Probabilidad I-Videos: Definición clásica de probabilidad

Por Aurora Martínez Rivas

Introducción

En esta entrada de video se abordará una de varias definiciones de probabilidad, de hecho, una de las primeras en utilizarse; y que ayudó a sentar las bases para construir la teoría matemática. Esta idea o interpretación de la probabilidad se extendió durante muchos años y es llamada definición clásica de probabilidad.

Definición clásica de probabilidad

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Prueba que la definición clásica de probabilidad satisface las siguientes propiedades:

  • $P(\emptyset)=0$ y $P\left(\Omega\right)=1$.
  • $P\left(A\right)\geq0$ para cualquier evento A.
  • $P\left(A^c\right)=1-P(A)$.
  • $P\left(A\bigcup B\right)=P\left(A\right)+P(B)$ cuando A y B son ajenos.
  • $P(A\bigcup\ B)=P\left(A\right)+P\left(B\right)-P(A\bigcap\ B)$.

Más adelante…

Las restricciones de la definición clásica de probabilidad tiene inconvenientes, pues existen muchos procedimientos aleatorios en los que no se puede asegurar una misma probabilidad para cada observación y otros que no necesariamente están definidos en un espacio finito.

En el siguiente video se introducirá otra definición que busca ser una extensión de la definición “clásica” para aquellos casos en los que el conjunto de resultados no es finito.

Entradas relacionadas

Probabilidad I-Videos: Introducción al curso, espacio muestral y eventos

Por Aurora Martínez Rivas

Introducción

Esta es la primer entrada correspondiente a los videos por tema de la materia de Probabilidad I. En conjunto, esta y las entradas siguientes, abarcaran todos los temas correspondientes al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Se utilizará la bibliografía básica propuesta en dicho plan para la realización de las mismas.

El curso tiene como objetivo dar una presentación de los fundamentos de la teoría de la probabilidad; una disciplina matemática que trata de las regularidades de los fenómenos aleatorios. En esta primera parte introduciremos los conceptos más elementales de la teoría de la probabilidad. Comenzando con el espacio muestral y eventos.

Espacio muestral y eventos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Prueba las siguientes relaciones:

  • $\left(\displaystyle\bigcup_{i=1}^{n}{A_i}\right)^c=\displaystyle\bigcap_{i=1}^{n}{A_i}^c$ y $\left(\displaystyle\bigcap_{i=1}^{n}{A_i}\right)^c=\displaystyle\bigcup_{i=1}^{n}{A_i}^c$.
  • $\left(\displaystyle\bigcup_{i=1}^{\infty}{A_i}\right)B=\displaystyle\bigcup_{i=1}^{\infty}{A_iB}$ y $\left(\displaystyle\bigcap_{i=1}^{\infty}{A_i}\right)\displaystyle\bigcup B=\displaystyle\bigcap_{i=1}^{\infty}\left(\ A_i\bigcup B\right)$.
  • $AB\subset A\subset A\cup B$.
  • Si $A\subset B,\ entonces\ B^c\subset A^c$.
  • $A=AB\cup BA^c$ y $A\cup B=A\cup A^cB$.

Más adelante

Ahora que conoces los conceptos de evento y espacio muestral, junto a algunas de sus propiedades, en la siguiente entrada veremos como la probabilidad matemática está motivada por nuestras ideas intuitivas sobre la probabilidad como proporción.

Entradas relacionadas

Ecuaciones Diferenciales I: Introducción a las Ecuaciones Diferenciales

Por Omar González Franco

La vida es buena por sólo dos cosas, descubrir y enseñar las matemáticas.
– Simeon Poisson

Introducción

Bienvenidos a la primera clase del curso, en esta entrada conoceremos qué son las ecuaciones diferenciales, cómo clasificarlas y presentaremos una parte de la terminología elemental que usaremos a lo largo del curso.

Las leyes del universo están escritas en el lenguaje de las matemáticas. Muchos de los fenómenos naturales que ocurren en el universo involucran cambios y si logramos crear modelos matemáticos que los describan, sin duda, la derivada será una herramienta fundamental que estará presente. Sabemos que la derivada $\dfrac{dy}{dx} = f'(x)$ de la función $f$ es la razón a la cual la cantidad $y = f(x)$ está cambiando respecto de la variable independiente $x$, es natural, entonces, que las ecuaciones que involucran derivadas se usen frecuentemente para describir el universo cambiante. Una ecuación que relacione una función desconocida con una o más de sus derivadas se llama ecuación diferencial.

Ecuaciones diferenciales

Al tratarse de un curso introductorio, sólo trabajaremos con ecuaciones diferenciales que contienen sólo una variable independiente, estas ecuaciones tienen un nombre particular.

El reto al que nos enfrentamos con las ecuaciones diferenciales es hallar la función involucrada que depende de la variable independiente. Supongamos que tenemos la función

$$y = f(x) = 2e^{x^{2}}$$

Esta función es derivable en todo $\mathbb{R}$, si la derivamos obtenemos otra función dada de la siguiente forma.

$$\dfrac{dy}{dx} = f'(x) = 4xe^{x^{2}}$$

Este resultado se puede reescribir como

$$\dfrac{dy}{dx} = 2x(2e^{x^{2}})$$

Podemos observar que lo que está entre paréntesis es de nuevo la función $y = 2e^{x^{2}}$ , si la sustituimos obtenemos como resultado la siguiente ecuación.

$$\dfrac{dy}{dx} = 2xy$$

Este resultado corresponde a una ecuación diferencial ordinaria, pues contiene la derivada de la variable dependiente $y$ con respecto a la variable independiente $x$, esto es $\dfrac{dy}{dx}$.

Ahora imagina que lo primero que vemos es la ecuación diferencial $\dfrac{dy}{dx} = 2xy$ y lo que debemos de hacer es obtener la función $f(x) = y$. ¿Cómo la obtendrías?. ¡Este es el reto!.

Básicamente el objetivo del curso será desarrollar distintos métodos para resolver los diferentes tipos de ecuaciones diferenciales ordinarias que se puedan presentar, analizaremos las circunstancias en las que aparecen y la forma en que surgen con el fin de describir o modelar fenómenos físicos en términos matemáticos.

Notación

En la mayor parte del curso utilizaremos la notación de Leibniz.

$$\dfrac{dy}{dx}, \hspace{0.4cm} \dfrac{d^{2}y}{dx^{2}}, \hspace{0.4cm} \dfrac{d^{3}y}{dx^{3}}, \hspace{0.4cm} \cdots,$$

En este caso la expresión $\dfrac{d}{dx}$ sirve como un operador que indica una derivación de la variable dependiente $y$ con respecto a la variable independiente $x$.

En ocasiones para ser más compactos utilizaremos la notación prima o también conocida como notación de Lagrange.

$$y^{\prime}, \hspace{0.4cm} y^{\prime \prime}, \hspace{0.4cm} y^{\prime \prime\prime}, \hspace{0.4cm} \cdots$$

En el caso de esta notación, a partir de la cuarta derivada ya no se colocan primas, sino números entre paréntesis, dicho número indica el grado de la derivada.

$$y^{(4)}, \hspace{0.4cm} y^{(5)}, \hspace{0.4cm} \cdots, \hspace{0.4cm} y^{(n)}$$

En este curso haremos mayor uso de la notación de Leibniz debido a que indica con claridad las variables independientes y dependientes. Por ejemplo, en la ecuación

$$\dfrac{dx}{dt} + 8x = 0$$

se observa de forma inmediata que el símbolo $x$ representa a la variable dependiente, mientras que $t$ a la variable independiente.

Cuando se trata de resolver problemas en contextos del mundo real relacionados con Física o ingeniería por ejemplo, es común utilizar la notación de Newton.

$$\dot{y}, \hspace{0.4cm} \ddot{y}, \hspace{0.4cm} \dddot{y}, \hspace{0.4cm} \cdots$$

Es común utilizar esta notación cuando la variable independiente corresponde al tiempo $t$.

$$\dfrac{dy}{dt} = \dot{y}(t)$$

Clasificación de las ecuaciones diferenciales

Para comenzar será importante clasificar a las ecuaciones diferenciales por tipo, orden y linealidad.

  • Clasificación por tipo

Un primer tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Ordinarias (EDO) que, como se definieron anteriormente, son aquellas que relacionan una función desconocida de una variable independiente con sus derivadas. Algunos ejemplos de ecuaciones diferenciales ordinarias son:

$$\dfrac{dy}{dx} + 5y = e^{x}, \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 6y = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dx}{dt} + \dfrac{dy}{dt} = 2x + y$$

Otro tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Parciales (EDP), estas ecuaciones presentan las derivadas parciales de una o más variables dependientes de dos o más variables independientes. Algunos ejemplos de ecuaciones diferenciales parciales son:

$$\dfrac{\partial^{2}z}{\partial x^{2}} + \dfrac{\partial^{2}z}{\partial y^{2}} = 0, \hspace{1cm} \dfrac{\partial^{2}z}{\partial x^{2}} = \dfrac{\partial^{2}z}{\partial t^{2}} -2\dfrac{\partial z}{\partial t} \hspace{1cm} y \hspace{1cm} \dfrac{\partial u}{\partial y} = – \dfrac{\partial v}{\partial x}$$

En este curso no estudiaremos a las ecuaciones diferenciales parciales.

  • Clasificación por orden

El orden de una ecuación diferencial representa el orden de la derivada más alta presente en la ecuación. Así, la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es una ecuación diferencial ordinaria de segundo orden. Importante, no confundir orden de la derivada con el grado o potencia de las derivadas.

Una EDO de $n$-ésimo orden se puede expresar como una variable dependiente empleando la forma general

$$F(x, y, y^{\prime}, \cdots , y^{(n)}) = 0 \tag{1} \label{1}$$

Donde $F$ es una función con valores reales de $n + 2$ variables. Por motivos teóricos debemos suponer que es posible resolver la EDO anterior únicamente para la derivada de mayor grado $y^{(n)}$ en términos de las $n + 1$ variables restantes, es decir, suponemos que se puede resolver la siguiente ecuación.

$$\dfrac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots , y^{(n – 1)}) \tag{2} \label{2}$$

Donde $f$ es una función continua con valores reales. A la ecuación (\ref{2}) se le denomina forma normal de (\ref{1}). En ocasiones será útil utilizar las formas normales

$$\dfrac{dy}{dx} = f(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime})$$

para representar ecuaciones diferenciales ordinarias de primer y segundo orden, respectivamente.

Por ejemplo, la forma normal de la ecuación diferencial de primer orden

$$4x \dfrac{dy}{dx} + y = x$$

es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Para $x \neq 0$. En este caso la función $f$ sería

$$f(x, y) = \dfrac{x -y}{4x}$$

Mientras que la forma general de la misma ecuación es

$$F \left( x, y , \dfrac{dy}{dx} \right) = 4x \dfrac{dy}{dx} + y -x = 0$$

Las ecuaciones diferenciales ordinarias de primer orden ocasionalmente se escriben en lo que se conoce como la forma diferencial.

$$M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}$$

Anteriormente vimos que la forma normal de la ecuación diferencial dada es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Haciendo de un abuso de notación podemos escribir a esta ecuación como

$$4x dy = (x -y) dx$$

O bien,

$$(y -x) dx + 4x dy = 0$$

Esta es la correspondiente forma diferencial, en este caso

$$M(x, y) = y -x \hspace{1cm} y \hspace{1cm} N(x, y) = 4x$$

Con este ejemplo encontramos tres formas distintas de representar a la misma ecuación diferencial. Veremos más adelante que cada forma de representación nos será de utilidad cuando intentemos encontrar a la función dependiente.

  • Clasificación por linealidad

Una ecuación diferencial ordinaria de $n$-ésimo orden (\ref{1}) es lineal si $F$ es lineal en $y, y^{\prime}, \cdots, y^{(n)}$, es decir, una EDO es lineal si se puede escribir como

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \tag{4} \label{4}$$

Cumpliendo las siguientes propiedades:

  • La variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$ son de primer grado, es decir, la potencia de cada uno de los términos que involucran a $y$ es $1$.
  • Los coeficientes $a_{0}, a_{1}, \cdots, a_{n}$ de $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$, respectivamente, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$.

Una ecuación diferencial ordinaria no lineal simplemente es una ecuación que no es lineal, es decir, que no cumple con las propiedades anteriores.

La ecuación

$$4x \dfrac{dy}{dx} + y = x$$

claramente es lineal, mientras que la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es no lineal debido a que la primera derivada de la variable dependiente $y$ no es de primer grado, sino de grado $3$.

Ejemplo: Clasificar las siguientes ecuaciones diferenciales.

  • $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$
  • $(1-y) y^{\prime} + 2y = e^{x}$

Solución:

En la ecuación

$$\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$$

observamos que se trata de una ecuación diferencial ordinaria, pues la variable dependiente $y$ sólo depende de una variable independiente, en este caso de $x$. Por otro lado, observamos que la derivada más alta es $\dfrac{d^{3}y}{dx^{3}}$ , por lo tanto el orden de la ecuación es $3$, es decir, es una ecuación diferencial de tercer orden. Finalmente vemos que se trata de una ecuación lineal, pues la potencia de los términos que involucran a $y$ es $1$ y además la función $g(x) = e^{x}$ sólo depende de la variable independiente.

En la ecuación

$$\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$$

notamos que corresponde a una ecuación diferencial ordinaria de segundo orden ya que la derivada más alta es $\dfrac{d^{2}y}{dx^{2}}$. En este caso la ecuación es no lineal ya que la función $\sin(y)$ no es lineal e involucra a la variable dependiente.

Finalmente, en la ecuación

$$(1-y) y^{\prime} + 2y = e^{x}$$

se observa que es una ecuación diferencial ordinaria de primer orden y que es no lineal ya que el coeficiente de $y^{\prime}$, la función $(1 -y)$, depende de la variable dependiente.

$\square$

Como podemos notar, para deducir si una ecuación diferencial es lineal o no es conveniente escribirla en la forma (\ref{4}) y verificar las dos propiedades de linealidad.

De acuerdo a (\ref{4}), las ecuaciones diferenciales de primer orden ($n = 1$) y segundo orden ($n = 2$) se pueden escribir de forma general como

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{5} \label{5}$$

y

$$a_{2}(x) \frac{d^{2}y}{dx^{2}} + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{6} \label{6}$$

Respectivamente.

Hemos concluido con esta entrada.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Definir el orden de las siguientes ecuaciones diferenciales ordinarias y establecer si son lineales o no lineales.
  • $(1 -x) y^{\prime \prime} -4xy^{\prime} + 5y = \cos(x)$
  • $\dfrac{d^{2}y}{dx^{2}} = \sqrt {1 + \left(\dfrac{dy}{dx}\right)^{2}}$
  • $x \dfrac{d^{3}y}{dx^{3}} -\left( \dfrac{dy}{dx} \right) ^{4} + y = 0$
  1. Determinar si las siguientes ecuaciones diferenciales de primer orden son lineales en la variable dependiente indicada comparándola con la ecuación (\ref{4}). (es decir, considera primero a una variable como dependiente de la otra y reescribe la ecuación en la forma general (\ref{4}) para deducir si es lineal o no, posteriormente intercambia al papel de las variables y vuelve a ver si la ecuación es lineal o no).
  • $(y^{2} -1) dx + x dy = 0$, $\hspace{0.5cm}$ en $y$, $\hspace{0.2cm}$ en $x$
  • $u dv + (v + uv -ue^{u}) du = 0$, $\hspace{0.5cm}$ en $v$, $\hspace{0.2cm}$ en $u$

Más adelante …

Como se mencionó, uno de los objetivos es hallar a la función involucrada que depende de la variable independiente, a esta función formalmente se le conoce como función solución de la ecuación diferencial. Antes de estudiar cómo obtener estas funciones solución será conveniente primero estudiar sus propiedades generales.

En la siguiente entrada comenzaremos a estudiar lo relacionado a la solución (o soluciones) de una ecuación diferencial.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal II: Repaso de formas bilineales y formas cuadráticas

Por Diego Ligani Rodríguez Trejo

Introducción

Aunque en previas entradas ya se ha hablado de formas bilineales y formas cuadráticas, retomaremos su estudio en esta entrada y nos dedicaremos a probar algunas propiedades que previamente no fueron demostradas.

También nos familiarizaremos con algunos tipos especiales de formas bilineales e intentaremos extender las definiciones ya dadas, esta vez para espacios vectoriales cuyo campo sea $\mathbb{C}$.

Formas bilineales

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma bilineal es una función $b: V \times V \rightarrow \mathbb{R}$ tal que:

  • Para cualquier $x \in V$ la función $b(x, \cdot) : V \rightarrow \mathbb{R}$ que envía $v$ a $b(x,v)$ es lineal.
  • Para cualquier $y \in V$ la función $b(\cdot, y) : V \rightarrow \mathbb{R}$ que envía $v$ a $b(v,y)$ es lineal.

Definición. Una forma bilineal $b$ se llama simétrica si $b(x,y)=b(y,x)$ para cualquier par $x,y \in V$.

A partir de la definición de forma bilineal podemos saber cómo «abrir combinaciones lineales» si las tenemos en ambas entradas.

Proposición. Sea $b$ una forma bilineal en un espacio vectorial $V$ sobre $R$. Sean $x_1, \dots x_n \in V$, $y_1, \dots y_m \in V$ y $a_1, \dots a_n, c_1, \dots c_m \in \mathbb{R}$. Tenemos que:
\begin{align*} b\left(\sum_{i=1}^n a_ix_i,\sum_{j=1}^m c_jy_j\right)=\sum_{i=1}^n\sum_{j=1}^m a_ic_jb(x_i,y_j)\end{align*}

Demostración. Usando la linealidad en la primera entrada de $b$ tenemos que:

$$b\left(\sum_{i=1}^n a_ix_i,\sum_{j=1}^m c_jy_j\right)=\sum_{i=1}^n a_ib\left(x_i, \sum_{j=1}^m c_jy_j\right).$$
Procediendo de manera similar en la segunda entrada de cada sumando obtenemos:

$$ \sum_{i=1}^n a_ib\left(x_i, \sum_{j=1}^m c_jy_j\right) =\sum_{i=1}^n a_i \left(\sum_{j=1}^m c_j b(x_i,y_j)\right). $$

Multiplicando el real $a_i$ por la suma de índice $j$ para que «entre a la suma» obtenemos la expresión deseada.

$\square$

Obtenemos el siguiente corolario.

Corolario. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ de dimensión finita y $e_1,\ldots,e_n$ una base. Una forma bilineal $b$ queda totalmente definida por los valores $b(e_i,e_j)$ para $1\leq i \leq n$ y $1\leq j \leq n$.

Formas cuadráticas

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma cuadrática es una función $q: V \rightarrow \mathbb{R}$ tal que existe una forma bilineal $b: V \times V \rightarrow \mathbb{R}$ que cumple \begin{align*}q(x)=b(x,x).\end{align*}

Identidad de polarización

Puede existir una forma cuadrática que tenga más de una forma bilineal asignada.

Ejemplo. Tomemos $V=\mathbb{R}^2$ y $b_1, b_2:V\times V\to \mathbb{R}$ definidas como sigue para $x=(x_1,x_2)$ y $y=(y_1,y_2)$:

\begin{align*} b_1(x,y) &=x_1y_2-x_2y_1\\ b_2(x,y)&=x_2y_1-x_1y_2. \end{align*}

De aquí:

\begin{align*} b_1(x,x) &=x_1x_2-x_2x_1=0\\ b_2(x,x)&=x_2x_1-x_1x_2=0, \end{align*}

por lo que $b_1$ y $b_2$ tendrían la misma forma cuadrática asignada.

$\triangle$

Por suerte basta agregar una restricción a la forma bilineal para que tengamos esta deseada unicidad. Esto lo afirma el siguiente teorema.

Teorema (Identidad de polarización). Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $q: V \rightarrow \mathbb{R}$ una forma cuadrática. Existe una única forma bilineal simétrica $b: V \times V \rightarrow \mathbb{R}$ tal que $q(x)=b(x,x)$ para todo $x \in V$.

Más aún, esta $b$ se puede encontrar de la siguiente manera:
\begin{align*} b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.\end{align*}

Demostración. Por la definición de forma cuadrática, sabemos que existe una forma bilineal (no necesariamente simétrica) $B$ tal que $q(x)=B(x,x)$. Tomemos la función $b: V \times V \rightarrow \mathbb{R}$ dada por la siguiente fórmula: $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$

Dado que $q(x)=B(x,x)$, podemos calcular $b$ como \begin{align*} b(x,y)=\frac{B(x+y,x+y)-B(x,x)-B(y,y)}{2}. \end{align*}

Usando la bilinealidad de $B$, el primer sumando $B(x+y,x+y)$ es $$B(x,x+y)+B(y,x+y),$$ que a su vez es $$B(x,x)+B(x,y)+B(y,x)+B(y,y).$$

Sustituyendo esto en $b(x,y)$ y simplificando nos arroja la igualdad

\begin{align*} b(x,y) = \frac{B(x,y)+B(y,x)}{2}.\end{align*}

Esta igualdad nos dice que $b$ es combinación lineal de las formas bilineales $(x,y)\mapsto B(x,y)$ y $(x,y)\mapsto B(y,x)$, de modo que $b$ es bilineal. Además, de esta igualdad se concluye de manera inmediata que $b(x,y)=b(y,x)$. Así, $b$ es forma bilineal simétrica.

Una última aplicación de la igualdad previa nos ayuda a probar que $q(x)=b(x,x)$, ya que:

\begin {align*} b(x,x)&=\frac{B(x,x)+B(x,x)}{2}\\&=B(x,x)\\&=q(x).\end{align*}

Lo único que nos falta demostrar es la unicidad. Si tuviéramos otra forma bilineal simétrica $b’: V \times V \rightarrow \mathbb{R}$ tal que $q(x)=b'(x,x)$, ésta debe cumplir lo siguiente:

\begin{align*} q(x+y)&=b'(x+y,x+y)\\&=b'(x,x)+2b'(x,y)+b'(y,y).\end{align*}

Al despejar a $b'(x,y)$ obtenemos

\begin{align*} b'(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}=b(x,y).\end{align*}

$\square$

Finalicemos recordando una última definición que relaciona a $q$ con su única forma bilineal simétrica.

Definición. Sea $q: V \rightarrow \mathbb{R}$ una forma cuadrática. A $b: V \times V \rightarrow \mathbb{R}$ dada por
\begin{align*} b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2} \end{align*}
se le llama la forma polar de $q$.

Más adelante…

En las siguientes entradas veremos un teorema importante que nos ayudará a entender todas las formas cuadráticas en $\mathbb{R}^n$. Un poco más adelante veremos análogos de lo que hemos hecho en $\mathbb{R}$, pero para espacios vectoriales sobre $\mathbb{C}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=M_n(\mathbb{R})$ y definamos la función $b:V \times V \rightarrow \mathbb{R}$ dada por $b(A,B)=\text{Tr}(AB)$. Demuestra que $b$ es una forma bilineal simétrica.
  2. Sea $V=M_n(\mathbb{R})$ y definamos la función $b’:V \times V \rightarrow \mathbb{R}$ dada por $b'(A,B)=\text{Tr}(A^tB)$. Demuestra que $b’$ es una forma bilineal simétrica.
  3. Sea $V=\mathcal{C}^0[0,1]$ (El espacio vectorial de funciones reales continuas en el intervalo $[0,1]$) y $q(x): V \rightarrow \mathbb{R}$ tal que $q(f)=\int_0^1f(x)^2dx$. ¿Es $q$ una forma cuadrática? Si sí, ¿quién es su forma polar?
  4. Sea $q$ una forma cuadrática en $V$ con $b$ su forma polar. Demuestra que para cualquier pareja $x,y$ en $V$ se tiene que
    \begin{align*}
    b(x,y)=\frac{q(x+y)-q(x-y)}{4}.
    \end{align*}
  5. Sea $q$ una forma cuadrática en $V$ con $b$ su polar. Demuestra que $\forall x,y \in V$ se tiene
    \begin{align*}
    q(x+y)+q(x-y)=2(q(x)+q(y)).
    \end{align*}
  6. ¿Por qué en esta entrada se utiliza la palabra «forma», en lugar de «función», que es normalmente utilizada? ¿Hay alguna diferencia entre una forma y una función?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Moderna I: Definición de Grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Ahora sí, comenzaremos con el tema de este curso. Después de estudiar las operaciones binarias por fin veremos para qué nos sirven. Los grupos son una estructura algebraica. Están constituidos por dos partes, un conjunto y una operación ¿Puedes imaginarte de qué tipo de operación estamos hablando?

Para motivarlo, veamos cómo resolvemos esta ecuación:

\begin{align*}
x+8 & = 5\\
(x + 8) + (-8) &= 5 + (-8)\\
x + 0 &= -3\\
x &= -3
\end{align*}

Al resolver la ecuación, formalmente estamos usando las siguientes propiedades:

  • Asociatividad
  • Inverso aditivo
  • Neutro

En ese mismo orden.

En esta entrada definiremos formalmente a los grupos y daremos muchos ejemplos para que te empapes de la definición. Revisaremos los ejemplos que vimos en entradas anteriores y determinaremos cuáles son un grupo y cuáles no.

¿Qué es un grupo?

Definición. Sea $G$ un conjunto con una operación binaria $*$. Decimos que $(G,*)$ es un grupo si

  1. La operación $*$ es asociativa, es decir, $(a * b)*c = a*(b*c) \quad \forall a,b,c \in G$
  2. Existe $e \in G$ tal que $e*a = a*e = a \quad \forall a \in G$.
    A $e$ se le llama neutro en $G$.
  3. Para toda $a \in G$ existe $\tilde{a} \in G$ tal que $a*\tilde{a} = \tilde{a}*a=e$.
    En este caso, $\tilde{a}$ se llama inverso de a.

Si además * es conmutativa, es decir $a*b = b*a \quad \forall a,b \in G$, decimos que $(G,*)$ es un grupo abeliano.

Nota. Sea $G$ conjunto con una operación binaria $*$:

  • Si $G \neq \emptyset$, $(G,*)$ se llama magma.
  • Si $G\neq \emptyset$ y se cumple 1, $(G,*)$ se llama semigrupo.
  • Si se cumplen 1 y 2, $(G,*)$ se llama monoide.

Repaso de ejemplos anteriores

Veamos de nuevo algunos ejemplos de las entradas anteriores y comprobemos si cumplen con la definición de grupo.

  • $G : = \z^+$, $a*b = \text{máx}\{a,b\}$.
    • En la entrada anterior vimos que $*$ es asociativa y conmutativa.
    • $1$ es el neutro.
      Demostración. $1*a = a*1 = \text{máx}\{1,a\} = a \quad \forall a \in \z^+$. $\blacksquare$
    • $2$ no tiene inverso.
      Demostración. $2*a = \text{máx}\{2,a\} \geq 2 \quad \forall a \in \z^+$, por lo que $2 * a \neq 1 \quad a \in \z^+$.

$\therefore (\z^+,*)$ NO es un grupo. $\blacksquare$

  • $G:= \z^+$, $a*b = a$.
    • No tiene neutro, si existiera $e \in \z^+$ neutro, entonces para toda $a\in\z^+$, por la definción de la operación $e*a = e$, pero la definición de neutro requiere que $e*a = a$. Entonces, esto implica que $e = a$ y como esto no es necesariamente cierto, pues $a$ es un entero positivo cualquiera, obtenemos una contradicción.

$\therefore (\z^+,*)$ NO es un grupo. $\blacksquare$

  • $(\cM_{2\times 2}(\z), +)$ es un grupo abeliano, la demostración queda como ejercicio.
  • $(\{ f \; | \; f:\r \to \r\}, \circ)$ no es un grupo, pues aunque $\mathrm{id}_{\r}$ es neutro, no todo elemento tiene inverso, como se ve en Álgebra Superior I.
  • $(S_3, \circ)$ es un grupo no abeliano. Generalizaremos este ejemplo más adelante y le llameremos grupo simétrico.
  • $\cS = \{2,4,6\}$ con la operación
$*$$2$$4$$6$
$2$$2$$4$$6$
$4$$4$$4$$6$
$6$$6$$6$$6$

Si observamos la tabla, podemos concluir que:

  • $2$ es neutro.
  • $4$ y $6$ no tienen inversos.

Por lo tanto, NO es un grupo.

$\blacksquare$

  • $\cS = \{2,4,6\}$ con la operación
$*$$2$$4$$6$
$2$$2$$2$$2$
$4$$4$$4$$4$
$6$$6$$6$$6$
  • No hay un neutro.

Como no hay neutro, ni siquiera tiene sentido pensar en la existencia de inversos. Por lo tanto, NO es un grupo.

$\blacksquare$

  • $\cS = \{1,-1\}$
$*$$1$$-1$
$1$$1$$-1$
$-1$$-1$$1$
  • El $1$ es el neutro.
  • La operación es asociativa.
  • $1$, $-1$ son sus propios inversos.
  • Además, la operación conmuta, porque la operación es el producto usual.

Por lo tanto es un grupo abeliano.

$\blacksquare$

  • $(\z, +)$ es un grupo.
  • Sea $K$ un campo y $K^* = K \setminus \{0_K\}$. Si consideramos $(K^*, \cdot)$ tenemos un grupo abeliano. Le quitamos el $0_K$ pues es el único número que no tiene inverso multiplicativo.
  • $\mathbb{S}’ = \{z \in \mathbb{C} \; |\; |z|= 1\}$. Es decir, los complejos con norma igual a $1$. Es un grupo abeliano con el producto.
Representación geométrica del conjunto.
  • Dentro de los complejos podemos considerar $$\Gamma_n = \left\{ \xi^k \; | \; 0 \leq k < n \right\},$$ con $\xi = e^{\frac{2\pi i}{n}}$. Geométricamente corresponden a los vértices de un polígono regular de $n$ lados y algebraicamente son las raíces $n$-ésimas de la unidad. Forman un grupo abeliano con el producto.
Representación geográfica del conjunto cuando $n= 6$.

Ejemplos importantes de matrices

Los siguientes son ejemplos de algunos grupos importantes. Recuérdalos porque son ejemplos que serán recurrentes en futuras entradas. Recuerda que no todas las matrices tienen inverso multiplicativo y que el producto de matrices no es conmutativo. Para refrescar tu memoria, puedes consultar las entradas de matrices inversas y operación de matrices.

  1. $$GL(n,\r) = \{A \in \cM_{n\times n}(\r) \;|\; \det A \neq 0\},$$ con el producto usual es un grupo no abeliano. Este par ordenado $(GL(n,r), \cdot)$ es conocido como el grupo lineal general.
  2. $$SL(n,\r) = \{A \in \cM_{n\times n}(\r) \;|\; \det A = 1\},$$ con el producto usual es un grupo no abeliano. Este es el grupo lineal especial.
  3. $$SO(n,\r) = \{A \in \cM_{n\times n}(\r) \; | \; AA^t = I_n, \; \det A = 1\},$$ con el producto usual es un grupo no abeliano. A éste se le conoce como grupo ortogonal especial.
  4. $$O(n, \r) = \{A \in \cM_{n\times n}(\r) \; |\; AA^t = I_n\},$$ con el producto usual es un grupo no abeliano. Este es conocido como el grupo ortogonal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina, en cada uno de los siguientes casos, si el sistema descrito es grupo o no. En caso negativo, señala cuál o cuáles de los axiomas de grupo no se verifican. En caso afirmativo demuestra que es un grupo:
    • $G = \r \setminus \{-1\}$, $a*b := a+b+ab$.
    • $G = \r^*$, $a*b = |a|b$.
    • $G = \{r \in \mathbb{Q} \;|r\text{ se puede expresar como }\; r = \frac{p}{q} \text{ con } (p,q)= 1 \text{ y } q \text{ impar}\}$, $a*b = a+b$ (la adición usual).
    • Sea $X$ un conjunto. Considera $G = \mathcal{P}(X)$ el conjunto potencia de $X$ con la operación binaria $A \triangle B = (A \cup B)\setminus (A \cap B)$ para todo $A,B \in \mathcal{P}(X)$.
  2. Demuestra la siguientes afirmaciones referentes a grupos, dadas en los ejemplos anteriores:
    • $(\cM_{2\times 2}(\z), +)$ es un grupo abeliano.
    • $(S_3, \circ)$ es un grupo no abeliano.
    • $(\z, +)$ es un grupo.
    • $(K^*, \cdot)$ con $K$ un campo, es un grupo abeliano.
    • $(\Gamma_n, \cdot)$ es un grupo abeliano, con $\cdot$ el producto.
  3. Demuestrá por qué los ejemplos importantes de matrices son grupos no abelianos.

Más adelante…

Después de tantas definiciones y ejemplos, comenzaremos a ver más teoremas y demostraciones. En la siguiente entrada profundizaremos en las propiedades de grupos derivadas de su definición. Además, veremos un teorema conocido como la «Definición débil de Grupo».

Entradas relacionadas