Geometría Analítica I: Producto interior y el ortogonal canónico

Por Elsa Fernanda Torres Feria

Introducción

Continuando la conexión con la geometría Euclidiana con la que empezamos, hay un concepto en la geometría analítica que se conecta con la noción de ángulo, la de distancia y la de norma en la primera geometría mencionada, el producto interior. Dentro del contenido de esta entrada esta su definición en una dimensión de $2$ o mayor, ejemplos y sus propiedades. También, se discute el concepto del vector ortogonal canónico, que en conjunción con el producto interior, sirve como herramienta para detectar ciertas características de rectas y vectores.

Producto interior

Abramos esta entrada con la definición de este nuevo concepto.

Definición. Si tenemos dos vectores $u=(u_1,u_2)$ y $v=(v_1,v_2)$ en $\mathbb{R}^2$, el producto interior (o producto punto) en $\mathbb{R}^2$ de $u$ con $v$, está dado por

$u\cdot v := (u_1,u_2) \cdot (v_1,v_2) = u_1v_1 +u_2 v_2$

Esta definición se puede expresar en dimensiones mayores.

Definición. Si tenemos dos vectores $u=(u_1,u_2, \dots, u_n)$ y $v=(v_1,v_2, \dots, v_n)$ en $\mathbb{R}^n$, el producto interior (o producto punto) en $\mathbb{R}^n$ de $u_1$ con $u_2$, está definido como

\begin{align*}
u\cdot v : &= (u_1,u_2, \dots, u_n) \cdot (v_1,v_2, \dots, v_n) \\
&= u_1v_1 +u_2 v_2+u_3 v_3 + \dots + u_n v_n \\
&= \sum _{j=1} ^{n} u_j v_j
\end{align*}

Es importante notar que el resultado del producto interior (que es una operación vectorial), es un escalar.

Ejemplos:

1. Sean los vectores $(5,3)$ y $(2,-4)$ en $\mathbb{R}^2$, el producto interior de estos es

\begin{align*}
(5,3) \cdot (2,-4)&=5(2)+3(-4)\\
&=10-12\\
&=-2
\end{align*}

2. Sean los vectores $(-3,1,-1)$ y $(-6,2,-3)$ en $\mathbb{R}^3$, el producto interior de estos es

\begin{align*}
(-3,1,-1) \cdot (-6,2,-3)&=-3(-6)+1(2)+(-1)(-3)\\
&=18+2+3\\
&=23
\end{align*}

3. Sean los vectores $(1,0,-5,2,0,1)$ y $(0,-6,0,0,2,0)$ en $\mathbb{R}^6$, el resultado de su producto interior es cero, verifica.

Ahora que hemos definido una nueva operación, nos gustaría demostrar algunas propiedades asociadas a esta.

Teorema. Para todos los vectores $u,v,w \in \mathbb{R}^n$ y para todo número $t \in \mathbb{R}$ se cumple que

  1. $u \cdot v = v \cdot u$
  2. $u \cdot (tv)=t(u\cdot v)$
  3. $u \cdot (v + w)= u \cdot v + u \cdot w$
  4. $u \cdot u \geq 0$
  5. $u \cdot u =0 \Leftrightarrow u=(0,0)$

La primera propiedad nos dice que el producto interior es conmutativo; la siguiente que la operación saca escalares; la tercera expresa que esta abre sumas; la cuarta que al hacer el producto interior de un vector consigo mismo, el resultado es siempre mayor o igual a cero la última que la igualdad a cero sólo sucede cuando el vector $u$ es el vector cero.

Demostración

Haremos la demostración para vectores en $\mathbb{R}^2$, (el caso para dimensión $n$ es análogo) y usaremos los axiomas de los números reales.

Para empezar definamos los vectores $u=(u_1,u_2)$, $v=(v_1,v_2)$ y $w=(w_1,w_2)$ en $\mathbb{R}^2$

1. P. D. $u \cdot v = v \cdot u$. Comencemos con la definición y desarrollemos a partir de ella

\begin{align*}
u \cdot v &=(u_1,u_2) \cdot (v_1,v_2)\\
&=u_1v_1+u_2v_2 \\
&=v_1u_1+v_2u_2 \\
&=(v_1,v_2) \cdot (u_1,u_2)\\
&=v \cdot u
\end{align*}

$\therefore$ $u\cdot v= v \cdot u$

2. P.D. $u \cdot (tv)=t(u\cdot v)$

\begin{align*}
u \cdot (tv)&=(u_1,u_2) \cdot t(v_1,v_2) \\
&= (u_1,u_2) \cdot (tv_1,tv_2) \\
&= u_1(tv_1)+u_2(tv_2)\\
&= t(u_1v_1+u_2v_2) \\
&=t(u_1,u_2) \cdot (v_1,v_2)\\
&= t (u \cdot v)
\end{align*}

$\therefore u \cdot (tv)=t(u\cdot v)$

3. P.D. $u \cdot (v + w)= u \cdot v + u \cdot w$

\begin{align*}
u \cdot (v + w)&=(u_1,u_2) \cdot ((v_1,v_2) + (w_1,w_2)) \\
&= (u_1,u_2) \cdot (v_1+w_1,v_2+w_2) \\
&=u_1(v_1+w_1)+u_2(v_2+w_2) \\
&=u_1v_1+u_1w_1+u_2v_2+u_2w_2 \\
&=u_1v_1+u_2v_2+u_1w_1+u_2w_2 \\
&=(u_1v_1+u_2v_2)+(u_1w_1+u_2w_2) \\
&=((u_1,u_2)\cdot(v_1,v_2)) + ((u_1,u_2) \cdot (w_1,w_2)) \\
&= u \cdot v + u \cdot w
\end{align*}

$\therefore$ $u \cdot (v + w)= u \cdot v + u \cdot w$

4 y 5. P.D. $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

\begin{align*}
u \cdot u&=(u_1,u_2) \cdot (u_1,u_2) \\
&= u_1u_1+u_2u_2\\
&= u_1^2 + u_2^2 \geq 0
\end{align*}

La última relación se da ya que es una suma de números al cuadrado y cada término por sí sólo es mayor o igual a cero.

Resulta que si $u_1 \neq 0$ ó $u_2 \neq 0$, entonces $u_1^2 + u_2^2 > 0$, por lo que el único caso en el que se da la igualdad a cero es cuando $u=(0,0)$.

$\therefore$ $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

$\square$

Lo usado en esta demostración se restringe a los axiomas de los reales y la definición del producto interior, por lo que aunque no haya mucha descripción, espero que te sea clara.

El ortogonal canónico

Definición. Sea $v=(x,y)$ un vector en $\mathbb{R}^2$, el vector ortogonal canónico a v es el vector

$v^{\perp}=(-y,x)$

Si te das cuenta, esta definición hace referencia a lo que sucede al aplicar el ortogonal a un vector. Además, esta definición define al ortogonal canónico, pero no significa que sea el único vector perpendicular (ortogonal) a $v$.

Antes de definir o probar más cosas relacionadas al ortogonal, hagamos algunas observaciones.

Observación: Si aplicamos 4 veces el ortogonal a un vector $v$, regresamos al mismo vector:


$v^{\perp}=(x,y)^{\perp}=(-y,x)$

$(-y,x)^{\perp}=(-x,-y)$

$(-x,-y)^{\perp}=(y,-x)$

$(y,-x)^{\perp}=(x,y)$

Observación: Para cualquier $v=(x,y) \in \mathbb{R}^2$, tenemos que

$v \cdot v^{\perp} =(a,b) \cdot (-b,a)=a(-b)+b(a)=-ab+ab=0$

Para continuar, usemos el producto interior para definir y probar ciertas cosas con relación al compadre ortogonal.

Definición. Diremos que dos vectores $u,v \in \mathbb{R}^2$ son perpendiculares (ortogonales) si $u \cdot v=0$.

Proposición. Sea $u \in \mathbb{R}^2$ \ ${ 0\}$. Entonces

$\{x \in \mathbb{R}^2 : x \cdot u =0\}=L_{u_{\perp}}:=\{ru^{\perp}: r \in \mathbb{R}\}$

Demostración

Como queremos comprobar una igualdad de conjuntos, hay que probar la doble contención. Comencemos con la contención $\supseteq$.

$\supseteq$ En esta contención, queremos demostrar que cualquier vector de la forma $ru^{\perp}$ es tal que

$(ru^{\perp}) \cdot u=0$

Tomemos un vector de la forma $ru^{\perp}$ con $r \in \mathbb{R}$ y notemos que gracias a la segunda propiedad del producto interior se cumple que

$(ru^{\perp}) \cdot u = r(u^{\perp} \cdot u)= r(0)=0 $

Esto es suficiente para la demostración de la primera contención, pues hemos probado que el producto interior de cualquier vector de la forma $ru^{\perp}$ con $u$ es cero.

$\subseteq$ Para esta contención, queremos demostrar que los vectores $x$ que cumplen $x \cdot u =0$, son de la forma $x=r u^{\perp}$. Para esto, tomemos un vector $x=(r,s)$ que cumpla la primera condición y expresemos al vector $u$ con sus coordenadas $u=(u_1,u_2)$. Al realizar el producto interior obtenemos

$x \cdot u=(r,s) \cdot (u_1,u_2)=ru_1+su_2=0 $

$\Rightarrow ru_1= -su_2 \cdots (a) $

Dado que $u \neq (0,0)$, al menos una de sus entradas es distinta de cero. Supongamos que $u_1 \neq 0$, entonces podemos despejar $r$

$r=\frac{-su_2}{u_1}$

Podemos sustituir este valor en $x$ y desarrollar para obtener

\begin{align*}
x=(r,s)&=\left( \frac{-su_2}{u_1},s \right)=s\left( \frac{-u_2}{u_1}, 1 \right) \\
&=s \left( \frac{-u_2}{u_1}, \frac{u_1}{u_1} \right) \\
&=\frac{s}{u_1} \left( -u_2, u_1 \right)
\end{align*}

Y ya está el primer caso, pues sabemos que $u^{\perp}=( -u_2, u_1)$.

Así, $x \in \mathbb{R}^2$ tal que $x \cdot u=0$, es de la forma $ru^{\perp}$, con r un escalar.

En el caso en el que $u_2 \neq 0$, tenemos algo análogo. A partir de $(a)$ podemos despejar $s$

$ ru_1= -su_2$

$s=\frac{-ru_1}{u_2}$

Al sustituir en $x$ y desarrollar obtendremos que

$x=\frac{r}{-u_2}(-u_2,u_1)$

$\square$

Aplicaciones del producto punto

Para cerrar esta entrada, usemos el producto interior para describir algunas características de las rectas y vectores.

Definición. Diremos que dos líneas $l_1$ y $l_2$ son perpendiculares si al escribirlas en forma paramétrica

$l_1=\{ p_1+rq_1 : r \in \mathbb{R} \}$

$l_2=\{ p_2+rq_2 : r \in \mathbb{R} \}$

se tiene que $q_1 \cdot q_2 =0$, esto es si sus vectores dirección son ortogonales.

Proposición. Dos vectores $u$ y $v$ son paralelos si y sólo si $u$ y $v^{\perp}$ son ortogonales, es decir si $u \cdot v^{\perp}=0$.

Demostración

Ida ($\Rightarrow$). Si $u$ y $v$ son paralelos, por definición $u=cv$ con $c \in \mathbb{R}$. Como queremos que $u$ y $v^{\perp}$ sean ortogonales, realicemos su producto interior y utilicemos las propiedades de este para desarrollar

\begin{align*}
u \cdot v^{\perp}&=(cv) \cdot v^{\perp} \\
&=c(v \cdot v^{\perp}) \\
&=c(0)=0
\end{align*}

Por lo que $u$ y $v^{\perp}$ son ortogonales.

Regreso ($\Leftarrow$). Si ahora suponemos que $u$ y $v^{\perp}$ son ortogonales, pasa que

$u \cdot v^{\perp}=0$

Pero por lo visto en la proposición de la sección anterior, esto sólo pasa cuando $u=c(v^{\perp})^{\perp}$ para algún $c \in \mathbb{R}$. Si $v=(v_1,v_2)$ esto se desarrolla como

\begin{align*}
u&=c(v^{\perp})^{\perp}=c(-v_2,v_1)^{\perp}\\
&=c(-v_1,-v_2)\\
&= -cv
\end{align*}

$\therefore$ por definición de paralelismo, $u$ y $v$ son paralelos.

$\square$

Otra cosa útil del producto punto, es que cualquier recta se puede escribir en términos de este. Precisemos esto en la siguiente proposición.

Proposición. Sea la recta $l$ en su forma paramétrica

$l=\{p+rq : r \in \mathbb{R}\}$

La recta $l$ se puede escribir usando el producto punto de la siguiente manera

$l=\{x \in \mathbb{R} ^2 : q^{\perp} \cdot x=q^{\perp} \cdot p \}$

Antes de adentrarnos en la demostración, hablemos un poco de qué significa esta proposición con ayuda del siguiente interactivo aclarando que $qT$ es el vector $q{^\perp}$.

Al definir $qT$ como el vector perpendicular a la recta, tenemos que $q$ es el vector director de esta; $p$ es el punto por el que pasa la recta y $x$ representa a los puntos en ella. Como $p$ y $qt$ son fijos, entonces $qT \cdot p$ es un número constante. Si tú mueves $x$ a lo largo de la recta, veras que el producto punto $qT \cdot x$ al cual denominamos como $a$ en GeoGebra, no varia.

Es así como expresamos la recta por medio del producto punto; el conjunto de todas los $x \in \mathbb{R}^2$ tal que el producto punto con $q^{\perp}$ ($qT$ en el interactivo) es igual a $q^{\perp} \cdot p$.

Con esto claro, procedamos a la demostración.

Demostración

Como queremos demostrar que $l$ en su forma paramétrica es el mismo conjunto que el descrito por el producto punto, tenemos que explorar las dos contenciones de los conjuntos.

$\supseteq$ Tomemos $x \in \mathbb{R}^2$ tal que $q^{\perp}\cdot x =q^{\perp}\cdot p$. De esta igualdad se tiene que

\begin{align*}
0 &= q^{\perp}\cdot x – q^{\perp}\cdot p\\
&=q^{\perp}\cdot (x-p)\\
& \Rightarrow q^{\perp}\cdot (x-p) =0
\end{align*}

Dada la última igualdad, sabemos (por la primera proposición de esta entrada) que $x-p$ debe ser un múltiplo de $(q^{\perp})^{\perp}=-q$ y por lo tanto un múltiplo de $q$; por lo que para algún $s \in \mathbb{R}$ se tiene que

\begin{align*}
x-p&=sq\\
\Rightarrow x&=p+sq
\end{align*}

$\subseteq$ Ahora partamos de un punto $x=p+rq \in$ $l$ y desarrollemos su producto punto con $q^{\perp}$ para finalizar esta demostración

\begin{align*}
q^{\perp} \cdot x &= q^{\perp} \cdot (p+rq)\\
&=(q^{\perp} \cdot p) + (q^{\perp} \cdot (rq)) \\
&= q^{\perp} \cdot p
\end{align*}

Donde la última igualdad se da gracias a que $q^{\perp} \cdot (rq)=r(q^{\perp} \cdot q)=0$.

$\therefore$ Partiendo la expresión paramétrica de la recta está contenida en la expresión con producto punto y viceversa y por lo tanto son el mismo conjunto (la misma recta).

$\square$

Más adelante…

El producto interior fungirá como herramienta para establecer las nociones de distancia y ángulo en las siguientes entradas y particularmente para definir la forma normal de la recta en la siguiente entrada.

Tarea moral

  • Completa los pocos pasos que omitimos en cada demostración o ejemplo.
  • Demuestra el teorema de las propiedades del producto interior para $n=3$.
  • Calcula el producto interior de los siguientes vectores:
    • $(4,-1)$ y $(7,2)$
    • $(-2,3,0)$ y $(4,-6,0)$
    • $(-2,3,0)$ y $(-2)(-2,3,0)$
    • $(5,0,-3,0,0)$ y $(0,4,0,-2,1)$
  • Usando la definición del producto interior, demuestra que dado $ u \in \mathbb{R}^2$ se tiene que

$u \cdot x =0$, $\forall x\in \mathbb{R}^2$

si y sólo si $u=(0,0)$.

  • Demuestra que para todos los vectores $ u \text{, }v \in \mathbb{R}^2$ y $\forall t \in \mathbb{R}$, se cumple que
    1. $(u+v)^{\perp}=u^{\perp}+v^{\perp}$
    2. $(tu^{\perp})=t(u^{\perp})$
    3. $u^{\perp} \cdot v^{\perp}=u \cdot v$
    4. $u^{\perp} \cdot v = -(u \cdot v^{\perp})$

Cálculo Diferencial e Integral: Límites de funciones trigonométricas

Por Juan Manuel Naranjo Jurado

Introducción

En las entradas anteriores nos enfocamos en desarrollar el concepto de límite y revisamos diversos tipos de funciones, sin embargo, evitamos un tipo particular: las funciones trigonométricas. En esta entrada centraremos nuestra atención en la revisión de estos límites haciendo uso de toda la teoría revisada hasta este punto.

Límite de funciones trigonométricas cuando $x$ tiende a $x_0$

En los primeros ejemplos podrás visualizar la gráfica de la función con la finalidad de tener cierta intuición respecto a los límites, pero, en caso de requerirlo, puedes repasar las funciones trigonométricas.

Ejemplo 1. Prueba que $$\lim_{x \to 0} sen(x) = sen(0).$$

Demostración.

Para probar este límite, procederemos a calcular los límites laterales.

Sea $x \in (0, \pi / 2 )$. Usaremos que $0 < sen(x) < x$ si $x \in (0, \pi / 2 )$.

Además, $$\lim_{x \to 0} = 0 \qquad \text{y} \qquad \lim_{x \to 0} x = 0.$$

Por el teorema del sándwich, podemos concluir que $$\lim_{x \to 0^+} sen(x) = 0 = sen(0). \tag{1}$$

Si $x \in (- \pi / 2, 0)$, entonces $-x \in (0, \pi /2)$. De esta forma, se obtiene que

$$ 0 < sen(-x) < -x.$$

Como $sen(-x) = -sen(x)$, se sigue que $$0 < -sen(x) < -x.$$

Por lo tanto $$ x < sen(x) < 0$$

Nuevamente por el teorema del sándwich, se sigue que $$\lim_{x \to 0^-} sen(x) = 0 = sen(0). \tag{2}$$

De $(1)$ y $(2)$ se concluye que $$\lim_{x \to 0} sen(x) = sen(0).$$

$\square$

Ejemplo 2. Prueba que $$\lim_{x \to 0} cos(x) = cos(0).$$

Demostración.

Como $$ cos^2(x)+sen^2(x) = 1,$$ se sigue que $$|cos(x)| = \sqrt{1-sen^2(x)}.$$

Consideremos $x \in (-\pi/2, \pi/2)$, entonces $cos(x) > 0$, y de la expresión anterior se sigue que $$cos(x) = \sqrt{1-sen^2(x)}.$$

De esta manera, se tiene que

\begin{align*}
\lim_{x \to 0} cos(x) & = \lim_{x \to 0} \sqrt{1-sen^2(x)} \\
& = \sqrt{1-0} \\
& = 1 \\
& = cos(0).
\end{align*}

Por lo tanto

$$\lim_{x \to 0} cos(x) = cos(0).$$

$\square$

Ejemplo 3. Prueba que el siguiente límite no existe $$\lim_{x \to 0} sen \left( \frac{1}{x} \right).$$

Demostración.

Notemos que por la relación entre el límite de una función y el de una sucesión, basta dar dos sucesiones $\{a_n\}$, $\{b_n\}$ tal que converjan a $x_0 = 0$ y $a_n$, $b_n \neq 0$ para todo $n \in \mathbb{N}$, pero que las sucesiones obtenidas de evaluar la función en los términos de ambas sucesiones, $\{f(a_n)\}$, $\{f(b_n)\}$ converjan a valores distintos.

Definimos $f(x) = sen(\frac{1}{x})$ y consideremos las sucesiones $a_n = (\pi n) ^{-1} \quad$ y $b_n = (\frac{1}{2} \pi + 2 \pi n)^{-1},$ donde $a_n$, $b_n \neq 0$ para todo $n \in \mathbb{N}.$

Veamos que
\begin{align*}
\lim_{n \to \infty} a_n = & \lim_{n \to \infty} (\pi n) ^{-1} \\
= & \lim_{n \to \infty} \frac{1}{\pi n} \\
= & 0.
\end{align*}
$$\therefore \lim_{n \to \infty} a_n = 0.$$
Además,
\begin{align*}
\lim_{n \to \infty} b_n = & \lim_{n \to \infty} \left( \frac{1}{2} \pi + 2 \pi n \right)^{-1}\\ \\
= & \lim_{n \to \infty} \frac{1}{\frac{1}{2} \pi + 2 \pi n} \\ \\
= & \lim_{n \to \infty} \frac{1}{\frac{\pi + 4 \pi n}{2}} \\ \\
= & \lim_{n \to \infty} \frac{2}{\pi + 4 \pi n} \\ \\
= & 0.
\end{align*}
$$\therefore \lim_{n \to \infty} b_n = 0.$$
Es decir, las sucesiones $\{a_n\}$ y $\{b_n\}$ tienden a cero. Y notemos que $f(a_n) = sen(n \pi ) = 0$ y $f(b_n) = sen(\frac{1}{2} \pi + 2 \pi n) = 1$ para todo $n \in \mathbb{N}.$

De esta forma $$\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n).$$
Por tanto, podemos concluir que el límite no existe.

$\square$

Ejemplo 4. Prueba que $$\lim_{x \to 0} x sen \left( \frac{1}{x} \right) = 0.$$

Demostración.

Haremos la demostración de este límite mediante la definición épsilon-delta.

Sea $\varepsilon > 0$. Consideremos $\delta = \varepsilon.$
Si $0<|x-0| < \delta$, entonces
\begin{gather*}
& |x| < \delta = \varepsilon. \\
\Rightarrow & |x|< \varepsilon.
\end{gather*}
Además, sabemos que $-1 < sen \left( \frac{1}{x} \right) < 1$ para cualquier $x \neq 0.$ Entonces

\begin{align*}
|f(x)-0| = & \left|x sen \left( \frac{1}{x} \right) \right| \\
= & |x|\left|sen \left( \frac{1}{x} \right) \right| \\
\leq & \delta \cdot 1 \\
= & \varepsilon.
\end{align*}
$$\therefore \lim_{x \to 0} x sen \left( \frac{1}{x} \right) = 0.$$

$\square$

El siguiente ejemplo es un límite que nos ayudará en diversas ocasiones, así que vale la pena ponerle particular atención.

Ejemplo 5. Prueba que $$\lim_{x \to 0 } \frac{sen(x)}{x} = 1.$$

Demostración.

Como nos interesa revisar qué sucede cuando $x \to 0$. Podemos considerar que $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ con $x\neq 0.$

De esta forma, se tiene que

  • Área $\triangle ABC = \frac{sen(x)cos(x)}{2}$.
  • Área del sector circular $ADC = \frac{xr^2}{2} = \frac{x}{2}$.
  • Área $\triangle ADE = \frac{1 \cdot tan(x)}{2} = \frac{sen(x)}{2cos(x)}$.

Podemos notar que Área $\triangle ABC <$ Área del sector circular $ADC <$Área $\triangle ADE$.

Como $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ con $x\neq 0$, entonces $sen(x) \neq 0$ y $cos(x) \neq 0$. Así, se sigue que

\begin{gather*}
\frac{sen(x)cos(x)}{2} < \frac{x}{2} < \frac{sen(x)}{2cos(x)}.
\end{gather*}

De donde se obtiene que $$cos(x) < \frac{x}{sen(x)} < \frac{1}{cos(x)}.$$

Y se sigue que $$ cos(x) < \frac{x}{sen(x)} \qquad \text{ y } \qquad \frac{x}{sen(x)} < \frac{1}{cos(x)}.$$

Es decir, $$ \frac{sen(x)}{x} < \frac{1}{cos(x)} \qquad \text{ y } \qquad cos(x) < \frac{sen(x)}{x}. $$

$$ \therefore cos(x) < \frac{sen(x)}{x} < \frac{1}{cos(x)}.$$

Además, $\lim\limits_{x \to 0} cos(x) = 1$ y $\lim\limits_{x \to 0} \frac{1}{cos(x)} = 1$. Por el teorema del del sándwich se concluye que

$$\lim_{x \to 0 } \frac{sen(x)}{x} = 1.$$

$\square$

Ejemplo 6. Determina el siguiente límite $$\lim_{x \to 0} \frac{1-cos(x) }{x}.$$

Si $0< |x| < \pi$, entonces

\begin{align*}
\frac{1-cos(x)}{x} = & \frac{1-cos(x)}{x} \cdot \frac{1+cos(x)}{1+cos(x)} \\ \\
= & \frac{1-cos^2(x)}{x (1+cos(x) )} \\ \\
= & \frac{sen^2(x)}{x(1+cos(x))} \\ \\
= & \frac{sen(x)}{x} \frac{sen(x)}{1+cos(x)}.
\end{align*}

Así,
\begin{align*}
\lim_{x \to 0} \frac{1-cos(x) }{x} = & \lim_{x \to 0}\frac{sen(x)}{x} \cdot \frac{sen(x)}{1+cos(x)} \\
= & \lim_{x \to 0} \frac{sen(x)}{x} \cdot \lim_{x \to 0} \frac{sen(x)}{1+cos(x)} \\
= & 1 \cdot \frac{0}{2} \\
= & 0.
\end{align*}

$$\therefore \lim_{x \to 0} \frac{1-cos(x) }{x} = 0.$$

Ejemplo 7. Calcula el siguiente límite $$\lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)}.$$

\begin{align*}
\lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)} = & \lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\ \\
= & \lim_{x \to 0} \frac{1+\frac{sen(x)}{x}}{x-\frac{sen(x)}{x}} \\ \\
= & \frac{1+1}{0-1} \\ \\
= & -2.
\end{align*}
$$\therefore \lim_{x \to 0} \frac{x+sen(x)}{x^2-sen(x)} = -2.$$

Ejemplo 8. Calcula $$\lim_{x \to 0} \frac{sec(x) -1}{x}.$$

\begin{align*}
\lim_{x \to 0} \frac{sec(x) -1}{x} = & \lim_{x \to 0} \frac{\frac{1}{cos(x)} -1}{x} \\ \\
= & \lim_{x \to 0} \frac{\frac{1- cos(x)}{cos(x)}}{x} \\ \\
= & \lim_{x \to 0} \frac{1- cos(x)}{x cos(x)} \\ \\
= & \lim_{x \to 0} \frac{1}{cos(x)} \frac{1- cos(x)}{x} \\ \\
= & 1 \cdot 0 \\ \\
= & 0.
\end{align*}
$$\therefore \lim_{x \to 0} \frac{sec(x) -1}{x} = 0.$$

Límite de funciones trigonométricas cuando $x$ tiende a infinito

Ahora procederemos a revisar algunos ejemplos de funciones trigonométricas cuando $x \to \infty$, o bien, cuando $x \to – \infty.$

Ejemplo 9. Calcula el límite $$\lim_{x \to \infty} \frac{sen(x)}{x}.$$

Sabemos que $-1 \leq sen(x) \leq 1.$ De esta forma, si $x \neq 0$, se tiene que $$ -\frac{1}{x} \leq \frac{sen(x)}{x} \leq \frac{1}{x}.$$

Además, $$ \lim_{x \to \infty} -\frac{1}{x} = 0 = \lim_{x \to \infty} \frac{1}{x}.$$

Por el teorema del sándwich, se concluye que
$$ \lim_{x \to \infty} sen(x) = 0.$$

Ejemplo 10. Calcula el límite $$\lim_{x \to \infty} \frac{x sen(x)}{x^2+5}.$$
\begin{align*}
\lim_{x \to \infty} \frac{x sen(x)}{x^2+5} = & \lim_{x \to \infty} \frac{x sen(x)}{x^2+5} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{x sen(x)}{x^2}}{\frac{x^2+5}{x^2}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{sen(x)}{x}}{1+\frac{5}{x^2}} \\ \\
= & \frac{0}{1} \text{, por lo visto en el ejemplo anterior }\\ \\
= & 0.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{x sen(x)}{x^2+5} = 0.$$

Ejemplo 11. Determina si existe el siguiente límite $$\lim_{x \to \infty} \frac{x^2(1+sen^2(x))}{(x+sen(x))^2}.$$

El límite no existe. Considera las sucesiones generadas por $a_n = \pi n \quad$ y $\quad b_n = \frac{1}{2} \pi + 2 \pi n \quad$ donde $a_n$, $b_n \rightarrow \infty$ cuando $n \rightarrow \infty.$ Notemos que
\begin{align*}
\lim_{n \to \infty} f(a_n) = & \lim_{n \to \infty} \frac{(\pi n)^2(1+sen^2(\pi n))}{(\pi n+sen(\pi n))^2} \\ \\
= & \lim_{n \to \infty} \frac{(\pi n)^2(1+0)}{(\pi n+0)^2} \\ \\
= & \lim_{n \to \infty} \frac{(\pi n)^2}{(\pi n)^2} \\ \\
= & \lim_{n \to \infty} 1 \\ \\
= & 1.
\end{align*}
$$ \therefore \lim_{n \to \infty} f(a_n) = 1.$$
Por otro lado,
\begin{align*}
\lim_{n \to \infty} f(b_n) = & \lim_{n \to \infty} \frac{(\frac{1}{2} \pi + 2 \pi n)^2(1+sen^2(\frac{1}{2} \pi + 2 \pi n))}{(\frac{1}{2} \pi + 2 \pi n+sen(\frac{1}{2} \pi + 2 \pi n))^2} \\ \\
= & \lim_{n \to \infty} \frac{(\frac{1}{2} \pi + 2 \pi n)^2(1+1)}{(\frac{1}{2} \pi + 2 \pi n+1)^2} \\ \\
= & \lim_{n \to \infty} \frac{2(\frac{1}{2} \pi + 2 \pi n)^2}{(\frac{1}{2} \pi + 2 \pi n+1)^2} \\ \\
= & 2.
\end{align*}
$$ \therefore \lim_{n \to \infty} f(b_n) = 2.$$

Como $$\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n).$$
Podemos concluir que el límite $\lim_\limits{x \to \infty} \frac{x^2(1+sen^2(x))}{(x+sen(x))^2}$ no existe.

Ejemplo 12. Determina el siguiente límite $$\lim_{x \to -\infty} \frac{3x^2-sen(5x)}{x^2+2}.$$

Recordemos que $-1 < sen(5x) < 1$, de donde se sigue que $-1 < -sen(5x) < 1$, así
\begin{gather*}
& 3x^2-1 < 3x^2-sen(5x) < 3x^2+1.
\end{gather*}

Se sigue que
\begin{gather*}
\frac{3x^2-1}{x^2+2} < \frac{3x^2-sen(5x)}{x^2+2} < \frac{3x^2+1}{x^2+2} \text{, pues } x^2+2 >0.
\end{gather*}

Y notemos que

\begin{align*}
\lim_{x \to -\infty} \frac{3x^2+1}{x^2+2} = & \lim_{x \to -\infty} \frac{\frac{3x^2+1}{x^2}}{\frac{x^2+2}{x^2}} \\ \\
= & \lim_{x \to -\infty} \frac{3+\frac{1}{x^2}}{1+\frac{2}{x^2}} \\ \\
= & \frac{3}{1} \\ \\
=& 3.
\end{align*}

De forma similar, se obtiene que $$\lim_{x \to -\infty} \frac{3x^2-1}{x^2+2}= 3.$$

Por lo que se tiene que $$\lim_{x \to -\infty} \frac{3x^2+1}{x^2+2} = 3 = \lim_{x \to -\infty} \frac{3x^2-1}{x^2+2}.$$ Usando el teorema del sándwich podemos concluir que
$$\lim_{x \to -\infty} \frac{3x^2-sen(5x)}{x^2+2} = 3.$$


Más adelante…

En la siguiente entrada revisaremos el concepto de asíntotas con lo que nos será posible analizar un comportamiento particular que llegan a tener las funciones, el cual es aproximarse a una recta en determinado momento; y, con esto, estaremos finalizando la unidad referente al límite de una función.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Halla los siguientes límites, justifica en caso de no alguno no exista.

  • $$\lim_{x \to 0} \frac{x^2 (3+sen(x))}{(x+sen(x))^2}.$$
  • $$\lim_{x \to 1} \frac{sen(x^2-1)}{x-1}.$$
  • $$\lim_{x \to \infty} x^2 sen \left(\frac{1}{x} \right).$$
  • $$\lim_{x \to \infty} \frac{x + sen^3(x)}{5x+6}.$$
  • $$\lim_{x \to 0} \frac{tan^2(x)+2x}{x + x^2}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones de Bernoulli y Riccati

Por Eduardo Vera Rosales

Introducción

En las últimas entradas hemos estudiado algunas ecuaciones diferenciales no lineales de primer orden y hemos revisado algunos métodos para resolver este tipo de ecuaciones. En esta ocasión veremos dos tipos de ecuaciones no lineales, que mediante un cambio de variable apropiado pueden convertirse en una ecuación lineal, las cuales ya sabemos resolverlas. Nos referimos a las ecuaciones de Bernoulli y Riccati, que deben su nombre a Jakob Bernoulli (1655-1705) y Jacopo Francesco Riccati (1676-1754).

Ecuación de Bernoulli

En el video resolveremos la ecuación de Bernoulli en su forma general y posteriormente revisaremos un ejemplo de este tipo de ecuaciones.

Ecuación de Riccati

Resolvemos la ecuación de Riccati en su forma general haciendo un cambio de variable que lleva a una ecuación lineal de primer orden. Luego, resolvemos un ejemplo de una ecuación de Riccati.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la expresión general para la solución $y(t)$ a la ecuación de Bernoulli $$\frac{dy}{dt}+p(t)y=q(t)y^{n}.$$
  • Resuelve la ecuación de Bernoulli $$\frac{dy}{dt}-\frac{1}{3t}y=e^{t}y^{4}$$.
  • Verifica que la ecuación logística $$\frac{dP}{dt}=k(1-\frac{P}{N})P$$ es una ecuación tipo Bernoulli y resuélvela.
  • Verifica que $y_{1}(t)=t$ es una solución particular a la siguiente ecuación de Riccati y encuentra su solución general: $$\frac{dy}{dt}=1+t^{2}-2ty+y^{2}.$$
  • Las ecuaciones de Bernoulli y Riccati se pueden relacionar mediante un cambio de variable. Sea $y_{1}(t)$ una solución particular a la ecuación de Riccati. Haz el cambio de variable $y(t)=y_{1}(t)+v(t)$ y transforma la ecuación de Riccati en una ecuación de Bernoulli.

Más adelante

Hemos terminado el análisis de diversos tipos de ecuaciones no lineales de primer orden. Es tiempo de justificar toda la teoría que desarrollamos mediante el teorema de existencia y unicidad, como lo hicimos con las ecuaciones lineales de primer orden.

Existen diversas versiones de este teorema; nosotros demostraremos el teorema de existencia y unicidad de Picard para ecuaciones de primer orden. Demostrarlo no es tan sencillo como para el caso lineal, por lo que tendremos que desarrollar algunas herramientas extra que iremos presentando a lo largo de la siguiente entrada, junto con la demostración del teorema de existencia y unicidad de Picard.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones diferenciales autónomas

Por Omar González Franco

¿Cómo es posible un error en las matemáticas?.
– Henri Poincare

Introducción

Continuando con la descripción cualitativa de las ecuaciones diferenciales, en esta entrada estudiaremos las ecuaciones diferenciales en las que la función razón no depende explícitamente de la variable independiente $x$.

En la entrada anterior vimos una propiedad geométrica interesante de las ecuaciones diferenciales de la forma

$$\dfrac{dy}{dx} = f(y) \label{1} \tag{1}$$

dicha propiedad es que los elementos lineales en dos puntos distintos del plano $XY$, pero con la misma coordenada $y$, tienen la misma pendiente, esta propiedad tiene interesantes consecuencias y las estudiaremos en esta entrada.

Ecuaciones de primer orden autónomas

Una ecuación autónoma en su forma normal se ve como (\ref{1}).

La ecuación diferencial

$$\dfrac{dy}{dx} = 1 + 2y$$

es una ecuación diferencial autónoma, mientras que la ecuación

$$\dfrac{dy}{dx} = 2xy$$

es una ecuación no autónoma ya que la función razón

$$f(x, y) = 2xy$$

sí depende de la variable independiente $x$.

Hay muchos procesos físicos que son modelados con ecuaciones diferenciales autónomas donde la variable independiente puede ser por ejemplo el tiempo $t$, en estos casos dichos procesos no cambiarían en el tiempo.

Puntos críticos

En la ecuación diferencial autónoma (\ref{1}) las raíces de la función razón son de especial importancia.

Un punto crítico también es llamado punto de equilibrio o punto estacionario.

Con estas dos definiciones podemos observar que si $k$ es un punto crítico de la ecuación (\ref{1}), entonces $y(x) = k$ es una solución constante de la ecuación diferencial autónoma.

Esquema de fases

En la entrada anterior vimos que una propiedad geométrica de las ecuaciones autónomas es que los elementos lineales son paralelos a lo largo de líneas horizontales en el plano $XY$, esto quiere decir que si conocemos el campo de pendientes a lo largo de una sola línea vertical $x = x_{0}$, entonces lo conocemos para todo el plano $XY$. Esta propiedad nos permite, en lugar de dibujar todo el plano, dibujar una sola línea que contiene la misma información. Esta línea se llama línea fase para la ecuación autónoma.

Para ver cómo obtener los puntos críticos, soluciones de equilibrio y líneas fase realicemos el siguiente ejemplo con una ecuación logística.

Ejemplo: Obtener los puntos críticos, soluciones de equilibrio y línea fase de la siguiente ecuación diferencial autónoma.

$$\dfrac{dy}{dx} = y(\alpha -\beta y) \label{3} \tag{3}$$

con $\alpha$ y $\beta$ constantes positivas.

Solución: Para obtener las soluciones de equilibrio y los puntos críticos igualamos la función razón a cero.

$$f(y) = y(\alpha -\beta y) = 0$$

La ecuación se satisface si $y = 0$ o $\alpha -\beta y = 0$, es decir, si

$$y(x) = 0 \hspace{1cm} o \hspace{1cm} y(x) = \dfrac{\alpha}{\beta}$$

Estas funciones corresponden a las soluciones de equilibrio de la ecuación diferencial y los puntos críticos no son más que las constantes $k_{1} = 0$ y $k_{2} = \dfrac{\alpha}{\beta} > 0$.

Para esbozar la línea fase comencemos por colocar dos puntos sobre una línea vertical, dichos puntos corresponden a los puntos críticos obtenidos.

Puntos críticos en la línea fase.

La línea fase es paralela al eje $Y$, o bien puede ser el mismo eje $Y$.

En este caso los puntos críticos dividen a la línea fase en tres intervalos:

$$(-\infty, 0), \hspace{1cm} \left( 0, \dfrac{\alpha}{\beta} \right) \hspace{1cm} y \hspace{1cm} \left(\dfrac{\alpha}{\beta}, \infty\right)$$

Por definición los puntos críticos son los valores en los que

$$\dfrac{dy}{dx} = f(k) = 0$$

esto significa que la pendiente de los elementos lineales en los puntos críticos debe ser cero, mientras que por encima y por debajo de los puntos críticos la pendiente tiene que ser distinta de cero, así que puede haber elementos lineales con pendiente negativa o pendiente positiva.

Veamos en cada uno de los intervalos de nuestro ejemplo que signo tiene la pendiente de los elementos lineales, como se trata de un diagrama unidimensional dicho valor lo representaremos con flechas sobre la línea fase, si la pendiente es positiva colocaremos una flecha apuntando hacia arriba y si es una pendiente negativa colocaremos una flecha apuntando hacia abajo.

Para ver si la pendiente es positiva o negativa estudiemos el signo de la función razón (que es equivalente al signo de la derivada $\dfrac{dy}{dx}$) en cada uno de los intervalos. Comencemos con el intervalo $(-\infty, 0)$, en este caso $-\infty < y < 0$.

\begin{align*}
y &< 0 \\
\beta y &< 0 \\
-\beta y &> 0 \\
-\beta y + \alpha > \alpha &> 0 \\
f(y) = y(\alpha -\beta y) &< 0 \\
\dfrac{dy}{dx} &< 0
\end{align*}

Este análisis nos indica que la pendiente de los elementos lineales en el intervalo $(-\infty, 0)$ es negativa.

Haciendo un análisis similar en los intervalos $\left( 0, \dfrac{\alpha}{\beta} \right)$ y $\left(\dfrac{\alpha}{\beta}, \infty \right)$ obtenemos los siguientes resultados:

  • En $(-\infty, 0)$ $\hspace{0.2cm}$ $\Rightarrow$ $f(y) = y(\alpha -\beta y) < 0$ $\Rightarrow$ La pendiente es negativa
  • En $\left( 0, \dfrac{\alpha}{\beta} \right)$ $\hspace{0.2cm}$ $\Rightarrow$ $f(y) = y(\alpha -\beta y) > 0$ $\Rightarrow$ La pendiente es positiva.
  • En $\left( \dfrac{\alpha}{\beta}, \infty \right)$ $\hspace{0.05cm}$ $\Rightarrow$ $f(y) = y(\alpha -\beta y) < 0$ $\Rightarrow$ La pendiente es negativa.

Como mencionamos antes, en el intervalo $(-\infty, 0)$ de la línea fase colocaremos una flecha apuntando hacia abajo debido a que la pendiente es negativa. En el intervalo $\left( 0, \dfrac{\alpha}{\beta} \right)$ colocaremos una flecha apuntando hacia arriba ya que la pendiente es positiva y finalmente en el intervalo $\left(\dfrac{\alpha}{\beta}, \infty \right)$ colocaremos nuevamente una flecha hacia abajo debido a que la pendiente vuelve a ser negativa. La línea fase de la ecuación diferencial dada se muestra en la siguiente figura.

Línea fase de la ecuación $\dfrac{dy}{dx} = y(\alpha-\beta y)$.

Como caso particular consideremos la ecuación diferencial autónoma

$$\dfrac{dy}{dx} = y(6 -3y)$$

Las soluciones de equilibrio son $y(x) = 0$ y $y(x) = \dfrac{\alpha}{\beta} = \dfrac{6}{3} = 2$. A continuación se muestra el campo de pendientes de esta ecuación.

Campo de pendientes de la ecuación diferencial $\dfrac{dy}{dx} = y(6 -3y)$.

Notamos que, en efecto, el valor de la pendiente de los elementos lineales en las soluciones de equilibrio es cero, por encima de $y(x) = 2$ y por debajo de $y(x) = 0$ la pendiente es negativa y entre las soluciones de equilibrio la pendiente de los elementos lineales es positiva, tal como lo mostramos en la línea fase del caso general.

$\square$

Como podemos ver, la línea fase es una gran herramienta que nos permite analizar el comportamiento de las soluciones de una ecuación diferencial autónoma gracias a que las pendientes de los elementos lineales en líneas horizontales del plano $XY$ son siempre iguales.

Con el ejemplo en mente ahora podemos establecer los pasos necesarios para dibujar una línea fase de una ecuación diferencial autónoma.

  • Comenzamos por dibujar una línea vertical paralela al eje $Y$ para cualquier valor de $x$.
  • Determinamos las soluciones de equilibrio y los puntos críticos, marcamos los puntos críticos sobre la línea vertical.
  • Determinamos los intervalos de $y$ en los que $f(y) > 0$ y dibujamos flechas apuntando hacia arriba en esos intervalos.
  • Determinamos los intervalos de $y$ en los que $f(y) < 0$ y dibujamos flechas apuntando hacia abajo en esos intervalos.

Las líneas fase nos permiten obtener una aproximación cualitativa de las curvas solución de una ecuación diferencial autónoma.

Nota: En ocasiones se usan de forma indistinta los términos puntos críticos y soluciones de equilibrio, sin embargo podemos pensar a un punto crítico como el punto $c = k$ que se coloca en la línea fase, mientras que una solución de equilibrio $y(x) = k$ como la gráfica en el plano $XY$ de una función constante para toda $x$. Cuando estamos analizando líneas fase puede ser que al punto crítico también se le llame solución de equilibrio y es correcto debido a que la línea fase representa al eje de la variable dependiente $y$ para cualquier valor de la variable independiente $x$. Lo importante es que tengamos presente las definiciones de punto crítico y de solución de equilibrio que establecimos al inicio para evitar confusiones.

Ahora veamos que nos dice esta descripción cualitativa acerca de la forma de una curva solución de una ecuación diferencial autónoma.

Curvas solución de una ecuación diferencial autónoma

En la ecuación diferencial autónoma (\ref{1}) la función $f$ es independiente de la variable $x$, esto nos permite suponer que $f$ está definida en $x \in (-\infty, \infty)$, o en $x \in [0, \infty)$. Consideremos una región $U$ en el plano $XY$ en el que se cumple el teorema de existencia y unicidad de una solución, por este teorema sabemos que existe una solución que pasa por el punto $(x_{0}, y_{0})$. En la región $U$ supongamos que una ecuación diferencial autónoma tiene dos puntos críticos $c_{1}$ y $c_{2}$ tales que $c_{1} < c_{2}$. Las gráficas de las soluciones

$$y(x) = c_{1} \hspace{1cm } y \hspace{1cm} y(x) = c_{2}$$

son rectas horizontales que dividen a la región $U$ en tres regiones: $U_{1}, U_{2}$ y $U_{3}$, esto se puede visualizar en la siguiente figura.

Subregiones $U_{1}, U_{2}$ y $U_{3}$ de $U$.

Con estas condiciones podemos establecer las siguientes propiedades.

  • Si el punto $(x_{0}, y_{0})$ está en alguna subregión $U_{i}$, $i = 1, 2, 3$ y $y(x)$ es una solución cuya curva solución pasa por $(x_{0}, y_{0})$, entonces $y(x)$ debe permanecer en esa subregión $U_{i}$ para toda $x$.

Esto indica que una solución $y(x)$ no puede cruzar la grafica de una solución de equilibrio $y(x) = c$. Para argumentar este hecho consideremos a $k$ como un punto crítico de una ecuación diferencial autónoma tal que $f(k) = 0$, considerando que $f(y)$ es continua, si las soluciones $y(x)$ son cercanas a $k$, entonces el valor de $f$ debe ser pequeño, esto nos indica que las soluciones se están desplazando lentamente cuando están próximas a los puntos críticos, dicho de otra manera, una solución que se acerca a un punto crítico cuando $x$ crece (o decrece) se mueve cada vez más lento al acercarse a éste. Por el teorema de existencia y unicidad, una solución que se acerca a un punto crítico nunca llega realmente a él, es decir, la solución de equilibrio se vuelve una asíntota para todas las soluciones $y(x)$ que se aproximan al punto crítico.

En la figura anterior, por ejemplo, la curva $y(x)$ que pasa por el punto $(x_{0}, y_{0})$ debe mantenerse dentro de $U_{2}$ para toda $x$, $y(x)$ está acotada por arriba con $c_{2}$ y por abajo con $c_{1}$, esto es, $c_{1} < y(x) < c_{2}$.

Otra propiedad es la siguiente.

  • Por continuidad de la función $f$, debe ser $f(y) > 0$ o $f(y) < 0$ para toda $x$ en una subregión $U_{i}$, $i = 1, 2, 3$.

Vimos anteriormente que el signo de la pendiente se mantiene igual dentro de toda la región limitada por los puntos críticos, esto nos permite deducir que una curva solución $y(x)$ no puede oscilar o tener extremos relativos (máximos o mínimos) dentro de una misma región. Esto lo podemos describir con la siguiente propiedad.

  • Debido a que $\dfrac{dy}{dx} = f(y(x))$ es positiva o negativa en una subregión $U_{i}$, $i = 1, 2, 3$, una solución $y(x)$ es estrictamente monótona, por lo tanto no puede oscilar ni tener extremos relativos.

Ahora que conocemos estas propiedades podemos establecer una más que se puede deducir de las anteriores. Basándonos en el caso general de la imagen anterior podemos decir lo siguiente.

  • Si $y(x)$ es una solución dentro de la región $U_{1}$, entonces está acotada por arriba con el punto crítico $c_{1}$, esto es, $\forall$ $x$ en el intervalo $$y(x) < c_{1}$$ Esto indica que la curva solución $y(x)$ debe tender a la gráfica de la solución de equilibrio $y(x) = c_{1}$ a medida que $x \rightarrow \infty$ o $x \rightarrow -\infty$. Por otro lado, una solución $y(x)$ que este en la región $U_{2}$ está acotada por abajo con $c_{1}$ y arriba con $c_{2}$, esto es, $\forall$ $x$ en el intervalo $$c_{1} < y(x) < c_{2}$$ Entonces la curva solución $y(x)$ debe tender a las gráficas de las soluciones de equilibrio $y(x) = c_{1}$ y $y(x) = c_{2}$ conforme $x \rightarrow \infty$ en una y $x \rightarrow -\infty$ en la otra. Finalmente, si la solución está en la region $U_{3}$ entonces está acotada por abajo con $c_{2}$, es decir, $\forall$ $x$ $$y(x) > c_{2}$$ En este caso la grafica $y(x)$ debe tender a la gráfica de la solución de equilibrio $y(x) = c_{2}$ conforme $x \rightarrow \infty$ o $x \rightarrow -\infty$.

Veamos la importancia de estas propiedades en un ejemplo.

Modelo logístico de la población

En esta entrada ya estudiamos como ejemplo la ecuación logística (\ref{3}), usemos los resultados obtenidos para resolver de manera cualitativa el problema del modelo logístico de la población visto en la entrada anterior. El modelo que establecimos fue

$$\dfrac{dP}{dt} = k \left(1 -\dfrac{P}{N}\right) P \label{4} \tag{4}$$

Este modelo corresponde a una ecuación diferencial autónoma.

$$\dfrac{dP}{dt} = f(P) \label{5} \tag{5}$$

así que las curvas solución las podemos describir con la teoría que hemos construido en esta entrada.

El problema que analizábamos era el crecimiento de la población en función de su entorno y los recursos limitados a los que están sujetos. Resolvamos la ecuación diferencial de manera cualitativa aplicando lo que hemos aprendido hasta ahora e interpretemos los resultados.

Comencemos por determinar las soluciones de equilibrio y los puntos críticos, para ello igualemos la ecuación a cero.

$$\dfrac{dP}{dt} = k \left(1 -\dfrac{P}{N}\right) P = 0$$

Esta relación se satisface si

$$kP = 0 \hspace{1cm} o \hspace{1cm} 1 -\dfrac{P}{N} = 0$$

Es decir, si $P = 0$ o $P = N$. Por lo tanto, los puntos críticos son $c_{1} = 0$ y $c_{2} = N$, mientras que las soluciones de equilibrio son $P(t) = 0$ y $P(t) = N$.

Coloquemos los puntos críticos sobre la línea fase.

Puntos críticos en la línea fase.

Los puntos críticos definen tres intervalos para $P$, estos son

$$(-\infty, 0), \hspace{1cm} (0, N) \hspace{1cm} y \hspace{1cm} (N, \infty)$$

Sin embargo, como se trata de un problema real es claro que no tiene sentido que la variable población $P(t)$ sea negativa (no hay individuos negativos), así mismo no hay tiempos negativos por lo que $t > 0$, por lo tanto en este problema sólo consideraremos los intervalos $(0, N)$ y $(N, \infty)$ para $P$, así como $0 < t < \infty$.

Del caso general (\ref{3}) deducimos que en el intervalo $(0, N)$ las pendientes son positivas, así que la función $P(t)$ será creciente en dicho intervalo y en $(N, \infty)$ las pendientes son negativas, por tanto la función $P(t)$ será decreciente. La línea fase final queda de la siguiente manera.

Línea fase del modelo logístico.

Un ejemplo de como se ve el campo de pendientes, las soluciones de equilibrio y algunas curvas solución de la ecuación logística (\ref{4}) se muestra en la siguiente figura.

Campo de pendientes de la ecuación logística (4) para valores particulares de $k$ y $N$.

De este gráfico notamos que las curvas solución cumplen con las hipótesis que establecimos al plantear el modelo, dichas hipótesis eran

  • Si la población es pequeña $(P(t) < N)$, la tasa de crecimiento de la población es proporcional a su tamaño.
  • Si la población es demasiado grande para ser soportada por su entorno y recursos $(P(t) > N)$, la población disminuirá, en este caso la tasa de crecimiento será negativa.

Las soluciones de equilibrio $P(t) = 0$ y $P(t) = N$ tienen sentido, pues si la población es cero permanecerá en cero indefinidamente y si la población es exactamente la asociada con la capacidad de soporte, entonces no crecerá ni disminuirá.

Es así que a partir de la línea fase y el campo de pendientes de una ecuación diferencial autónoma podemos esbozar varias curvas solución con distintas condiciones iniciales. En este ejemplo la única información que necesitamos es el hecho de que $P = 0$ y $P = N$ son soluciones de equilibrio, $P(t)$ crece si $0 < P < N$ y disminuye si $P > N$ o $P < 0$. Los valores exactos de $P(t)$ en cualquier tiempo dado $t$ dependerán de los valores $P(0)$, $k$ y $N$.

$\square$

Clasificación de puntos de equilibrio

Como vimos, alrededor de un punto crítico las soluciones pueden tener distintos comportamientos. Básicamente hay tres tipos de comportamiento que $y(x)$ puede tener alrededor de un punto crítico y en base a estos comportamientos podemos clasificarlos.

Supongamos que $y(x) = y_{0}$ es una solución de equilibrio de la ecuación diferencial autónoma (\ref{1}), los tres tipos de comportamiento que $y(x)$ puede tener alrededor del punto crítico $y_{0}$ son:

  • Caso 1: Por arriba de $y_{0}$ la función $y(x)$ es decreciente y por debajo de $y_{0}$ la función $y(x)$ es creciente, en este caso decimos que el punto crítico es un atractor.
$y_{0}$ es un atractor.
  • Caso 2: Por arriba de $y_{0}$ la función $y(x)$ es creciente y por debajo de $y_{0}$ la función $y(x)$ es decreciente, en este caso decimos que el punto crítico es un repulsor.
$y_{0}$ es un repulsor.
  • Caso 3: Tanto por arriba y por abajo de $y_{0}$ la función $y(x)$ es creciente o decreciente, en este caso decimos que el punto crítico es un nodo o punto semiestable.
$y_{0}$ es un nodo o punto semiestable.

En resumen, sea $y(x)$ solución de una ecuación diferencial autónoma (\ref{1}).

  • Si $f(y_{0}) = 0$, entonces $y_{0}$ es un punto crítico y $y(x) = y_{0}$ es la solución de equilibrio para toda $x$.
  • Si $f(y_{0}) > 0$, entonces $y(x)$ es creciente para toda $x$ y $y(x) \rightarrow \infty$, cuando $x$ incrementa, o bien $y(x)$ tiende al primer punto de equilibrio mayor que $y_{0}$.
  • Si $f(y_{0}) < 0$, entonces $y(x)$ es decreciente para toda $x$ y $y(x) \rightarrow -\infty$, cuando $x$ incrementa, o bien $y(x)$ tiende al primer punto de equilibrio menor que $y_{0}$.

Importante mencionar que esto también es valido para $x$ negativas. Cuando $x$ decrece podemos encontrar resultados similares.

  • Si $f(y_{0}) > 0$, entonces $y(x) \rightarrow -\infty$ o al siguiente punto de equilibrio menor conforme $x$ aumenta en valores negativos.
  • Si $f(y_{0}) < 0$, entonces $y(x) \rightarrow \infty$ o al siguiente punto de equilibrio mayor conforme $x$ aumenta en valores negativos.

Un caso especial

Consideremos la ecuación diferencial autónoma

$$\dfrac{dy}{dx} = \dfrac{1}{1 -y}$$

Intentemos esbozar la línea fase. Por definición, los puntos críticos son los valores para los que $f(y) = 0$, sin embargo en este caso $f(y)$ no puede ser cero.

Notemos que si $y > 1$, entonces $f(y) < 0$ y si $y < 1$, entonces $f(y) > 0$, pero si $y = 1$, $f(y)$ no esta definida. En este caso decimos que la línea fase tiene un agujero en $y =1$ y lo denotamos como un circulo vacío.

Agujero en la línea fase.

Las soluciones $y(x)$ de la ecuación tienden hacia $y = 1$ cuando $x$ aumenta.

Concluyamos esta entrada con el enunciado de un teorema importante.

Teorema de linearización

Existe un teorema conocido como teorema de linearización que nos ayuda a determinar el tipo de puntos críticos de una ecuación diferencial autónoma (\ref{1}), de acuerdo al comportamiento que tiene la función $f(y)$. El enunciado de este teorema es el siguiente.

La demostración a este teorema la podemos encontrar en la sección de videos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Para las siguientes ecuaciones diferenciales, esbozar las líneas fase y clasificar a los puntos críticos como atractores, repulsores o nodos según sea el caso.
  • $\dfrac{dy}{dx} = 3y(1 -y)$
  • $\dfrac{dv}{du} = \dfrac{1}{v -2}$
  • $\dfrac{dy}{dt} = \cos(y)$
  • $\dfrac{dw}{dt} = w^{2} -6w -16$
  1. Para cada condición inicial dada, describir cualitativamente el comportamiento a largo plazo de las soluciones de la ecuación diferencial

    $\dfrac{dy}{dx} = y^{2} -4y + 2$

    con condición inicial
  • $y(0) = 0$
  • $y(0) = 10$
  • $y(3) = 1$

Más adelante…

En estas dos últimas entradas hemos estudiado a las ecuaciones diferenciales ordinarias de primer orden desde una perspectiva cualitativa, esto nos ha permitido esbozar las curvas solución y encontrar propiedades interesantes sin siquiera conocer la forma explicita de la solución. En particular, las ecuaciones diferenciales autónomas presentan propiedades interesantes que son útiles para analizar modelos que describen algún fenómeno real.

Ha llegado el momento de estudiar los distintos métodos de resolución de las ecuaciones diferenciales ordinarias de primer orden. Comenzaremos con un método sencillo que funciona sólo para ecuaciones diferenciales lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Postulados de Euclides

Por Rubén Alexander Ocampo Arellano

Introducción

En la primera entrada del curso definimos algunos objetos importantes que nos permitirán desarrollar la teoría. Es importante mencionar que para poder empezar a construir una teoría, se tienen que suponer algunas propiedades como ciertas. A este tipo de propiedades que se aceptan a priori les llamamos axiomas.

En Lógica Matemática se requiere que los axiomas de una teoría tengan las siguientes tres características:

$i)$ ser completos, esto quiere decir que a partir de ellos todas las proposiciones referentes a objetos de la teoría puedan ser demostradas,
$ii)$ que sean independientes, es decir, que ninguno de ellos pueda ser demostrado a partir de los demás,
$iii)$ que sean consistentes, es decir, que no se contradigan.

Postulados de Euclides

Euclides fue un matemático griego que vivió alrededor del año 300 AC. En su obra reunió los conocimientos fundamentales que los matemáticos griegos habían desarrollado hasta ese momento y los expuso de manera ordenada. Sus demostraciones geométricas se basaban en el método deductivo, lo que garantizaba la validez de sus afirmaciones.

Euclides comenzó su obra definiendo los objetos con los que iba a trabajar, después estableció las reglas generales con que esos objetos se relacionaban es decir los postulados y a continuación enuncio propiedades generales sobre la igualdad de magnitudes llamadas nociones comunes. Cabe destacar que los axiomas de Euclides no cumplen con la condición de ser completos, sin embargo, a partir de ellos se puede construir gran parte de la teoría geométrica que hoy se estudia.

Para hablar del quinto postulado necesitamos presentar un concepto nuevo.

Definición. Consideremos $l_{1}$, $l_{2}$ y $l_{3}$ tres rectas distintas y tal que $l_{3}$ interseca a las primeras dos, entonces decimos que $l_{3}$ es transversal a $l_{1}$ y a $l_{2}$.

En estas condiciones se forman 8 ángulos (figura 1), decimos que $\alpha_{2}$, $\beta_{1}$, $\delta_{1}$ y $\gamma_{2}$ son ángulos internos.

Las parejas de ángulos ($\alpha_{1}$, $\alpha_{2}$), ($\beta_{1}$, $\beta_{2}$), ($\delta_{1}$, $\delta_{2}$) y ($\gamma_{1}$, $\gamma_{2}$) se llaman ángulos correspondientes, y las parejas de ángulos ($\beta_{1}$, $\gamma_{2}$) y ($\delta_{1}$, $\alpha_{2}$) son ángulos alternos internos.

Figura 1

A continuación enunciamos los cinco postulados de Euclides.

$i)$ Por dos puntos siempre es posible trazar una recta.

$ii)$ Es posible prolongar una recta tanto como se quiera en cualquiera de sus dos direcciones.

$iii)$ Cualquier punto del plano y segmento pueden ser usados como centro y radio, respectivamente de un círculo.

$iv)$ Todos los ángulos rectos son iguales.

$v)$ Si por dos rectas pasa una transversal tal que, de alguno de los lados de la transversal, la suma de los ángulos interiores es menor a dos ángulos rectos, entonces si las dos rectas se prolongan lo suficientemente del lado en que dicha suma es menor a 2 ángulos rectos, las rectas se intersecan.

Figura 2

Nociones comunes

Las nociones comunes que enunció Euclides también son axiomas que se refieren al manejo de magnitudes del mismo tipo.

$i)$ Cosas que sean iguales a una tercera son iguales entre sí.
Si $a = c$ y $c = b$ entonces $a = b$.

$ii)$ Si a cosas iguales se añaden cosas iguales las resultantes son iguales.
Si $a = b$ entonces $a + c = b + c$.

$iii)$ Si de cosas iguales se substraen cosas iguales las resultantes son iguales.
Si $a = b$ entonces $a – c = b – c$.

$iv)$ Cosas que coinciden una con otra son iguales entre sí.
Esto se refiere, por ejemplo, a la superposición de objetos, es decir, si al superponer dos objetos estos coinciden, entonces tendrán las mismas magnitudes.

$v)$ El todo es mayor que cualquiera de sus partes.
Si $a$ y $b$ son positivos y $c = a + b$ entonces $c > a$ y $c > b$.

Hay otras nociones que también usamos frecuentemente, por ejemplo, las primeras tres nociones se preservan si usamos desigualdades.

$vi)$ Si $a > c$ y $c > b$ entonces $a > b$.

$vii)$ Si $a > b$ entonces $a + c > b + c$.

$viii)$ Si $a > b$ entonces $a – c > b – c$.

En las últimas tres nociones, podemos cambiar el mayor que ($>$) por menor que ($<$), mayor igual que ($\geq$) o menor igual que ($\leq$).

$ix)$ Tricotomía. Para $a$ y $b$ magnitudes del mismo tipo ocurre uno y solo uno de los siguientes casos:
$a = b$,
$a < b$,
$b < a$.

El quinto postulado y sus consecuencias

Como podemos apreciar, los primeros cuatro postulados son aseveraciones intuitivas mientras que el quinto está enunciado de una forma que parece establecer condiciones a partir de las cuales ocurre algo, esto causo mucha controversia por más de dos mil años, pues aparenta ser una proposición que debe ser demostrada.

Hubo numerosos intentos por demostrar el quinto postulado conocido como axioma de las paralelas. Como resultado se encontraron varias equivalencias, se llegó a la conclusión de que no era posible demostrar el quinto postulado a partir de los cuatro primeros y que además era posible aceptar otros axiomas como ciertos en lugar del quinto, lo que dio origen a las geometrías no euclidianas.

Proposición. El quinto postulado de Euclides es equivalente a la afirmación los ángulos alternos internos entre paralelas son iguales.

Demostración: Seguiremos el método de reducción al absurdo. La idea es suponer que dada una hipótesis no se cumple la tesis de la proposición y a partir de ahí tenemos que encontrar algún tipo de contradicción a algo que sabemos que si es cierto.

Primero asumimos como cierto el quinto postulado y debemos mostrar que dadas dos rectas paralelas y una transversal a ella los ángulos alternos internos son iguales.

Sean $l_{1}$ y $l_{2}$ las rectas paralelas y $l_{3}$ la transversal a ellas y supongamos que los ángulos alternos internos $\alpha$ y $\beta$ no son iguales, entonces por tricotomía uno es mayor que el otro.

Figura 3

Sin pérdida de generalidad supongamos que $\beta > \alpha$, podemos sumar a ambos lados de la desigualdad $\gamma$, el ángulo suplementario de $\beta$, entonces
$\pi = \beta + \gamma > \alpha + \gamma$ $\Rightarrow$ $\pi > \alpha + \gamma$.

Entonces por el quinto axioma de Euclides las rectas se cortan, lo cual es una contradicción al hecho de que las rectas son paralelas. Así, nuestra suposición de que los ángulos alternos internos eran diferentes es errónea, y por lo tanto, los ángulos alternos internos son iguales $\alpha = \beta$.

$\blacksquare$

Ahora tomemos por cierto que los ángulos alternos internos entre paralelas son iguales y mostremos que si de un lado de una transversal que corta a dos rectas la suma de los ángulos internos es menor que dos ángulos rectos entonces dichas rectas se cortan en algún punto.

Demostración. Sea $l_{3}$, transversal a $l_{1}$ y $l_{2}$ y tal que la suma de los ángulos $\alpha + \beta < \pi$, supongamos que las rectas $l_{1}$ y $l_{2}$ son paralelas, por hipótesis sabemos que los ángulos alternos internos son iguales, $\beta = \gamma$.

Figura 4

Pero $\gamma$ y $\alpha$ son suplementarios , entonces $\pi = \alpha + \gamma = \alpha + \beta$.

Lo que es una contradicción pues nuestra hipótesis era que la suma de los ángulos era menor que dos ángulos rectos. Por lo tanto, las rectas se cortarán en algún punto.

$\blacksquare$

Teorema. La suma de los ángulos internos de todo triángulo es igual a dos ángulos rectos, además un ángulo exterior de un triángulo es igual a la suma de los ángulos internos no adyacentes a el.

Demostración. Sea $\triangle ABC$ un triángulo, y sea $\angle BAC = \alpha$. Consideremos la recta paralela a $BC$ que pasa por $A$.

Figura 5

Entonces por la proposición anterior, $\angle CBA = \beta$ y $\angle ACB = \gamma$ (figura 5), pues son ángulos alternos internos entre paralelas.

Por lo tanto, $\angle BAC + \angle CBA + \angle ACB = \alpha + \beta + \gamma = \pi$.

Por otra parte, sea $\delta$ el ángulo exterior en $C$, entonces $\gamma$ y $\delta$ son ángulos suplementarios, así que
$\gamma + \delta = \pi = \alpha + \beta + \gamma$
$\Leftrightarrow \delta = \alpha + \beta = \angle BAC + \angle CBA$.

$\blacksquare$

Más adelante…

En la siguiente entrada hablaremos de las transformaciones rígidas y estudiaremos los criterios de congruencia una herramienta muy útil en geometría.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que los ángulos correspondientes entre paralelas son iguales entre sí.
  2. Dados una recta y un punto fuera de ella muestra que la paralela a la recta dada por el punto dado es única.
  3. Sea $l_{3}$ transversal a $l_{1}$ y $l_{2}$ muestra que si los ángulos alternos internos son iguales entonces $l_{1}$ y $l_{2}$ son paralelas.
  4. $i)$ Muestra que dos rectas que son paralelas a una tercera son paralelas entre si.
    $ii)$ Muestra que dos rectas que son perpendiculares a una tercera son paralelas entre si.
  5. $i)$ Dados una recta y un punto fuera de ella muestra que la perpendicular a la recta dada por el punto dado es única.
    $ii)$ Dados una recta y un punto en ella muestra que la perpendicular a la recta dada por el punto dado es única.

Entradas relacionadas

Fuentes

  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 5-10.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 4, 8-9.
  • Clark University
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»