(y_2)$.

De esta manera, podemos correctamente enunciar la siguiente definición.

Definición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

Notemos que para cualesquiera $x,y\in V$ tenemos que
$$\langle y,T(x)\rangle=\langle T(x),y\rangle=\langle x,T^* (y)\rangle=\langle T^*(y),x\rangle =\langle y, (T^*)^*(x)\rangle.$$

Restando el último término del primero, se sigue que $T(x)-(T^*)^*(x)=0$, de manera que $$(T^*)^*=T,$$ por lo cual simplemente escribiremos $$T^{**}=T.$$

Por lo tanto, la asignación $T\mapsto T^*$ es una transformación auto-inversa sobre $V$.

La matriz de la transformación adjunta

Tenemos que $T^{**}=T$. Esto debería recordarnos a la transposición de matrices. En efecto, en cierto sentido podemos pensar a la transformación $T^\ast$ algo así como la transpuesta de la transformación (por lo menos en el caso real, para espacios sobre $\mathbb{C}$ será algo ligeramente distinto).

La siguiente proposición nos ayudará a reforzar esta intuición.

Proposición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$ y $T:V\to V$ una transformación lineal. Sea $\mathcal{B}=(e_1,\dots, e_n)$ una base otronormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)={}^t\text{Mat}_{\mathcal{B}}(T).$$

En palabras, bajo una base ortonormal, la adjunta de una transformación tiene como matriz a la transpuesta de la transformación original.

Solución. Sea $A=\text{Mat}_{\mathcal{B}}(T)$ y $B=[B_{ij}]$ la matriz asociada a $T^*$ con respecto a $\mathcal{B}$. Para cada $i\in\{1,\ldots,n\}$ se tiene
$$T^*(e_i)=\displaystyle\sum_{k=1}^n b_{ki}e_k.$$

En vista de que $$T(e_i)=\displaystyle\sum _{k=1}^n a_{ki}e_k$$ y de que la base $\mathcal{B}$ es ortonormal, se tiene que $$\langle T(e_i),e_j\rangle=\displaystyle\sum_{k=1}^n a_{ki}\langle e_k,e_j\rangle=a_{ji}$$ y
$$\langle e_i,T^*(e_j)\rangle=\displaystyle\sum_{k=1}^n b_{kj}\langle e_i,e_k \rangle = b_{ij}.$$

Como, por definición de transformación adjunta, se tiene que
$$\langle T(e_i),e_j\rangle =\langle e_i, T^*(e_j)\rangle,$$ entonces $b_{ij}=a_{ji}$ para cada $i,j$ en $\{1,\ldots, n\}$, que precisamente significa que $B= {}^tA$.

$\square$

Ejemplos de encontrar una adjunción

La proposición de la sección anterior nos da una manera práctica de encontrar la adjunción para transformaciones lineales.

Ejemplo. Encontraremos la transformación adjunta a la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T((x,y))=(y-x,y+2x)$. Por la proposición de la sección anterior, basta expresar a $T$ en una base ortonormal y transponer. Usemos la base canónica de $\mathbb{R}^2$. En esta base, la matriz que representa a $T$ es $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$. Por ello, la matriz que representa a $T^\ast$ es la transpuesta, es decir $\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$. De este modo, concluimos que $T^\ast((x,y)) = (-x+2y,x+y)$.

Podemos verificar que en efecto esta transformación satisface la definición de adjunción. Por un lado,

$$\langle T((a,b)), (c,d) \rangle = (b-a,b+2a)\cdot (c,d)= bc-ac+bd+2ad,$$

y por otro

$$ \langle (a,b), T((c,d)) \rangle = (a,b) \cdot (-c+2d,c+d) = -ac +2ad + bc +bd.$$

Ambas expresiones en efecto son iguales.

$\triangle$

Problema. Demuestra que una transformación lineal $T$ en un espacio euclideano de dimensión finita y la adjunta $T^\ast$ de $T$ tienen el mismo determinante.

Solución. El determinante de una transformación es igual al determinante de cualquiera de las matrices que la represente. Así, si $A$ es la forma matricial de $T$ bajo una base ortonormal, se tiene que $\det(A)=\det(T)$. Por la proposición de la sección anterior, $^tA$ es la forma matricial de $T^\ast$ en esa misma base, de modo que $\det({}^tA)=\det(T^\ast)$. Pero una matriz y su transpuesta tienen el mismo determinante, de modo que $$\det(T^\ast)=\det({}^tA)=\det(A)=\det(T).$$

$\square$

Más adelante…

La noción de transformación adjunta es nuestra primera noción fundamental para poder definir más adelante transformaciones que cumplen propiedades geométricas especiales. Con ella, en la siguiente entrada hablaremos de transformaciones simétricas, antisimétricas y normales.

Toma en cuenta que las definiciones que hemos dado hasta ahora son para espacios euclideanos, es decir, para el caso real. Cuando hablamos de espacios hermitianos, es decir, del caso complejo, los resultados cambian un poco. La transformación adjunta se define igual. Pero, por ejemplo, si la matriz que representa a una transformación es $A$, entonces la que representará a su adjunta no será la transpuesta, sino más bien la transpuesta conjugada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Encuentra la transformación adjunta para las siguientes tranformaciones lineales:
    • $T:\mathbb{R}^2\to \mathbb{R}^2 $ dada por $T(x,y)=(2y-x,2x+y)$.
    • $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $T(x,y,z)=(x+y+z,y+z,z)$.
    • $T:\mathbb{R}^n \to \mathbb{R}^n$ tal que para la base canónica $e_1,\ldots,e_n$ cumple que $T(e_i)=e_{i+1}$ para $i=1,\ldots,n-1$ y $T(e_n)=0$.
  2. Considera el espacio vectorial $M_n(\mathbb{R})$. En este espacio, la operación transponer es una transformación lineal. ¿Cuál es su transformación adjunta?
  3. Completa los detalles de que $T^\ast$ es en efecto una transformación lineal.
  4. Demuestra que si $T$ es una transformación lineal sobre un espacio euclidiano y $\lambda$ es un eigenvalor de $T$, entonces $\lambda$ también es un eigenvalor de $T^\ast$. De manera más general, demuestra que $T$ y $T^\ast$ tienen el mismo polinomio característico.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$. ¿Es cierto que para todo polinomio $p$ se cumple que $p(T)^\ast=p(T^\ast)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Teorema de Sylvester

Por Diego Ligani Rodríguez Trejo

Introducción

En entradas anteriores estudiamos las formas bilineales y las cuadráticas. También vimos las matrices que las representan. Introdujimos una noción de congruencia de matrices relacionada con todo esto. Y vimos que la congruencia de matrices preserva una noción de positividad para matrices. Ahora daremos un paso más y veremos que de hecho la congruencia de matrices preserva más que sólo eso.

Para ello, introduciremos la noción de la signatura de una matriz. A grandes rasgos, esta noción nos dice «qué tan positiva» es una matriz simétrica. Para definir esta noción, lo haremos primero para las matrices diagonales. Luego lo definiremos para todas las matrices simétricas a través del teorema que demostramos la entrada anterior. Toda la discusión la haremos en el caso real. El caso complejo tiene sus versiones análogas, que quedarán descritas en los ejercicios.

Signatura de una matriz diagonal

Comenzamos con la siguiente definición.

Definición. Sea $A$ una matriz diagonal en $M_n(\mathbb{R})$. Sea $P$ la cantidad de entradas positivas en la diagonal y $N$ la cantidad de entradas negativas en la diagonal. A $(P,N)$ le llamamos la signatura de $A$.

En cierto sentido, la signatura generaliza tanto la noción de rango, como la noción de positividad y de positividad definida. Esto queda plasmado en las siguientes observaciones.

Observación. Una matriz diagonal ya está en forma escalonada reducida. Y el rango de una matriz en forma escalonada reducida coincide con la cantidad de renglones no cero. Así, si la signatura de una matriz diagonal es $(P,N)$, entonces su rango es $P+N$.

Observación. Por lo que vimos en la entrada anterior, una matriz diagonal en $M_n(\mathbb{R})$ es positiva si y sólo si ninguna de sus entradas diagonales es negativa. Esto pasa si y sólo si su signatura es de la forma $(k,0)$ para algún $0\leq k\leq n$.

Observación. Por un resultado análogo al de la entrada anterior, una matriz diagonal es $M_n(\mathbb{R})$ es positiva definida si y sólo si todas sus entradas diagonales son positivas. Esto pasa si y sólo si su signatura es $(n,0)$.

La signatura es invariante bajo congruencias

El resultado clave de esta entrada es el siguiente lema.

Lema. Sean $A$ y $B$ matrices diagonales en $M_n(\mathbb{R})$ congruentes entre sí. Entonces la signatura de $A$ y la de $B$ son iguales.

Demostración. Llamemos $(P,N)$ a la signatura de $A$ y $(Q,M)$ a la signatura de $B$.

Como $A$ y $B$ son congruentes, entonces representan a una misma forma cuadrática $q:\mathbb{R}^n\to \mathbb{R}$, pero quizás en diferentes bases. Sea $\alpha$ la base en la cual $q$ tiene matriz $A$ y $\beta$ la la base en la cual $q$ tiene matriz $B$. Sea $b$ la forma polar de $p$.

Como la signatura de $A$ es $(P,N)$, entonces $q$ es positivo (resp. negativo, cero) para $P$ (resp. $N$, $n-P-N$) elementos de la base $\alpha$. Tenemos algo análogo para $B$. Así, podemos llamar a las bases

\begin{align*}
\alpha&=\{a^+_1,\ldots,a^+_P,a^-_1,\ldots, a^-_N,a^0_1\ldots, a^0_{n-P-N}\},\\
\beta&= \{b^+_1,\ldots,b^+_Q,b^-_1,\ldots, b^-_M,b^0_1\ldots, b^0_{n-Q-M}\},\\
\end{align*}

en donde $q$ aplicado a alguno de estos elementos tiene el signo del superíndice.

Demostraremos que $P=Q$ por contradicción. Supongamos que no. Sin perder generalidad, $P>Q$. Consideremos $V$ el subespacio de $\mathbb{R}^n$ generado por los vectores $a^+_1,\ldots,a^+_P$ y $W$ el subespacio de $\mathbb{R}^n$ generado por los vectores $b^-_1,\ldots, b^-_M,b^0_1\ldots, b^0_{n-Q-M}.$ Estos espacios tienen dimensión $P$ y $n-Q$ respectivamente. Como $P>Q$, tenemos que $P+(n-Q)>Q+(n-Q)=n$. Así, los espacios $V$ y $W$ tienen intersección no trivial, y por lo menos hay un vector $v$ distinto de $0$ en $V\cap W$. ¿Cuánto vale $q(v)$?

Por un lado, $v$ está en $V$ así que es combinación lineal de elementos $a^+_i$: $$v=\sum_{i=1}^P r_i a^+_i.$$ De este modo:

\begin{align*}
q(v)=\sum_{i=1}^P r_i^2 q(a^+_i) + 2\sum_{i=1}^P\sum_{j=1}^P b(a^+_i,a^+_j).
\end{align*}

El primer sumando es positivo pues $q$ es positivo en todo $a^+_i$. El segundo sumando es cero pues cada término es $0$ por ser una entrada $(i,j)$ con $i\neq j$ de la matriz diagonal $A$. Así, $q(v)>0$.

Similarmente, $v$ está en $W$ así que es combinación lineal de elementos $b^-_i$ y elementos $b^0_i$, de donde se puede mostrar que $q(v)\leq 0$.

Hemos encontrado una contradicción que surgió de suponer $P\neq Q$, así que $P=Q$. De manera análoga se demuestra que $N=M$. Así, la signatura de $A$ y de $B$ debe ser la misma.

$\square$

Signatura para matrices simétricas

En la entrada anterior vimos que cualquier matriz simétrica en $M_n(\mathbb{R})$ es congruente a alguna matriz diagonal. Es posible que sea congruente a más de una matriz diagonal.

Definición. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Sea $D$ una matriz diagonal congruente a $A$. Definimos la signatura de $A$ como la signatura de $D$.

El lema de la sección anterior nos permite asegurarnos de que la siguiente definición está bien hecha. Si $A$ fuera congruente a dos matrices diagonales $D$ y $E$, entonces $D$ y $E$ serían congruentes entre sí. De este modo, la signatura de $A$ no cambia si la tomamos con respecto a $D$ o con respecto a $E$.

Pensemos que dos matrices $A$ y $B$ son congruentes entre sí. Sean $D$ y $E$ matrices diagonales congruentes a $A$ y $B$ respectivamente. Por transitividad, $D$ y $E$ son congruentes, así que tienen la misma signatura. Así, $A$ y $B$ tienen la misma signatura.

Una última observación es la siguiente. Si $A$ y $B$ son simétricas y congruentes entre sí, entonces están relacionadas mediante un producto con matrices invertibles. Como el producto por matrices invertibles no afecta el rango, concluimos que $A$ y $B$ tienen el mismo rango. Juntando esto con observaciones anteriores, una matriz simétrica $A$ de signatura $(P,N)$ tiene rango $P+N$.

Resumimos todo esto en el siguiente resultado.

Proposición. Sean $A$ y $B$ matrices simétricas.

  • Si la signatura de $A$ es $(P,N)$, entonces su rango es $P+N$.
  • Si $A$ y $B$ son congruentes, entonces tienen la misma signatura. En particular:
    • Tienen el mismo rango.
    • Si una es positiva, la otra también lo es.
    • Si una es positiva definida, la otra también lo es.

El teorema de Sylvester

Enunciemos las versiones análogas a lo anterior en términos de formas cuadráticas. Comencemos con el teorema de Gauss. Tomemos una forma cuadrática $q$ de $\mathbb{R}^n$ y escribámosla como $$q=\sum_{i=1}^r a_i l_i^2$$ con $a_1,\ldots,a_r$ reales y $l_1,\ldots,l_r$ formas lineales linealmente independientes.

Podemos quitar todos los términos con $a_i=0$ sin afectar la igualdad. Además, si $a_i$ es positivo podemos factorizarlo en $l_i^2$ para definir $m_i=(\sqrt{a_i}l_i)^2$, y si $a_i$ es negativo podemos factorizar $-a_i$ en $l_i^2$ para obtener $m_i=(\sqrt{-a_i}l_i)^2$. En otras palabras, de cualquier expresión de Gauss podemos llegar a una de la forma $$q=\sum_{i=1}^r \epsilon_i m_i^2,$$

en donde los $\epsilon_i$ son $1$ o $-1$. Si tenemos $P$ valores de $\epsilon_i$ iguales a $1$ y $N$ valores de $\epsilon_i$ iguales a $-1$ diremos que la signatura de $q$ es $(P,N)$ y que el rango de $q$ es $P+N$.

¿Por qué esto está bien definido? Porque ya vimos que cada forma de Gauss de $q$ da una base en la cual la matriz que representa a $q$ es diagonal. Las entradas de la diagonal son los coeficientes de la forma de Gauss. Dos matrices que salen así son congruentes, así que por el lema de la sección anterior tienen la misma signatura. Esto garantiza que en ambas expresiones de Gauss de las de arriba hay la misma cantidad de $1$s y $-1$s.

El gran resumen de todo esto es el siguiente teorema.

Teorema (ley de inercia de Sylvester). Sea $q$ una forma cuadrática de $\mathbb{R}^n$. Entonces existen $\epsilon_1,\ldots,\epsilon_r$ iguales a $1$ o a $-1$ y formas lineales $l_1,\ldots,l_r$ linealmente independientes tales que $$q=\sum_{i=1}^r \epsilon_i l_i^2.$$

Cualesquiera dos expresiones de este estilo tienen la misma cantidad de coeficientes positivos, y la misma cantidad de coeficientes negativos.

Dato curioso: ¿Por qué ley de inercia?

En esta entrada nos hemos referido al teorema de Sylvester de dos maneras intercambiables: teorema de Sylvester y ley de inercia de Sylvester. La intuición diría que quizás existe alguna relación con la física. Quizás es porque algún uso especial de este teorema lo hace importante para el cálculo de la inercia. Esto no es así.

El nombre, curiosamente, viene de esta frase de Sylvester:

Este número constante de signos positivos que se asocian a una función cuadrática bajo cualquier transformación […] puede ser llamado, convenientemente, su inercia, hasta que una mejor palabra sea encontrada.

J. J. Sylvester, On the Theory of the Syzygetic Relations… (1853)

Aparentemente no se encontró una mejor palabra y ahora es el térimo que se usa. Interpretando un poco lo que dice Sylvester, la inercia se refiere a la resistencia de un cuerpo de cambiar de estado. Así, tal vez Sylvester pensó en la «resistencia a cambiar» de la signatura de una forma cuadrática bajo cambios de base.

Más adelante…

Hay mucha más teoría que se puede enunciar y demostrar para formas cuadráticas en general. Por ahora detendremos nuestra exploración hasta aquí, y ya sólo nos enfocaremos en las formas bilineales simétricas y positivas, es decir, en los productos interiores. Queremos enunciar y demostrar varios resultados para espacios con producto interior y para espacios euclideanos.

Dos conceptos que estudiaremos a continuidad son el de dualidad y el de ortogonalidad. Esto nos abrirá las puertas a entender correctamente algunos tipos de transformaciones lineales muy importantes, como las transformaciones simétricas, las normales y las ortogonales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, ayudan para repasar los conceptos vistos en esta entrada.

En los siguientes ejercicios, usa el algoritmo de Gauss para escribir cada forma como combinación cuadrática de formas lineales linealmente independientes. Además encuentra su rango y signatura.

  1. Encuentra el rango y la signatura de la forma cuadrática$q : \mathbb{R}^4 \rightarrow \mathbb{R}$ dada por
    \begin{align*} q(x,y,z,t)= xy + yz + zt+tx. \end{align*}
  2. Completa algunos detalles faltantes en las demostraciones anteriores. Por ejemplo:
    1. ¿Por qué las formas $m_i$ de la discusión del teorema de Sylvester son linealmente independientes?
    2. ¿Por qué son análogas las demostraciones faltantes en el lema que demostramos?
  3. Demuestra que cualquier matriz simétrica es congruente a una matriz diagonal cuya diagonal es de la forma $1,\ldots,1,-1\ldots,-1,0,\ldots,0$.
  4. Enuncia y demuestra un resultado análogo al lema principal de esta entrada, pero para matrices con entradas complejas. Recuerda que en este caso debes usar matrices hermitianas y las congruencias son a través de usar una matriz invertible y su traspuesta conjutada.
  5. Enuncia y demuestra una ley de inercia de Sylvester para formas cuadráticas hermitianas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Teorema de Gauss

Por Diego Ligani Rodríguez Trejo

Introducción

En la entrada anterior vimos un recordatorio de las formas bilineales, cuadráticas y sus polares. En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices.

Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.

Preparaciones para el teorema de Gauss

Antes de empezar con el teorema, veamos una propiedad de las formas cuadráticas en $\mathbb{R}^n$. Tomemos $e_1,\ldots, e_n$ la base canónica de $\mathbb{R}^n$. Tomemos $q$ una forma cuadrática de $\mathbb{R}^n$ y $b$ su forma polar.

Cualquier vector $x=(x_1,\ldots,x_n)$ de $\mathbb{R}^n$ se escribe como $ (x_1,\ldots,x_n)=\sum_{i=1}^n x_i e_i$. Por lo que hicimos en la entrada anterior tenemos entonces:

$$q(x)=b(x,x)=\sum_{i=1}^n \sum_{j=1}^n x_i x_j b(e_i, e_j).$$

Para simplificar la notación definamos $a_{ij}:=b(e_i,e_j)$. Podemos «ver» todos los sumandos en la siguiente expresión:

\begin{align*} q(x)& =x_1^2a_{11}+ x_1x_2a_{12} + \dots + x_1x_na_{1n} \\
&+x_2x_1a_{21}+ x_2^2a_{22} + \dots +x_2x_na_{2n} \\
&\vdots \qquad \qquad \qquad \qquad \qquad \qquad \\
&+x_nx_1a_{n1} + x_nx_2a_{n2} + \dots + x_n^2 a_{nn} \end{align*}

Aquí hay algunos términos «puros» de la forma $a_{ii}x_i^2$. Se encuentran en la «diagonal». Tenemos también algunos términos «mixtos» de la forma $a_{ij}x_ix_j$ con $i\neq j$. Por la simetría de $b$, en los términos mixtos tenemos $a_{ij}=a_{ji}$. Al separar en términos puros y mixtos obtenemos entonces la siguiente expresión:

\begin{align}q(x)= \sum_{i=1}^na_{ii}x_i^2+ 2\sum_{1 \leq i < j \leq n} a_{ij} x_i x_j .\end{align}

Usaremos esto más abajo.

Teorema de Gauss de formas cuadráticas

Teorema. Sea $q$ una forma cuadrática en $V=\mathbb{R}^n$. Existen reales $\alpha_1, \dots , \alpha_r $ y formas lineales $l_1, \dots l_r$ de $V$ linealmente independientes tales que, para todo $x \in V$ se tiene
$$q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2.$$

Recordemos que la independencia lineal de las formas $l_1,\ldots,l_r$ sucede en el espacio dual $V^*$.

Demostración. Procedamos por inducción sobre $n$. De la igualdad $(1)$, cuando $n=1$ la forma cuadrática es de la forma $q(x)=a_{11}x_1^2$. Al definir $\alpha_1=a_{11}$ y $l_1(x)=x_1$ obtenemos la forma deseada.

Supongamos que el teorema se cumple para $n-1$. De la igualdad $(1)$ sabemos que $q$ se puede escribir como sigue:

\begin{align*} q(x)= \sum_{i=1}^n a_{ii} x_i^2 + 2\sum_{1 \leq i < j \leq n} a_{ij} x_ix_j. \end{align*}

Tenemos tres posibilidades:

  • Que todos los $a_{ii}$ y todos los $a_{ij}$ sean cero. Este caso es inmediato pues entonces $q$ es la forma cuadrática cero y podemos tomar $l_1(x)=x_1$ y $\alpha_1=0$.
  • Que algún $a_{ii}$ sea distinto de cero.
  • Que todos los $a_{ii}$ sean cero, pero algún $a_{ij}$ sea distinto de cero.

Hagamos cada uno de los últimos dos casos por separado. Comencemos por el caso en el que algún $a_{ii}$ es distinto de cero. Sin pérdida de generalidad (¿por qué?) podemos suponer que es $a_{nn}$.

Apartando los términos que tienen $x_n$ de los que no obtenemos:

\begin{align*} \sum_{i=1}^n a_{ii}x_i^2=a_{nn} x_n^2 + \sum_{i=1}^{n-1} a_{ii} x_i^2. \end{align*}

y

\begin{align*} 2\sum_{1 \leq i < j \leq n} a_{ij}x_ix_j= 2\left(\sum_{i=1}^{n-1} a_{in} x_i\right)x_n + 2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j\end{align*}

Con esto

\begin{align*} q(x)=a_{nn}x_n^2 + 2\left(\sum_{i=1}^{n-1} a_{in} x_i\right)x_n + \sum_{i=1}^{n-1} a_{ii} x_i^2 + 2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j .\end{align*}

Si bien esta expresión se ve complicada, en realidad podemos pensar que en términos de la variable $x_n$ es «simplemente una cuadrática». Basados en los primeros dos términos podemos completar un binomio al cuadrado como sigue:

\begin{align*} q(x)= a_{nn} \left(x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2- a_{nn}\left(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2 + \sum_{i=1}^{n-1} a_{ii}x_i^2+2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j.\end{align*}

Notemos que la expresión

\begin{align*} – a_{nn}\left(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2 + \sum_{i=1}^{n-1} a_{ii}x_i^2+2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j \end{align*}

ya no tiene a la variable $x_n$ y que de hecho es una forma cuadrática en las variables $x_1,\ldots, x_{n-1}$ (¿por qué?). De este modo, podemos aplicarle hipótesis inductiva para obtener que existen escalares $\alpha_1,\ldots, \alpha_r$ y formas lineales $l’_1,\ldots,l’_r$ linalmente independientes de $\mathbb{R}^{n-1}$ tales que

\begin{align*} q'(x_1,\dots , x_{n-1})= \sum_{i=1}^r \alpha_i (l_i'(x))^2.\end{align*}

Si bien estas $l’_i$ son formas lineales de $\mathbb{R}^{n-1}$, también podemos pensarlas como formas lineales de $\mathbb{R}^n$. Formalmente, tomamos $l_i:\mathbb{R}^n\to \mathbb{R}$ dada por $l_i(x_1,\ldots,x_n)=l’_i(x_1,\ldots,x_{n-1})$. Para finalizar, definimos

\begin{align*} l_{r+1}(x_1, \dots , x_n)= x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \text{,} \qquad \alpha_{r+1}=a_{nn}.\end{align*}

De aquí, obtenemos la expresión deseada para $q$:

\begin{align*} q(x)= \sum_{i=1}^{r+1} \alpha_i (l_i(x))^2 \end{align*}

Falta argumentar por qué las $l_i$ son linealmente independientes. Si una combinación lineal de ellas da cero, como $l_{r+1}$ es la única que involucra a $x_n$, entonces su coeficiente debe ser cero. Así, obtendríamos una combinación lineal de $l_1,\ldots,l_r$ igualada a cero. Pero esta es una combinación lineal de $l’_1,\ldots,l’_r$. Por hipótesis inductiva, estas son linealmente independientes así que todos los coeficientes deben ser cero.

Lo anterior termina el caso para cuando hay algún «término puro». Falta el caso en el que todos los «términos puros» tienen coeficiente cero, pero hay por lo menos un «término mixto». Por la igualdad $(1)$ tenemos que la forma cuadrática se ve así:

\begin{align*}q(x)= 2\sum_{1 \leq i < j \leq n} a_{ij} x_i x_j .\end{align*}

Sin pérdida de generalidad podemos suponer que el término mixto que no es cero es el $a_{n-1,n}$ (¿por qué?). La idea es ahora separar a los términos que tienen $x_{n-1}$ ó $x_n$ de los que no, y utilizar la siguientes identidades algebraicas que se valen para cualesquiera $A,B,C, D, E$ (haz las cuentas):

\begin{align} Ax_{n-1}x_n+Bx_{n-1}+Cx_n=A\left(x_{n-1}+\frac{C}{A}\right) \left(x_n+\frac{B}{A}\right)-\frac{BC}{A},\end{align}

\begin{align} DE= \frac{1}{4}(D+E)^2 – \frac{1}{4} (D-E)^2.\end{align}

Al realizar la separación nos queda:

\begin{align*} q(x)= 2a_{n-1,n}x_{n-1}x_n +2\sum_{i=1}^{n-2}a_{in}x_ix_n+ 2\sum_{i=1}^{n-2}a_{i,n-1}x_ix_{n-1} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij}. \end{align*}

Así, podemos usar la identidad $(2)$ con los siguientes valores

\begin{align*}
A &=2a_{n-1.n},\\
B&=2\sum_{i=1}^{n-2}a_{i,n-1}x_i,\\
C&=2\sum_{i=1}^{n-2}a_{i,n}x_i
\end{align*}

para obtener que $q$ es:

\begin{align*} A\left(x_{n-1}+\frac{C}{A}\right) \left(x_n+\frac{B}{A}\right)-\frac{BC}{A} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij} \end{align*}

Al primer sumando podemos reescribirlo usando la identidad $(3)$ como

\begin{align*}\frac{A}{4}\left(x_{n-1}+x_n+\frac{B+C}{A}\right)^2-\frac{A}{4}\left( x_{n-1}-x_n-\frac{B-C}{A}\right)^2 \end{align*}

A la expresión conformada por los últimos dos sumandos le podemos aplicar hipótesis inductiva (¿por qué?) para escribirla de la forma \begin{align*} q'(x_1, \dots , x_{n-2})= \sum_{i=1}^r \alpha’_i (l’_i(x_1, \dots , x_{n-2}))^2 \end{align*} con $l’_1,\ldots, l’_r$ formas lineales linealmente independientes de $\mathbb{R}^{n-2}$. Como en el caso anterior, podemos «convertir» estas formas lineales a formas lineales $l_1,\ldots,l_r$ en $\mathbb{R}^n$. Al agregar las siguientes dos formas lineales

\begin{align*}
l_{r+1}(x)&= x_{n-1}+x_n+\frac{B+C}{A}\\
l_{r+2}(x)&= x_{n-1}-x_n-\frac{B-C}{A}
\end{align*}

y tomar $\alpha_{r+1}=\frac{A}{4}$, $\alpha_{r+2}=-\frac{A}{4}$, obtenemos la expresión deseada:
\begin{align*} q(x)= \sum_{i=1}^{r+2} \alpha_i (l_i(x))^2. \end{align*}

La demostración de que en efecto $l_1,\ldots,l_{r+2}$ son linealmente independientes queda como ejercicio.

Así por principio de inducción tenemos que el teorema de Gauss se cumple para cualquier forma cuadrática $q$ en $\mathbb{R}^n$ para todo $n\geq 1$ entero.

$\square$

Más adelante…

Debido a la longitud de esta demostración, los ejemplos serán reservados para la siguiente entrada.

Las formas cuadráticas, aunque interesantes, muestran estar limitadas por cómo las definimos, ya que se definen sólo en espacios vectoriales reales. En las siguientes entradas expandiremos un poco esta definición para también abarcar al menos espacios vectoriales complejos y luego nos enfocaremos en un tipo especial de éstas.

Además, al principio de la entrada se dieron pistas a que existe una relación entre formas bilineales y matrices, esto será explorado posteriormente.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $q$ una forma cuadrática en $\mathbb{R}^n$ y $x=(x_1, \dots, x_n)$. Muestra que \begin{align*} q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \text{ con } a_{ij}=b(e_i,e_j). \end{align*}
  2. Sea $A$ la matriz con entradas $a_{ij}$ dadas en el problema anterior. ¿Qué podrías afirmar acerca de $A$ sin importar la $q$ elegida?
  3. Sea $A=[a_{ij}]$ una matriz simétrica en $M_n(\mathbb{R})$ y definamos
    \begin{align*} q: \mathbb{R}^n \rightarrow \mathbb{R} \text{ dada por } q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \end{align*} ¿Es $q$ así definida una forma cuadrática? ¿Es necesario que $A$ sea simétrica?
  4. Demuestra que las formas lineales definidas en el segundo caso de la demostración del teorema de Gauss en efecto son linealmente independientes.
  5. Sean $\alpha _1, \dots , \alpha_r $ números reales y $l_1 , \dots , l_r$ formas lineales, linealmente independientes en $\mathbb{R}^n$ y $x \in \mathbb{R}^n$. Definamos $q$ como sigue:
    \begin{align*} q(x)=\sum_i^n \alpha_i l_i(x)\end{align*}
    ¿Es $q$ así definida una forma cuadrática en $\mathbb{R}^n$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Repaso de formas bilineales y formas cuadráticas

Por Diego Ligani Rodríguez Trejo

Introducción

Aunque en previas entradas ya se ha hablado de formas bilineales y formas cuadráticas, retomaremos su estudio en esta entrada y nos dedicaremos a probar algunas propiedades que previamente no fueron demostradas.

También nos familiarizaremos con algunos tipos especiales de formas bilineales e intentaremos extender las definiciones ya dadas, esta vez para espacios vectoriales cuyo campo sea $\mathbb{C}$.

Formas bilineales

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma bilineal es una función $b: V \times V \rightarrow \mathbb{R}$ tal que:

  • Para cualquier $x \in V$ la función $b(x, \cdot) : V \rightarrow \mathbb{R}$ que envía $v$ a $b(x,v)$ es lineal.
  • Para cualquier $y \in V$ la función $b(\cdot, y) : V \rightarrow \mathbb{R}$ que envía $v$ a $b(v,y)$ es lineal.

Definición. Una forma bilineal $b$ se llama simétrica si $b(x,y)=b(y,x)$ para cualquier par $x,y \in V$.

A partir de la definición de forma bilineal podemos saber cómo «abrir combinaciones lineales» si las tenemos en ambas entradas.

Proposición. Sea $b$ una forma bilineal en un espacio vectorial $V$ sobre $R$. Sean $x_1, \dots x_n \in V$, $y_1, \dots y_m \in V$ y $a_1, \dots a_n, c_1, \dots c_m \in \mathbb{R}$. Tenemos que:
\begin{align*} b\left(\sum_{i=1}^n a_ix_i,\sum_{j=1}^m c_jy_j\right)=\sum_{i=1}^n\sum_{j=1}^m a_ic_jb(x_i,y_j)\end{align*}

Demostración. Usando la linealidad en la primera entrada de $b$ tenemos que:

$$b\left(\sum_{i=1}^n a_ix_i,\sum_{j=1}^m c_jy_j\right)=\sum_{i=1}^n a_ib\left(x_i, \sum_{j=1}^m c_jy_j\right).$$
Procediendo de manera similar en la segunda entrada de cada sumando obtenemos:

$$ \sum_{i=1}^n a_ib\left(x_i, \sum_{j=1}^m c_jy_j\right) =\sum_{i=1}^n a_i \left(\sum_{j=1}^m c_j b(x_i,y_j)\right). $$

Multiplicando el real $a_i$ por la suma de índice $j$ para que «entre a la suma» obtenemos la expresión deseada.

$\square$

Obtenemos el siguiente corolario.

Corolario. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ de dimensión finita y $e_1,\ldots,e_n$ una base. Una forma bilineal $b$ queda totalmente definida por los valores $b(e_i,e_j)$ para $1\leq i \leq n$ y $1\leq j \leq n$.

Formas cuadráticas

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma cuadrática es una función $q: V \rightarrow \mathbb{R}$ tal que existe una forma bilineal $b: V \times V \rightarrow \mathbb{R}$ que cumple \begin{align*}q(x)=b(x,x).\end{align*}

Identidad de polarización

Puede existir una forma cuadrática que tenga más de una forma bilineal asignada.

Ejemplo. Tomemos $V=\mathbb{R}^2$ y $b_1, b_2:V\times V\to \mathbb{R}$ definidas como sigue para $x=(x_1,x_2)$ y $y=(y_1,y_2)$:

\begin{align*} b_1(x,y) &=x_1y_2-x_2y_1\\ b_2(x,y)&=x_2y_1-x_1y_2. \end{align*}

De aquí:

\begin{align*} b_1(x,x) &=x_1x_2-x_2x_1=0\\ b_2(x,x)&=x_2x_1-x_1x_2=0, \end{align*}

por lo que $b_1$ y $b_2$ tendrían la misma forma cuadrática asignada.

$\triangle$

Por suerte basta agregar una restricción a la forma bilineal para que tengamos esta deseada unicidad. Esto lo afirma el siguiente teorema.

Teorema (Identidad de polarización). Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $q: V \rightarrow \mathbb{R}$ una forma cuadrática. Existe una única forma bilineal simétrica $b: V \times V \rightarrow \mathbb{R}$ tal que $q(x)=b(x,x)$ para todo $x \in V$.

Más aún, esta $b$ se puede encontrar de la siguiente manera:
\begin{align*} b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.\end{align*}

Demostración. Por la definición de forma cuadrática, sabemos que existe una forma bilineal (no necesariamente simétrica) $B$ tal que $q(x)=B(x,x)$. Tomemos la función $b: V \times V \rightarrow \mathbb{R}$ dada por la siguiente fórmula: $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$

Dado que $q(x)=B(x,x)$, podemos calcular $b$ como \begin{align*} b(x,y)=\frac{B(x+y,x+y)-B(x,x)-B(y,y)}{2}. \end{align*}

Usando la bilinealidad de $B$, el primer sumando $B(x+y,x+y)$ es $$B(x,x+y)+B(y,x+y),$$ que a su vez es $$B(x,x)+B(x,y)+B(y,x)+B(y,y).$$

Sustituyendo esto en $b(x,y)$ y simplificando nos arroja la igualdad

\begin{align*} b(x,y) = \frac{B(x,y)+B(y,x)}{2}.\end{align*}

Esta igualdad nos dice que $b$ es combinación lineal de las formas bilineales $(x,y)\mapsto B(x,y)$ y $(x,y)\mapsto B(y,x)$, de modo que $b$ es bilineal. Además, de esta igualdad se concluye de manera inmediata que $b(x,y)=b(y,x)$. Así, $b$ es forma bilineal simétrica.

Una última aplicación de la igualdad previa nos ayuda a probar que $q(x)=b(x,x)$, ya que:

\begin {align*} b(x,x)&=\frac{B(x,x)+B(x,x)}{2}\\&=B(x,x)\\&=q(x).\end{align*}

Lo único que nos falta demostrar es la unicidad. Si tuviéramos otra forma bilineal simétrica $b’: V \times V \rightarrow \mathbb{R}$ tal que $q(x)=b'(x,x)$, ésta debe cumplir lo siguiente:

\begin{align*} q(x+y)&=b'(x+y,x+y)\\&=b'(x,x)+2b'(x,y)+b'(y,y).\end{align*}

Al despejar a $b'(x,y)$ obtenemos

\begin{align*} b'(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}=b(x,y).\end{align*}

$\square$

Finalicemos recordando una última definición que relaciona a $q$ con su única forma bilineal simétrica.

Definición. Sea $q: V \rightarrow \mathbb{R}$ una forma cuadrática. A $b: V \times V \rightarrow \mathbb{R}$ dada por
\begin{align*} b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2} \end{align*}
se le llama la forma polar de $q$.

Más adelante…

En las siguientes entradas veremos un teorema importante que nos ayudará a entender todas las formas cuadráticas en $\mathbb{R}^n$. Un poco más adelante veremos análogos de lo que hemos hecho en $\mathbb{R}$, pero para espacios vectoriales sobre $\mathbb{C}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=M_n(\mathbb{R})$ y definamos la función $b:V \times V \rightarrow \mathbb{R}$ dada por $b(A,B)=\text{Tr}(AB)$. Demuestra que $b$ es una forma bilineal simétrica.
  2. Sea $V=M_n(\mathbb{R})$ y definamos la función $b’:V \times V \rightarrow \mathbb{R}$ dada por $b'(A,B)=\text{Tr}(A^tB)$. Demuestra que $b’$ es una forma bilineal simétrica.
  3. Sea $V=\mathcal{C}^0[0,1]$ (El espacio vectorial de funciones reales continuas en el intervalo $[0,1]$) y $q(x): V \rightarrow \mathbb{R}$ tal que $q(f)=\int_0^1f(x)^2dx$. ¿Es $q$ una forma cuadrática? Si sí, ¿quién es su forma polar?
  4. Sea $q$ una forma cuadrática en $V$ con $b$ su forma polar. Demuestra que para cualquier pareja $x,y$ en $V$ se tiene que
    \begin{align*}
    b(x,y)=\frac{q(x+y)-q(x-y)}{4}.
    \end{align*}
  5. Sea $q$ una forma cuadrática en $V$ con $b$ su polar. Demuestra que $\forall x,y \in V$ se tiene
    \begin{align*}
    q(x+y)+q(x-y)=2(q(x)+q(y)).
    \end{align*}
  6. ¿Por qué en esta entrada se utiliza la palabra «forma», en lugar de «función», que es normalmente utilizada? ¿Hay alguna diferencia entre una forma y una función?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Polinomio característico de familias especiales

Por Julio Sampietro

Introducción

En la entrada anterior dimos la definición de polinomio característico. Vimos que siempre es un polinomio mónico y que su grado es exactamente del tamaño de la matriz. También, vimos cómo calcular el polinomio mínimo en algunos casos particulares. En esta entrada veremos varias propiedades que nos van a facilitar el calcular el polinomio característico (y por tanto los eigenvalores) en un amplio rango de matrices diferentes.

Comenzaremos estudiando el polinomio mínimo de las triangulares superiores. Luego, veremos cómo calcular el polinomio de matrices nilpotentes. No solo nos harán la vida más fácil los resultados a continuación, si no que los usaremos en la teoría más adelante.

Matrices triangulares superiores y transpuestas

El caso de las matrices triangulares superiores es muy sencillo, como veremos a través del siguiente problema.

Problema. Sea $A=[a_{ij}]$ una matriz triangular superior. Demuestra que

\begin{align*}
\chi_A(X)=\prod_{i=1}^{n}(X-a_{ii}).
\end{align*}

Solución. La matriz $X I_n-A$ sigue siendo triangular superior, y sus entradas diagonales son precisamente $X-a_{ii}$. Usando que el determinante de una matriz triangular superior es el producto de sus entradas diagonales y usando la definición se sigue que

\begin{align*}
\chi_A(X)=\det(X I_n-A)=\prod_{i=1}^{n} (X-a_{ii}).
\end{align*}

$\square$

Ejemplo. Si queremos calcular el polinomio característico de la matriz

\begin{align*}
A=\begin{pmatrix}
1 & -\pi & \sqrt{2}\\
0 & -2 & 10^{10}\\
0 & 0 &3
\end{pmatrix}.
\end{align*}

entonces podemos aplicar el problema anterior y deducir inmediatamente que

\begin{align*}
\chi_A(X)=(X-1)(X+2)(X-3).
\end{align*}

¡Qué complicado hubiera sido calcular el determinante a pie!

$\triangle$

Por otro lado, recordando la demostración que dice que los eigenvalores de la transpuesta de una matriz son iguales a los de la matriz original era de esperarse que el polinomio característico también «se portara bien» bajo transposición.

Problema. Demuestra que las matrices $A$ y $^{t}A$ tienen el mismo polinomio característico para cualquier $A\in M_n(F)$.

Solución. Notamos que $^{t}(X I_n-A)= XI_n-\ ^{t}A$. Como una matriz y su transpuesta tienen el mismo determinante se tiene que

\begin{align*}
\chi_A(X)&=\det(XI_n-A)\\&=\det(\ ^{t}(XI_n-A))\\&= \det(XI_n-\ ^{t}A)\\&=\chi_{^t A}(X).
\end{align*}

$\square$

Estrictamente hablando, estamos haciendo un poquito de trampa en la demostración anterior (y de hecho en varias que involucran a la variable $X$). Las propiedades de determinantes que hemos visto (como que una matriz y su transpuesta tienen el mismo determinante) las obtuvimos partiendo de la hipótesis de que las entradas vienen de un campo $F$. Pero cuando agregamos a la variable $X$, ahora las entradas vienen más bien de un anillo: el anillo de polinomios en $F[X]$. Aunque esto parezca un problema, en realidad no lo es. Las propiedades que usamos pueden mostrarse también en ese contexto.

Veamos ahora cómo podemos aplicar el resultado anterior en un ejemplo concreto.

Ejemplo. Queremos calcular el polinomio característico de la matriz

\begin{align*}
A= \begin{pmatrix} 0 & 0 &0\\ -4 & 9 & 0\\ -1 & -1 & 2.\end{pmatrix}
\end{align*}

Para esto notamos que

\begin{align*}
^t A=\begin{pmatrix} 0 & -4 & -1\\ 0 & 9 & -1\\ 0 & 0 & 2\end{pmatrix}
\end{align*}

que es triangular superior. Usando el primer problema

\begin{align*}
\chi_{^t A}(X)= X(X-9)(X-2).
\end{align*}

Finalmente por el último problema $$\chi_{A}(X)=\chi_{^t A}(X)=X(X-9)(X-2).$$

$\triangle$

El término de la traza

Como vimos en la entrada anterior, en el polinomio $\det(XA+B)$ aparecen los términos $\det(A)$ y $\det(B)$. El siguiente problema aplica esto al polinomio característico e incluso deducimos otro término: la traza.

Problema. Demuestra que el polinomio característico de $A\in M_n(F)$ es de la forma

\begin{align*}
\chi_A(X)= X^n- \operatorname{Tr}(A)X^{n-1}+\dots+(-1)^n \det A.
\end{align*}

Solución. Regresemos a la definición

\begin{align*}
\det (X I_n-A)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(X\delta_{1\sigma(1)}-a_{1\sigma(1)}\right)\cdots \left(X \delta_{n\sigma(n)}-a_{n\sigma(n)}\right).
\end{align*}

Haciendo la expansión salvajemente podemos recuperar al menos los primeros términos de $$(X\delta_{1\sigma(1)}-a_{1\sigma(1)})\cdots (X\delta_{n\sigma(n)}-a_{n\sigma(n)}),$$ que son $$X^{n}\prod_{i=1}^{n} \delta_{i\sigma(i)} – X^{n-1}\sum_{j=1}^{n}\left(\prod_{k\neq j} \delta_{k\sigma(k)}\right)a_{j\sigma(j)}+\dots.$$

Más aún, nota cómo el producto $\prod_{j=1}^{n}\delta_{j\sigma(j)}$ es distinto de cero si y sólo si $j=\sigma(j)$ para todo $j$: es decir si $\sigma$ es la identidad. Esto muestra que $\chi_A(X)$ es mónico de grado $n$, como ya habíamos mencionado en la entrada anterior.

Además, el término constante está dado por \begin{align*}\chi_A(0)&=\det(0\cdot I_n-A)\\&=\det(-A)\\&=(-1)^{n}\det(A).\end{align*} Alternativamente pudimos haber usado la primera proposición de esta entrada para concluir estos hechos.

Nos falta estudiar el término de grado $n-1$. Si $j\in \{1,2,\dots, n\}$, entonces $\prod_{k\neq j}\delta_{j\sigma(j)}$ es distinto de cero solo si $\sigma(k)=k$ para todo $k\neq j$: pero $\sigma$ es una permutación, en particular una biyección, lo que fuerza que $\sigma(j)=j$ también y entonces $\sigma$ sea la identidad. Entonces el término de $X^{n-1}$ en $$(X\delta_{1\sigma(1)}-a_{1\sigma(1)})\cdots (X\delta_{n\sigma(n)}-a_{n\sigma(n)})$$ es distinto de cero sólo cuando $\sigma$ es la identidad. En ese caso es precisamente $$-\sum_{j=1}^{n} a_{jj}=-\operatorname{Tr}(A).$$

$\square$

Ejemplo. Si $A$ es la matriz del primer problema de esta entrada, tenemos que

\begin{align*}
\chi_A(X)&=(X-1)(X+2)(X-3)\\&= X^3-2 X^2+\dots +6.
\end{align*}

Nota cómo el término de $X^2$ es en efecto $-\text{Tr}(A)= -(1-2+3)$ y el último es $-\det(A)$.

$\triangle$

Matrices nilpotentes

El caso de las matrices nilpotentes es todavía más sencillo.

Problema. Sea $A\in M_n(F)$ una matriz nilpotente. Es decir, existe $k\geq 1$ tal que $A^{k}=O_n$.

  1. Demuestra que
    \begin{align*}
    \chi_A(X)=X^{n}.
    \end{align*}
  2. Demuestra que $\operatorname{Tr}A^{m}=0$ para todo $m\geq 1$.

Solución.

  1. Sea $k\geq 1$ tal que $A^{k}=O_n$ (existe pues $A$ es nilpotente). Entonces
    \begin{align*}
    X^{k}I_n&=X^{k}I_n-A^{k}\\&=(XI_n-A)(X^{k-1}I_n+X^{k-2}A+\dots +A^{k-1}).
    \end{align*}
    Tomando el determinante de ambos lados y recordando que abre productos llegamos a
    \begin{align*}
    X^{nk}&=\det(X^{k}I_n)\\&= \chi_{A}(X)\cdot \det(X^{k-1}I_n+\dots +A^{k-1}).
    \end{align*}
    De aquí, concluimos que $\chi_{A}(X)$ tiene que dividir a $X^{nk}$, pero sabemos que $\chi_A(X)$ es mónico y de grado $n$. Concluimos entonces que $\chi_A(X)=X^{n}$.
  2. Puesto que $A^{m}$ también es una matriz nilpotente, el inciso anterior nos dice que
    \begin{align*}
    \chi_{A^{m}}(X)=X^{n}.
    \end{align*}
    Pero sabemos por la sección sobre la traza que el término de $X^{n-1}$ es $-\operatorname{Tr}(A^{m})$. Como este término no aparece, concluimos que la traza es cero.

$\square$

Ejemplo. Para calcular el polinomio característico de la matriz

\begin{align*}
A=\begin{pmatrix}
5 & -3 &2\\
15 & -9 & 6\\
10 & -6 &4
\end{pmatrix}
\end{align*}

podríamos notar (aunque no sea obvio a simple vista) que $A^2=O_3$. Luego, por el problema anterior, $\chi_A(X)=X^3$.

$\triangle$

Un último caso particular

Acabamos con una última familia de matrices con polinomio característico simple. Esta familia está descrita por su forma, y será de particular importancia para el teorema de Cayley-Hamilton.

Problema. Para escalares $a_0,\dots, a_{n-1}\in F$ consideramos la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 0 & 0 & \dots & 0 & a_0\\
1 & 0 & 0 & \dots & 0 & a_1\\
0 & 1 & 0 & \dots & 0 & a_2\\
\dots & \dots & \dots & \dots & \dots &\dots\\
0 & 0 & 0 & \dots & 1 &a_{n-1}
\end{pmatrix}.
\end{align*}

en $M_n(F)$.

Demuestra que

\begin{align*}
\chi_A(X)=X^{n}-a_{n-1}X^{n-1}-\dots -a_0.
\end{align*}

Solución. Sea $P(X)=X^{n}-a_{n-1}X^{n-1}-\dots-a_0$. Considera la matriz

\begin{align*}
B=X I_n-A=\begin{pmatrix} X & 0 & 0 &\dots &0& -a_0\\ -1 & X & 0 &\dots & 0 &-a_1\\ 0 & -1 & X &\dots& 0&-a_2\\ \dots & \dots & \dots & \dots &\dots &\dots\\ 0 & 0 & 0 & \dots & -1 & X-a_{n-1}\end{pmatrix}.
\end{align*}

Sumando el segundo renglón multiplicado por $X$ al primer renglón, luego sumándole también al primer renglón el tercero multiplicado por $X^2$, el cuarto por $X^3$, y así sucesivamente hasta sumar el último renglón multiplicado por $X^{n-1}$ llegamos a la matriz

\begin{align*}
C=\begin{pmatrix}
0 & 0 & 0 & \dots &0& P(X)\\
-1 & X & 0 & \dots &0 & -a_1\\
0 & -1 & X & \dots & 0 & -a_2\\
\dots & \dots & \dots & \dots & \dots &\dots\\
0 & 0 & 0 & \dots & -1 & X-a_{n-1}
\end{pmatrix}.
\end{align*}

Recordamos que el determinante es invariante bajo sumas de renglones, por lo que

\begin{align*}
\chi_A=\det B=\det C.
\end{align*}

Expandiendo el determinante de $C$ en el primer renglón obtenemos sencillamente

\begin{align*}
\det C&=(-1)^{n+1}P(X) \cdot \begin{vmatrix} -1 & X & \dots & 0\\ 0 & -1 & \dots & 0\\ \dots &\dots & \dots & \dots \\ 0 & 0 & \dots & -1 \end{vmatrix}\\&= (-1)^{n+1} P(X)(-1)^{n-1}\\&=P(X).
\end{align*}

Para la segundaigualdad usamos que el determinante es el de una matriz triangular superior con puros $-1$ como entradas. Para la última, usamos que $n+1+n-1=2n$ siempre es un número par, así que queda $-1$ elevado a un número par. Esto concluye la prueba.

$\square$

Una de las consecuencias de la proposición anterior es que para cualquier polinomio mónico $P$ de grado $n$ en $F[X]$, existe una matriz en $M_n(F)$ tal que su polinomio característico es $P$.

Más adelante…

En la próxima entrada veremos unos últimos aspectos teóricos del polinomio característico antes de lanzarnos de lleno al teorema de Cayley-Hamilton y su demostración.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra una matriz $A$ tal que $\chi_A(X)=X^5-5X^3+X^2-2X+2$. Sugerencia: Usa el último problema.
  2. Demuestra que el polinomio característico de una matriz $A=[a_{ij}]$ triangular inferior está dado por $\prod_{i=1}^{n}(X-a_{ii})$.
  3. Demuestra que $0$ es eigenvalor de una matriz si y sólo si su determinante es cero.
  4. Calcula el polinomio característico de la siguiente matriz con entradas reales:
    \begin{align*}
    A= \begin{pmatrix} 5 & 5 & 5 \\ 6 & 6 & 6\\ -11 & -11 & -11\end{pmatrix}.
    \end{align*} Sugerencia: ¿Quién es $A^2$?
  5. ¿Es cierto que si $F$ es cualquier campo y $A$ es una matriz con entradas en $F$, entonces el hecho de que $\operatorname{Tr}(A)=0$ implica que $A$ sea nilpotente? Sugerencia: Piensa en $F_2$.
  6. Da una demostración alternativa al último problema de esta entrada usando inducción matemática sobre el tamaño de la matriz.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»