Probabilidad I-Videos: Probabilidad geométrica

Introducción

La definición “clásica” se usó durante muchos años, pero luego de analizar algunos ejemplos especiales, estos llevaron a cierta modificación de la definición y a la construcción de un concepto de probabilidad para los casos en los que es concebible incluso un conjunto infinito de resultados. Este concepto es el de probabilidad geométrica.

Probabilidad geométrica

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

En un plano sea $\Omega$ cierta región y supongamos en ella hay otras dos regiones $A$ y $B$, todas con área finita y bien definida. Prueba que la definición de la probabilidad geométrica usando como medida el área, satisface las siguientes propiedades:

  • $P(\emptyset)=0$ y $P\left(\Omega\right)=1$.
  • $P\left(A\right)\geq0$ para cualquier evento A.
  • $P\left(A^c\right)=1-P(A)$.
  • $P\left(A\bigcup B\right)=P\left(A\right)+P(B)$ cuando A y B son ajenos.
  • $P(A\bigcup\ B)=P\left(A\right)+P\left(B\right)-P(A\bigcap\ B)$. 

Más adelante…

Así como la probabilidad geométrica ayuda a extender la definición de probabilidad clásica para casos con un espacio muestral no finito, en la siguiente entrada de video veremos la interpretación frecuentista de la probabilidad que nos brinda una alternativa para cuando no necesariamente los posibles resultados son equiprobables.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.