Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Lineal I: Transposición de matrices, matrices simétricas y antisimétricas

Por Julio Sampietro

Introducción

En esta sección introducimos el concepto de transpuesta de una matriz, que consiste en solo ‘voltear’ una matriz. De ahí sale la operación de transposición de matrices. Si bien esta operación es sencilla, las aplicaciones son vastas, especialmente cuando veamos el concepto de espacio dual. Veremos propiedades básicas de esta operación y cómo se relaciona con suma, producto e inversa de matrices.

Luego definimos tres tipos de matrices importantes, las simétricas, antisimétricas y ortogonales. Estos tipos de matrices nos permiten entender un poco mejor los espacios de matrices, que son más grandes, y nos dan mucha información geométrica sobre nuestro espacio de trabajo. Profundizaremos en esto en la tercera unidad.

Transposición de matrices

Sea $A\in M_{m,n}(F)$ una matriz. Intuitivamente, la transpuesta de $A$ se obtiene al trazar una línea de «pendiente» $-1$ desde la entrada $(1,1)$ a lo largo de la diagonal y reflejar la matriz con respecto a esta línea. Daremos unos ejemplos para entender esto más adelante. Primero damos una definición formal.

Definición. La transpuesta de $A\in M_{m,n}(F)$, denotada por $^{t} A$ se obtiene intercambiando los renglones y las columnas de $A$. Consecuentemente $^t A$ es una matriz de tamaño $n\times m$, es decir $^t A \in M_{n,m}(F)$. Dicho de otra manera, si $A=[a_{ij}]$, entonces $^t A=[a_{ji}]$.

Observación. En otras fuentes es posible que encuentres una notación un poco diferente para matriz transpuesta. Algunas veces se pone el superíndice $t$ arriba a la derecha, así: $A^t$. Otras veces se usa una $T$ mayúscula así: $A^T$. Nosotros usaremos el superíndice a la izquierda.

Ejemplo 1. La transpuesta de

\begin{align*}
A= \begin{pmatrix} 1& 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix}
\end{align*}

es

\begin{align*}
^t A= \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.
\end{align*}

En general, la transpuesta de una matriz cuadrada en $M_n(F)$ también es cuadrada y está en $M_n(F)$.

$\triangle$

Es claro también que $^t I_n= I_n$.

Ejemplo 2. La transpuesta de

\begin{align*} A= \begin{pmatrix} 0 & 1 & 0 & 3\\ 4 & 7 & 2 & 0\end{pmatrix} \end{align*}

es

\begin{align*}
^t A= \begin{pmatrix} 0 &4\\ 1 & 7\\ 0 & 2\\ 3 & 0 \end{pmatrix}.
\end{align*}

$\triangle$

Propiedades de transposición de matrices

Hasta ahora hemos hablado de sumas de matrices, multiplicación por escalar y multiplicación de matrices. Una forma frecuente de trabajar con álgebra es preguntarse cómo una nueva definición interactúa con lo que ya hemos definido anteriormente.

Resumimos las propiedades de la transposición de matrices $A\mapsto {^t A}$ y cómo se relaciona con operaciones anteriores en el siguiente resultado.

Proposición. La operación de transponer satisface:

  1. $^t\left( ^t A\right) = A$ para toda $A\in M_{m,n}(F)$.
  2. $^t\left ( A+B\right) = {^t A} + {^t B}$ para todas $A,B\in M_{m,n}(F)$.
  3. $ ^t\left( cA\right)= c {^t A}$ si $c\in F$ es un escalar y $A\in M_{m,n}(F)$.
  4. ${}^t\left( AB\right)=\ {^tB} \, {^t A}$ si $A\in M_{m,n}(F)$ y $B\in M_{n,p}(F)$.
  5. ${}^t \left(A^k\right)= \left(^t A\right)^k$ si $A\in M_n(F)$ y $k$ es un entero positivo.
  6. Si $A\in M_n(F)$ es invertible, entonces $^t A$ también es invertible y
    \begin{align*}
    \left(^t A\right)^{-1}= {^t \left(A^{-1}\right)}.
    \end{align*}

Demostración: Las primeras tres propiedades son consecuencia casi inmediata de la definición y las dejamos como tarea moral. Una sugerencia es demostrarlas usando la notación de entradas.

Comencemos pues demostrando la cuarta propiedad. Primero, observamos que $^t B\in M_{p,n}(F)$ y $^t A\in M_{n,m}(F)$ por lo que el producto $^t B \, {^t A}$ tiene sentido. Luego si $A=[a_{ij}]$ y $B=[b_{jk}]$ tenemos por la regla del producto que

\begin{align*}
^t(AB)_{ki}&= (AB)_{ik}\\
& = \sum_{j=1}^{n} a_{ij} b_{jk}\\
&=\sum_{j=1}^{n} \left(^t B\right)_{kj} \left(^t A\right)_{ji}\\
& = \left( ^t B\, {^t A}\right)_{ki}.
\end{align*}

Así $^t (AB)= \ ^t B \,{^t A}$.

La quinta propiedad la demostramos por inducción sobre $k$. El caso base $k=1$ es claro. Asumamos entonces que se cumple para algún $k$, y verifiquemos que la propiedad sigue siendo cierta para $k+1$.

\begin{align*}
^t \left( A^{k+1}\right)&= {^t \left( A^{k} \cdot A\right)} \\
&=\ ^t A\ ^t\left(A^{k}\right) \\
&=\ ^t A \cdot \left(^t A\right)^{k}\\
&= \left(^t A\right)^{k+1}.
\end{align*}

Donde la segunda igualdad se debe a la cuarta propiedad y la tercera a la hipótesis de inducción. Por inducción, queda probado el resultado.

Finalmente la sexta propiedad se sigue de la cuarta, dado que

\begin{align*}
^t A \cdot \ ^t\left(A^{-1}\right)= \ ^t\left( A^{-1} \cdot A\right) = \ ^t I_n =I_n.\end{align*}

La igualdad simétrica se verifica de la misma manera, y queda demostrada la última propiedad.

$\square$

Observación. La transposición de matrices «voltea» el producto de matrices. Es decir, si en el producto $AB$ aparece $A$ a la izquierda y $B$ a la derecha, al transponer obtenemos $^tB\, {^tA}$, con $^tB$ a la izquierda y $^tA$ a la derecha.

Observación. Por la proposición anterior, la transposición de matrices preserva la invertibilidad de las matrices y así lo podemos ver como un mapeo $^t : GL_n(F)\to GL_n(F)$.

Problema. Sea $X\in F^n$ un vector con coordenadas $x_1, \dots, x_n$ considerado como una matriz en $M_{n,1}(F)$. Demuestre que para cualquier matriz $A\in M_n(F)$ se tiene

\begin{align*}
^t X \left( ^t A \cdot A\right) X= \sum_{i=1}^{n} \left( a_{i1} x_1+ a_{i2} x_2 +\dots + a_{in} x_n\right)^2. \end{align*}

Solución: Primero, usamos la proposición para transformar el lado izquierdo de la igualdad buscada:

\begin{align*}
^t X \left( ^t A\cdot A\right) X=\ ^tX\ ^t A A X=\ ^{t} \left( AX\right) \cdot AX.
\end{align*}

Luego nombrando $Y=AX$ tenemos que

\begin{align*}
Y=AX=\begin{pmatrix} a_{11} x_1+\dots + a_{1n} x_n\\ a_{21} x_1+\dots +a_{2n} x_n \\ \vdots \\ a_{n1} x_1+\dots +a_{nn} x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n\end{pmatrix} .
\end{align*}

Así

\begin{align*}
^t Y \cdot Y= \begin{pmatrix} y_1 & y_2 & \dots & y_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}
\end{align*}

y usando la regla del producto para matrices concluimos que esta última cantidad no es más que $y_1^2+\dots + y_n^2$. Finalmente, sustituyendo $y_i$ por su correspondiente $a_{i1} x_1 +\dots + a_{in} x_n$ obtenemos la igualdad buscada.

$\square$

Matrices simétricas, antisimétricas y ortogonales

En el álgebra lineal hay tres tipos de matrices muy importantes y relacionadas con la transposición de matrices. Todas ellas son matrices cuadradas.

  • Las matrices simétricas. Son aquellas matrices $A\in M_n (F)$ tales que $^t A=A$, equivalentemente $a_{ij}=a_{ji}$ para cualesquiera $1\leq i,j\leq n$. Más adelante veremos que son de fundamental importancia para la teoría de formas cuadráticas y espacios euclideanos (donde $F=\mathbb{R}$), y un cacho importante de nuestro curso se dedicará a estudiar sus propiedades. Por ejemplo todas las matrices simétricas de tamaños $2$ y $3$ son de la forma
    \begin{align*}
    \begin{pmatrix} a & b \\ b &c\end{pmatrix}, \hspace{1mm} a,b,c\in F\text{ y } \begin{pmatrix} a & b & c\\ b & d & e\\ c & e & f\end{pmatrix}, \hspace{1mm} a,b,c,d,e,f\in F.\end{align*}
  • Las matrices ortogonales. Estas son las matrices invertibles $A\in GL_n(F)$ que satisfacen $A^{-1}=\ ^{t}A$. Estas (como su nombre lo indica) tienen una interpretación geométrica muy importante, pues corresponden a isometrías de espacios euclideanos. También las estudiaremos a detalle más adelante.
  • Las matrices antisimétricas. Son matrices $A\in M_n(F)$ que cumplen con $A^{t}=-A$. Estas tienen que ver con formas alternantes, y cumplen $a_{ij}=-a_{ji}$. Si $F\in \{ \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, esta última condición nos implica que $a_{ii}=-a_{ii}$, de dónde $a_{ii}=0$. Entonces, si $F$ es alguno de estos las entradas en la diagonal son todas cero. Todas las matrices antisimétricas de tamaños $2$ y $3$ sobre el campo $\mathbb{C}$ se ven:
    \begin{align*}
    \begin{pmatrix} 0& a \\ -a &0\end{pmatrix}, \hspace{1mm} a\in \mathbb{C}\text{ y } \begin{pmatrix} 0 & a & b\\ -a & 0& c\\ -b & -c & 0\end{pmatrix}, \hspace{1mm} a,b,c\in \mathbb{C}.\end{align*}
    Sin embargo, si $F$ es por ejemplo $\mathbb{F}_2$, entonces la condición $2a_{ii}=0$ no nos aporta ninguna información nueva, ya que para todo elemento $x$ en $\mathbb{F}_2$, $2x=0$. De hecho, sobre campos de este estilo ¡no hay diferencia entre matrices simétricas y antisimétricas!

A continuación resumimos algunas propiedades iniciales de matrices simétricas y antisimétricas. La idea de las demostraciones es usar las propiedades de transposición de matrices.

Proposición. Todas las matrices en los enunciados siguientes son matrices cuadradas del mismo tamaño. Son ciertas:

  1. La suma de una matriz y su transpuesta es simétrica, la diferencia de una matriz y su transpuesta es antisimétrica.
  2. El producto de una matriz y su transpuesta es simétrica.
  3. Cualquier potencia de una matriz simétrica es simétrica.
  4. Cualquier potencia par de una matriz antisimétrica es simétrica, y cualquier potencia impar de una matriz antisimétrica es antisimétrica.
  5. Si $A$ es invertible y simétrica entonces $A^{-1}$ es simétrica.
  6. Si $A$ es invertible y antisimétrica, entonces $A^{-1}$ es antisimétrica.

Demostración:

  1. Si $A$ es una matriz, entonces $$
    ^t\left( A+\ ^{t}A\right)=\ ^t A + \ ^{t}\left(^{t}A\right) =\ ^{t}A+A= A+\ ^{t} A. $$ Es decir, $A+\ ^{t}A$ es igual a su transpuesta y por tanto es simétrica. El cálculo para verificar la antisimetría de $A-\ ^{t} A$ es similar.
  2. Queremos ver que $A ^{t}A$ es simétrica. Lo podemos hacer directamente $$^{t}\left( A ^{t} A\right) =\ ^{t}\left(^{t}A\right) ^{t} A= A ^{t}A,
    $$ lo que verifica la simetría de la matriz.
  3. Se sigue de la proposición anterior, pues si $A$ es simétrica
    \begin{align*}
    ^{t}\left(A^{n}\right)= \left( ^{t}A\right)^{n}= A^{n}.
    \end{align*}
  4. Hacemos el caso en el que la potencia es par y dejamos el otro como tarea moral, el razonamiento es análogo. Si $A$ es antisimétrica y $n=2k$ para algún $k$ entonces
    \begin{align*}
    ^{t}\left(A^{n}\right)= \left(^{t} A\right)^{n}= (-A)^{n}=(-1)^{2k} A^{n}=A^{n}.
    \end{align*} Aquí usamos que $(-1)^{2k}=1$.
  5. Si $A$ es simétrica, usando la proposición anterior tenemos que
    \begin{align*}
    ^{t}\left(A^{-1}\right)=\left(^t A\right)^{-1}= A^{-1}.
    \end{align*}
  6. Es análogo al inciso anterior.

$\square$

Algunos problemas

Acabamos la entrada con algunos problemas que servirán de práctica.

Problema 1. Describe las matrices simétricas $A\in M_n(F)$ que sean simultáneamente simétricas y triangulares superiores.

Solución: Sea $A=[a_{ij}]$ simétrica y triangular superior. Por definición $a_{ij}=0$ si $i>j$ por ser triangular superior, y $a_{ij}=a_{ji}$ por ser simétrica para cualesquiera $i,j\in \{1, \dots, n\}$. Así, si $i\neq j$ entonces $a_{ij}=0$, pues si $i<j$, entonces $0=a_{ji}=a_{ij}$. Se sigue que $A$ tiene que ser diagonal. Conversamente, es fácil verificar que cualquier matriz diagonal es simétrica y triangular superior. Es decir, la respuesta es precisamente las matrices diagonales.

$\triangle$

Problema 2. ¿Cuántas matrices simétricas hay en $M_n\left( \mathbb{F}_2\right)$?

Solución: Observamos que una matriz simétrica está determinada por las entradas que están sobre o por encima de la diagonal, pues sabemos que para llenar los otros espacios hay que reflejar estas entradas (de otra manera, se puede pensar como colorear solo un lado del papel y luego doblarlo). Conversamente, cada elección de suficientes números para llenar la diagonal y el área encima de ella determina una matriz simétrica.

Así, contemos cuántas entradas hay sobre o por encima de la diagonal: El primer renglón está enteramente por encima de la diagonal, lo que nos da $n$ entradas, luego el segundo renglón está, con excepción de una entrada, contenido en esta área superior, es decir tenemos $n-1$ entradas más. Al tercer renglón le quitamos dos entradas, al cuarto tres entradas y así sucesivamente hasta llegar al último renglón, donde la única entrada sobre o por encima de la diagonal es la última, es decir, una entrada que podemos escoger.

Sumando, tenemos

\begin{align*}
n+(n-1)+(n-2)+\dots +2+1=\frac{n(n+1)}{2}
\end{align*}

entradas que rellenar, y por tanto $\frac{n(n+1)}{2}$ elecciones de números que hacer. Ahora, ¿cuántos números podemos escoger? Al estar trabajando en $\mathbb{F}_2$, solo dos: $0$ ó $1$. Por un argumento combinatorio, concluimos que hay

\begin{align*}
2^{\frac{n(n+1)}{2}}
\end{align*}

matrices simétricas en $M_n\left(\mathbb{F}_2\right)$.

$\triangle$

Problema 3. Demuestra que toda matriz $A\in M_n(\mathbb{C})$ se puede escribir de manera única como $A=B+C$, con $B$ simétrica y $C$ antisimétrica.

Solución: Suponiendo que $A=B+C$ con $B$ simétrica y $C$ antisimétrica, obtenemos que

\begin{align*}
^t A=\ ^t(B+C)= \ ^t B + \ ^t C= B-C
\end{align*}

Así, resolviendo el sistema

\begin{align*}
\begin{cases}
A= B+C\\
^t A= B-C
\end{cases}
\end{align*}

obtenemos que

\begin{align*}
B=\frac{1}{2}\left( A+\ ^t A\right) \text{ y } C=\frac{1}{2}\left( A-\ ^{t} A\right).
\end{align*}

Así la elección de $B$ y $C$ es única, pues están totalmente determinadas. Además, definiendo $B$ y $C$ como en las igualdades de arriba podemos ver que cumplen las condiciones buscadas (probando así existencia).

$\square$

Más adelante…

La transposición de matrices es una operación importante, que más adelante veremos que está relacionada con la dualidad. Las matrices simétricas y antisimétricas son también muy importantes en álgebra lineal. De hecho, el teorema principal del curso (el teorema espectral) es un resultado acerca de matrices simétricas con entradas reales. Por el momento le pondremos una pausa al estudio de estas matrices, pero más adelante las retomaremos.

En la siguiente clase hablaremos de otra clase de matrices: las de bloque. Estas nos ayudarán a enunciar más cómodamente algunos resultados y procedimientos, como el uso de la reducción gaussiana para resolver sistemas de ecuaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Escribe, de manera explícita, todas las matrices simétricas, antisimétricas y ortogonales de $M_2(\mathbb{F}_2)$.
  • La siguiente matriz es una matriz antisimétrica en $M_4(\mathbb{R})$, pero algunas de sus entradas se borraron. ¿Cuáles son estas entradas? $$\begin{pmatrix} 0 & 2 & & 3 \\ & 0 & -4 & \\ 1 & 4 & & \frac{1}{2} \\ & -\frac{2}{3} & & 0 \end{pmatrix}.$$
  • Demuestra las tres primeras propiedades de la proposición de propiedades de transposición de matrices.
  • ¿Será cierto que las matrices de $M_n(F)$ que son simultáneamente invertibles y simétricas forman un subgrupo de $GL_n(F)$? En otras palabras, ¿es cierto que el producto de dos matrices invertibles y simétricas es una matriz invertible y simétrica? ¿Que puedes en este sentido de las matrices ortogonales? ¿De las antisimétricas?
  • Demuestra que cualquier potencia impar de una matriz antisimétrica es antisimétrica
  • Demuestra que en $M_n(\mathbb{F}_2)$, una matriz es simétrica si y sólo si es antisimétrica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seis herramientas fundamentales para concursos matemáticos en tiempos de pandemia

Por Leonardo Ignacio Martínez Sandoval

La Olimpiada Mexicana de Matemáticas (OMM) se organiza en varios niveles: estatal, nacional y participación en concursos internacionales. Los estudiantes comienzan con la etapa estatal, en donde realizan varios exámenes y además se les prepara mediante entrenamientos. Después de repetir esto algunas veces, algunos estudiantes son elegidos para ir al Concurso Nacional de la OMM, para el cual se preparan adicionalmente.

A grandes rasgos, la forma en la que se organiza una olimpiada estatal se ve así:

En la parte de arriba se ve el flujo de los estudiantes. En la parte de abajo se ven varias actividades que realizan los comités estatales.

En esta época de la pandemia de COVID19, es muy importante encontrar alternativas para realizar muchas de estas actividades de manera digital. La idea de esta entrada de blog es ser un mini-curso introductorio a material y tecnologías de educación a distancia que pueden ser usadas para realizar estas actividades. Si bien está pensada originalmente como una entrada para ayudar a la organización de los concursos estatales de la OMM, el contenido puede:

  • Ser de utilidad incluso cuando salgamos de la pandemia, para tener más alcance.
  • Apoyar a otros concursos de otras ciencias, y otros países, a encontrar alternativas.

Para cada tecnología también hay un video, para ver cada uno de los recursos más en acción. El video introductorio es el siguiente.

Página de la Olimpiada Mexicana de Matemáticas

La página de la Olimpiada Mexicana de Matemáticas es uno de los mejores lugares para encontrar material de entrenamiento gratuito, de calidad, de acceso libre y con soluciones. Además, en esta página están disponibles en versión digital todos los números de la revista Tzaloa, que tiene otro tanto de material.

Otras cosas que se pueden encontrar en la página son los datos de contacto de los organizadores, resultados históricos de México en las olimpiadas internacionales y un sistema para pedir libros de la serie Cuadernos de Olimpiada.

La página de la OMM es http://www.ommenlinea.org. En el siguiente video se exploran con más detalle las distintas secciones.

El blog de Leo

El blog de Leo es precisamente esta página, en donde está esta entrada de blog. Forma parte de los recursos que propongo pues aquí en el blog hay también bastante material para preparar a olímpicos y entrenadores de la Olimpiada. Algunas secciones que pueden ser de utilidad son:

En el siguiente video se explora el blog más a detalle.

Facebook

La red social más popular es Facebook, y una de sus misiones es conectar a las personas. Se puede aprovechar todo el potencial que tienen sus herramientas para dar difusión a los concursos de matemáticas, para estar en contacto con los concursantes y para entrar en contacto con otras comunidades.

Dentro de Facebook, los dos lugares más indicados para ir y estar cerca de la comunidad olímpica matemática de México son:

  • La página de FB de la OMM: Página oficial, manejada por el Comité. Ahí se sube información de eventos, se publican resultados a nivel nacional y se informa de la participación de México en concursos internacionales.
  • El grupo Insommnia: El ambiente es más relajado. Es un grupo extraoficial, pero con una comunidad enorme de olímpicos y ex-olímpicos. Hay chistes, problemas propuestos, videos, discusiones de mejora del proyecto, mini-exámenes, etc.

Cada Comité Estatal puede aprovechar que en Facebook se pueden hacer grupos privados para estar en contacto con organizadores, papás o concursantes.

Hablo más de Facebook y su papel en concursos matemáticos en el siguiente video.

Overleaf

LaTeX es un lenguaje para escribir matemáticas y que se produzca un documento en el cual las matemáticas se vean bonito. Con él se pueden hacer exámenes selectivos, notas de entrenamiento e incluso libros.

Típicamente, para usar LaTeX en una computadora es necesario instalar una distribución y un editor. Overleaf es una página de internet en la cual se puede escribir y compliar LaTeX sin necesidad de instalar nada adicional.

Una ventaja de Overleaf es que lo que se trabaja se queda en la nube, así que se puede acceder a los documentos desde cualqueir computadora con internet. Esto tiene la desventaja de que se necesita tener internet, pero es fácilmente arreglable ya que, de ser necesario, se pueden bajar a una computadora todos los archivos fuente.

Otra ventaja de Overleaf es que se puede hacer colaboración simultánea en un mismo documento. Esto es muy útil para cuando se tiene que escribir matemáticas con otras personas: al hacer notas, escribir artículos de investigación y textos más grandes como libros o tesis.

En el siguiente video hablo más acerca de Overleaf.

Moodle

Un LMS es una plataforma que tiene todo lo que necesita un curso a distancia: herramientas para hacer exámenes, definir actividades, calendarizar, contactar a estudiantes, etc. Uno de los LMS más importantes y de más uso en la docencia a distancia es Moodle.

La principal dificultad con usar Moodle reside en que es necesario descargar un software e instalarlo en un servidor. Esto puede ser muy difícil para alguien que no conoce del tema. Sin embargo, una vez que Moodle queda instalado, es muy facil de usar para profesores y estudiantes (o en este contexto, delegados, entrenadores y concursantes).

El tipo de cosas que se pueden hacer en Moodle incluyen:

  • Tener un sistema de registro de nuevos concursantes
  • Subir notas
  • Subir mini-libros
  • Crear exámenes con límites de tiempo
  • Crear actividades de aprendizaje
  • Hacer cuestionarios
  • Tener foros personalizados

En el siguiente video hablo más a detalle de algunas de estas cosas.

Zoom, Hangouts y otras plataformas de videollamada

Finalmente, me gustaría platicar un poco acerca de opciones para tener videollamadas hoy en día. Sobre todo, me gustaría enfocarme en Zoom y en Hangouts. Ambas son buenas opciones para tener llamadas con grupos de varias personas.

Zoom agarró mucha popularidad en esta época de pandemia, y tiene sentido. Es una herramienta fácil de usar y de instalar que permite:

  • Armar reuniones con muchas personas
  • Compartir la pantalla con los asistentes (por ejemplo, puede servir para dar entrenamientos)
  • Programar reuniones y avisar a los participantes
  • Tener mecanismos de participación por chat, reacciones de «levantar la mano» o «aplaudir»

La versión gratuita de Zoom tiene algunas limitaciones, como que sólo se puede usar por 40 minutos de manera simultánea. La versión de paga permite hacer varias cosas como dividir a un grupo en sub-grupos.

Google Hangouts es una herramienta muy similar. También permite reuniones con muchas personas y compartir la pantalla. Se integra mejor con todo el ecosistema de Google y puede ser muy útil para quienes ya tengan una cuenta ahí.

En el siguiente video hablo de estas y un par de opciones más.

Reflexión final

Esta entrada fue un mini-curso al material y las tecnologías que se pueden usar para seguir organizando concursos matemáticos a distancia. El material que se presentó toma en mente el flujo de participantes en un modelo básico del concurso. También toma en cuenta el tipo de tecnología que podría necesitar un comité organizador local para hacer todas las actividades que se necesitan.

Hay una hipótesis muy fuerte que estamos haciendo: que los organizadores y participantes tienen acceso estable y bueno a internet. Al realizar actividades que aprovechen la tecnología hay que tener en cuenta que esta hipótesis es posible que no se cumpla. Puede suceder que:

  • Haya personas sin acceso a internet
  • Haya personas con acceso sólo con datos, para quienes ver videos es impermisiblemente caro
  • Haya personas con computadora y acceso a internet en su casa, pero de los cuales no puedan disponer
  • Haya personas con todos los recursos tecnológicos, pero viviendo muchas dificultades debido a la pandemia.

Así como muchos otros aspectos de la docencia, es importante tener empatía en el aspecto digital.

Seminario de Resolución de Problemas: Polinomios asociados a matrices y el teorema de Cayley-Hamilton

Por Leonardo Ignacio Martínez Sandoval

Introducción

Para terminar esta serie de entradas de álgebra lineal, y con ello el curso de resolución de problemas, hablaremos de polinomios especiales asociados a una matriz: el polinomio mínimo y el polinomio característico. Después, hablaremos del teorema de Cayley-Hamilton, que a grandes rasgos dice que una matriz se anula en su polinomio característico.

Estos resultados forman parte fundamental de la teoría que se aprende en un curso de álgebra lineal. En resolución de problemas, ayudan mucho para entender a los eigenvalores de una matriz, y expresiones polinomiales de matrices.

Polinomio mínimo de una matriz

Podemos evaluar un polinomio en una matriz cuadrada de acuerdo a la siguiente definición.

Definición. Si $A$ es una matriz de $n\times n$ con entradas reales y $p(x)$ es un polinomio en $\mathbb{R}[x]$ de la forma $$p(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n,$$ definimos a la matriz $p(A)$ como la matriz $$a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.$$

De manera análoga se puede dar una definición cuando las entradas de la matriz, o los coeficientes del polinomio, son números complejos.

Cuando una matriz está diagonalizada, digamos $A=P^{-1}DP$ con $P$ invertible y $D$ diagonal, entonces evaluar polinomios en $A$ es sencillo. Se tiene que $p(A)=P^{-1} p(D) P$, y si las entradas en la diagonal principal de $D$ son $d_1,\ldots,d_n$, entonces $p(D)$ es diagonal con entradas en la diagonal principal iguales a $p(d_1),\ldots,p(d_n)$.

Dada una matriz $A$, habrá algunos polinomios $p(x)$ en $\mathbb{R}[x]$ para los cuales $p(A)=0$. Si $p(x)$ es uno de estos, entonces cualquier eigenvalor de $A$ debe ser raíz de $p(x)$. Veamos un problema de la International Mathematics Competition de 2011 que usa esto. Es el Problema 2 del día 1.

Problema. Determina si existe una matriz $A$ de $3\times 3$ con entradas reales tal que su traza es cero y $A^2+ {^tA} = I_3$.

Sugerencia pre-solución. Busca un polinomio $p(x)$ tal que $p(A)=0$.

Solución. La respuesta es que no existe dicha matriz. Procedamos por contradicción. Si existiera, podríamos transponer la identidad dada para obtener que
\begin{align*}
A&=I _3- {^t(A^2)}\\
&=I_3-({^tA})^2\\
&=I_3-(I_3 – A^2)^2\\
&=2A^2 – A^4.
\end{align*}

De aquí, tendríamos que $A^4-2A^2+A = 0$, de modo que cualquier eigenvalor de $A$ debe ser una raíz del polinomio $$p(x)=x^4-2x^2+x=x(x-1)(x^2+x-1),$$

es decir, debe ser alguno de los números $$0,1,\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}.$$

Los eigenvalores de $A^2$ son los cuadrados de los eigenvalores de $A$, así que son algunos de los números $$0,1,\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}.$$

Como la traza de $A$ es $0$, la suma de sus tres eigenvalores (con multiplicidades), debe ser $0$. Como la traza de $A^2$ es la de $I_3-{ ^tA}$, que es $3$, entonces la suma de los eigenvalores de $A$ al cuadrado (con multiplicidades), debe ser $0$. Un sencillo análisis de casos muestra que esto no es posible.

$\square$

De entre los polinomios que se anulan en $A$, hay uno especial. El polinomio mínimo de una matriz $A$ con entradas reales es el polinomio mónico $\mu_A(x)$ de menor grado tal que $\mu_A(A)=O_n$, donde $O_n$ es la matriz de $n\times n$ con puros ceros. Este polinomio siempre es de grado menor o igual a $n$.

Una propiedad fundamental del polinomio mínimo de una matriz es que es mínimo no sólo en un sentido de grado, sino también de divisibilidad.

Teorema. Sea $A$ una matriz de $n\times n$ con entradas reales. Entonces para cualquier polinomio $p(x)$ en $\mathbb{R}[x]$ tal que $p(A)=O_n$, se tiene que $\mu_A(x)$ divide a $p(x)$ en $\mathbb{R}[x]$.

Veamos cómo se puede usar este resultado.

Problema. La matriz $A$ de $2\times 2$ con entradas reales cumple que $$A^3-A^2+A=O_2.$$ Determina los posibles valores que puede tener $A^2-A$.

Sugerencia pre-solución. Encuentra las posibles opciones que puede tener el polinomio mínimo de $A$ y haz un análisis de casos con respecto a esto.

Solución. La matriz $A$ se anula en el polinomio $$p(x)=x^3-x^2+x=x(x^2-x+1),$$ en donde $x^2-x+1$ tiene discriminante negativo y por lo tanto es irreducible.

El polinomio mínimo $\mu_A(x)$ debe ser un divisor de $p(x)$. Además, es de grado a lo más $2$. Esto nos deja con las siguientes opciones:

  • $\mu_A(x)=x$, de donde $A=O_2$, y por lo tanto $A^2=O_2$. De aquí, $A^2-A=O_2$.
  • $\mu_A(x)=x^2-x+1$. En este caso, tenemos que $A^2-A+I_2=0$. Así, $A^2-A=-I_2$.

Para mostrar que ambas opciones son posibles, en el primer caso usamos $A=O_2$ y en el segundo caso usamos $$A=\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

$\square$

Polinomio característico de una matriz

El polinomio característico de una matriz $A$ de $n\times n$ se define como $$\chi_A(x)=\det(xI_n – A).$$

Teorema. El polinomio característico de una matriz $A$ cumple que:

  • Es un polinomio mónico en $x$ de grado $n$.
  • El coeficiente del término de grado $n-1$ es la traza de $A$.
  • El coeficiente libre es $\chi_A(0)=(-1)^n\det(A)$.
  • Es igual al polinomio característico de cualquier matriz similar a $A$.

Para ver ejemplos de cómo obtener el polinomio característico y cómo usar sus propiedades, hacemos referencia a la siguiente entrada:

Propiedades del polinomio característico

En particular, para fines de este curso, es importante leer los ejemplos y problemas resueltos de esa entrada.

El teorema de Cayley-Hamilton y una demostración con densidad

Finalmente, hablaremos de uno de los resultados fundamentales en álgebra lineal.

Teorema (Cayley-Hamilton). Si $A$ es una matriz de $n\times n$ con entradas en $\mathbb{C}$ y $\chi_A(x)$ es su polinomio característico, entonces $$\chi_A(A)=O_n.$$

En realidad el teorema de Cayley-Hamilton es válido para matrices más generales. Daremos un esbozo de demostración sólo para matrices con entradas complejas pues eso nos permite introducir una técnica de perturbaciones.

Esbozo de demostración. Vamos a hacer la técnica de la bola de nieve, construyendo familias poco a poco más grandes de matrices que satisfacen el teorema.

Si $A$ es una matriz diagonal, las entradas en su diagonal son sus eigenvalores $\lambda_1,\ldots, \lambda_n$. Por la discusión al inicio de esta entrada, $\chi_A(A)$ es diagonal con entradas $\chi_A(\lambda_1),\ldots,\chi_A(\lambda_n)$, y como los eigenvalores son raíces del polinomio característico, entonces todos estos valores son $0$, y por lo tanto $\chi_A(A)=0$.

Si $A$ es diagonalizable, digamos, de la forma $A=P^{-1} D P$, entonces $A$ y $D$ tienen el mismo polinomio característico. Por la discusión al inicio de la entrada, y por el caso anterior:
\begin{align*}
\chi_A(A) &= \chi_D(A)\\
&= \chi_D(P^{-1} D P)\\
&=P^{-1}\chi_D(D) P\\
&=P^{-1}O_n P \\
&=O_n.
\end{align*}

Si $A$ tiene todos sus eigenvalores distintos, se puede mostrar que $A$ es diagonalizable. Ahora viene la idea clave del argumento de continuidad.

Pensemos al espacio métrico de matrices de $n\times n$. Afirmamos que las matrices con eigenvalores todos distintos son densas en este espacio métrico. Para ello, tomemos una matriz $A$. En efecto, como estamos trabajando en $\mathbb{C}$, existe una matriz invertible $P$ tal que $P^{-1}A P$ es triangular. Como $P$ es invertible, define una transformación continua. Los eigenvalores de $P^{-1} A P$ son sus entradas en la diagonal, y podemos perturbarlos tan poquito como queramos para hacer que todos sean distintos.

De esta forma, existe una sucesión de matrices $A_k$, todas ellas diagonalizables, tales que $A_k \to A$ conforme $k\to \infty$. El resultado se sigue entonces de las siguientes observaciones:

  • Los coeficientes del polinomio característico de una matriz dependen continuamente de sus entradas.
  • Las entradas de potencias de una matriz dependen continuamente de sus entradas.
  • Así, la función $\chi_{M}(M)$ es continua en la matriz variable $M$.

Concluimos como sigue $\chi_{A_k}(A_k)=0$, por ser cada una de las matrices $A_k$ diagonalizables. Por la continuidad de $\chi_{M}(M)$, tenemos que
\begin{align*}
\chi_A(A)&=\lim_{k\to \infty} \chi_{A_k}(A_k)\\
&= \lim_{k\to \infty} O_n \\
&= O_n.
\end{align*}

$\square$

Terminamos esta entrada con un problema que usa el teorema de Cayley-Hamilton.

Problema. Muestra que para cualesquiera matrices $X,Y,Z$ de $2\times 2$ con entradas reales se cumple que
\begin{align*}
&ZXYXY + ZYXYX + XYYXZ + YXXYZ\\
= &XYXYZ + YXYXZ + ZXYYX + ZYXXY.
\end{align*}

Sugerencia pre-solución. Muestra que las matrices reales de $2\times 2$ de traza cero conmutan con cualquier matriz de $2\times 2$.

Solución. Si $A$ es una matriz de $2\times 2$ de traza cero, su polinomio característico es
\begin{align*}
\chi_A(x)&=x^2 – \text{tr}(A) x + \det(A)\\
&=x^2 + \det(A).
\end{align*}

Por el teorema de Cayley-Hamilton, se satisface entonces que $A^2=-\det(A) I_2$, así que $A^2$ es un múltiplo de la identidad, y por lo tanto conmuta con cualquier matriz de $2\times 2$.

La identidad que queremos mostrar se puede reescribir como $$Z(XY-YX)^2 = (XY-YX)^2Z.$$

La traza de $XY$ es igual a la traza de $YX$, y como la traza es una transformación lineal, tenemos que $$\text{tr}(XY-YX)= \text{tr}(XY)-\text{tr}(YX)=0.$$ El problema se termina aplicando la discusión de arriba a la matriz $$A=XY-YX.$$

$\square$

Más problemas

Puedes encontrar más problemas relacionados con el polinomio mínimo, el polinomio característico y el teorema de Cayley-Hamilton en la Sección 8.2, 8.4 y 8.5 del libro Essential Linear Algebra de Titu Andreescu. También hay más problemas relacionados con el teorema de Cayley-Hamilton en el Capítulo 4 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.

Raíces de polinomios de grados 3, 4 o más

Por Claudia Silva

Introducción

Ya conociendo el método para encontrar raíces de polinomios de segundo grado, así como encontrar raíces racionales, entre otras herramientas que hemos estudiado de polinomios, pasaremos a hacer unos ejemplos de encontrar raíces de grado mayor a dos.

Ecuaciones cúbicas

Ecuaciones de grado 4

Ecuaciones de grado superior

Más adelante…

Con esta entrada concluimos el curso de Álgebra Superior II, como mencionamos en la entrada pasada, a partir de aquí hay muchos caminos, por un lado, puedes adentrarte en la Teoría de Conjuntos en donde repasarás lo visto en la sección de números naturales, empezando por el teorema de la recursión y hasta llegar a temas avanzados que no tocamos a profundidad en este curso, como el de los números ordinales y el estudio de los conjuntos infinitos y sus cardinales.

Por otro lado, puedes adentrarte en la Teoría de los Números y continuar con lo estudiado en la sección de enteros, para ver más a detalle las propiedades de las congruencias y ver nuevos e importantes temas. Relacionado con la Teoría de los Números, pero con un enfoque más general están los cursos de Álgebra Moderna I y II, donde se estudian y generalizan conceptos que ya hemos visto, como el de grupo, anillo, ideal o número primo, sin embargo la base de muchas demostraciones en estas materias, encuentran su base en los teoremas que vimos en el curso, en particular, el algoritmo de la división juega un papel fundamental en esta área.

El breve estudio que dimos de los números reales yd e su construcción, es el fundamento para temas mucho más avanzados relacionados con lo que se conoce como Análisis Matemático y evidentemente, el estudio de los números complejos se profundizará en el curso de Variable Compleja.

Finalmente el estudio de los polinomios es un tema que se estudia en el curso de Álgebra Moderna II donde podrás entender por qué es que solo estudiamos la forma de resolver ecuaciones de grado $4$ y no de grado $5$.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Para que valores de $c$, la ecuación $x^3-x+c=0$ tiene exactamente $1$ solución real? Sugerencia: Ocupa el discriminante.
  2. Demuestra que la función $f(x)=x^3+x$ es inyectiva y suprayectiva. Encuentra la inversa de f$(x)=x^3+x$.
  3. Encuentra las soluciones de $x^3+4x-2x+8$.
  4. Encuentra las raíces del polinomio $x^4+\sqrt{6}x+\frac{1}{4}$.
  5. Encuentra las soluciones a la ecuación $x^6+x^5+x^4+x^3+x^2+x+1$. Sugerencia: Multiplica por un polinomio de grado $1$ conveniente.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Rango de matrices y el teorema de factorización PJQ

Por Leonardo Ignacio Martínez Sandoval

Introducción

El algunas ocasiones es suficiente saber si una matriz es invertible o no. Sin embargo, esta es una distinción muy poco fina. Hay algunos otros problemas en los que se necesita decir más acerca de la matriz. Podemos pensar que una matriz invertible, como transformación lineal, «guarda toda la información» al pasar de un espacio vectorial a otro. Cuando esto no sucede, nos gustaría entender «qué tanta información se guarda». El rango de matrices es una forma de medir esto. Si la matriz es de $m\times n$, el rango es un número entero que va de cero a $n$. Mientras mayor sea, «más información guarda».

Por definición, el rango de una matriz $A$ de $m\times n$ es igual a la dimensión del subespacio vectorial de $\mathbb{R}^m$ generado por los vectores columna de $A$. Una matriz de $n\times n$ tiene rango $n$ si y sólo si es invertible.

Si pensamos a $A$ como la transformación lineal de $\mathbb{R}^n$ a $\mathbb{R}^m$ tal que $X\mapsto AX$, entonces el rango es precisamente la dimensión de la imagen de $A$. Esto permite extender la definición de rango a transformaciones lineales arbitrarias, y se estudia con generalidad en un curso de álgebra lineal.

En las siguientes secciones enunciaremos sin demostración algunas propiedades del rango de matrices y las usaremos para resolver problemas.

Propiedades del rango de matrices

Comenzamos enunciando algunas propiedades del rango de matrices

Teorema. Sean $m$, $n$ y $p$ enteros. Sea $B$ una matriz de $n\times p$, y $A$, $A’$ matrices de $m\times n$. Sean además $P$ una matriz de $n\times p$ cuya transformación lineal asociada es suprayectiva y $Q$ una matriz de $r\times m$ cuya transformación lineal asociada es inyectiva. Entonces:

  1. $\rank(A)\leq \min(m,n)$
  2. $\rank(AB)\leq \min(\rank(A),\rank(B))$
  3. $\rank(A+A’)\leq \rank(A) + \rank(A’)$
  4. $\rank(QA) = \rank(A)$
  5. $\rank(AP)=\rank(A)$

Consideremos el siguiente problema, tomado del libro Essential Linear Algebra de Titu Andreescu.

Problema. Las matrices $A$ y $B$ tienen entradas reales. La matriz $A$ es de $3\times 3$, la matriz $B$ es de $2\times 3$ y además $$AB=\begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}.$$ Determina el valor del producto $BA$.

Sugerencia pre-solución. Un paso intermedio clave es mostrar que el producto $BA$ es invertible.

Solución. Para empezar, afirmamos que $(AB)^2=AB$. Esto se puede verificar directamente haciendo el producto de matrices.

Luego, afirmamos que el rango de $AB$ es $2$. En efecto, eso se puede hacer fácilmente por definición. Por un lado, la suma de las primeras dos columnas es igual a la tercera, así que el espacio vectorial que generan las tres es de dimensión a lo más dos. Pero es al menos dos, pues las primeras dos columnas son linealmente independientes. Esto muestra la afirmación.

Ahora, usando la propiedad (2) del teorema dos veces, tenemos que
\begin{align*}
\rank(BA)&\geq \rank (A(BA)) \\
&\geq \rank (A(BA)B)\\
&=\rank((AB)^2) \\
&= \rank (AB)\\
&=2.
\end{align*}

Así, $BA$ es una matriz de $2\times 2$ de rango $2$ y por lo tanto es invertible.

Consideremos ahora el producto $(BA)^3$. Desarrollando y usando que $(AB)^2=AB$, tenemos que

\begin{align*}
(BA)^3 &= BABABA \\
&=B(AB)^2 A\\
&=BABA\\
&=(BA)^2.
\end{align*}

Como $BA$ es invertible, entonces $(BA)^2$ tiene inversa. Si multiplicamos la igualdad $(BA)^3 = (BA)^2$ por esa inversa, obtenemos que $$BA=I_2.$$

$\square$

El teorema anterior nos permite acotar por arriba el rango del producto de dos matrices. También hay una desigualdad que nos permite acotar por abajo el rango de dicho producto, cuando las matrices son cuadradas.

Teorema (desigualdad de Sylvester). Para matrices $A$ y $B$ de $n\times n$, se tiene que $$\rank(AB)\geq \rank(A) + \rank(B) – n.$$

Problema. La matriz $A$ es de $2020 \times 2020$. Muestra que:

  • Si $A$ tiene rango $2017$, entonces la matriz $A^{673}$ no puede ser la matriz de $2020\times 2020$ de puros ceros, es decir, $O_{2020}$.
  • Si $A$ tiene rango $2016$, entonces la matriz $A^{673}$ puede ser la matriz $O_{2020}$.

Sugerencia pre-solución. Enuncia una afirmación más general relacionada con el rango que puedas probar por inducción utilizando la desigualdad de Sylvester.

Solución. Para la primer parte, probaremos primero algo más general. Afirmamos que si $M$ es una matriz de $n \times n$ de rango $n-s$ y $k$ es un entero positivo, entonces el rango de la matriz $M^k$ es por lo menos $n-ks$. Procedemos por inducción sobre $k$. Si $k=1$, el resultado es cierto pues $M$ tiene rango $n-s=n-1\cdot s$.

Supongamos el resultado para cierto entero $k$. Usando la desigualdad de Sylverster y la hipótesis inductiva, tenemos que
\begin{align*}
\rank(A^{k+1})&\geq \rank(A^k) + \rank(A) – n\\
&\geq (n-ks) + (n-s) – n\\
&=n-(k+1)s.
\end{align*}

Esto muestra la afirmación general.

Si regresamos a la primer parte del problema original y aplicamos el resultado anterior, tenemos que $A^{673}$ es una matriz de rango por lo menos $$2020 – 673 \cdot 3 = 2020 – 2019 = 1.$$ De esta forma, $A^{673}$ no puede ser la matriz $0$.

Hagamos ahora la segunda parte del problema. Para ello, debemos construir una matriz $A$ de $2020\times 2020$ de rango $2016$ tal que $A^{673}$ sea la matriz $0$. Para ello, consideremos la matriz $A$ tal que sus primeras $4$ columnas sean iguales al vector $0$, y que sus columnas de la $5$ a la $2020$ sean los vectores canónicos $e_1,\ldots, e_{2016}$.

Esta matriz claramente es de rango $2016$, pues el espacio generado por sus columnas es el espacio generado por $e_1,\ldots, e_{2016}$, que es de dimensión $2016$. Por otro lado, se puede mostrar inductivamente que para $k=1,\ldots,505$, se tiene que $A^{k}$ es una matriz en donde sus columnas de $1$ a $4k$ son todas el vector $0$, y sus columnas de $4k+1$ a $2020$ son $e_1,\ldots, e_{2020-4k}$. En particular, $A^{505}=O_{2020}$, y entonces $A^{673}$ también es la matriz de puros ceros.

$\square$

Equivalencias de rango de matrices

Hay muchas formas alternativas para calcular el rango de una matriz. El siguiente teorema resume las equivalencias más usadas en resolución de problemas.

Teorema. Sea $A$ una matriz de $m\times n$ con entradas reales. Los siguientes números son todos iguales:

  • El rango de $A$, es decir, la dimensión del espacio vectorial generado por los vectores columna de $A$.
  • La dimensión del espacio vectorial generado por los vectores fila de $A$. Observa que esto es, por definición, el rango de la transpuesta de $A$.
  • La cantidad de filas no cero que tiene la forma escalonada reducida de $A$.
  • (Teorema de rango-nulidad) $n-\dim \ker(A)$, donde $\ker(A)$ es el espacio vectorial de soluciones a $AX=0$.
  • El tamaño más grande de una submatriz cuadrada de $A$ que sea invertible.
  • La cantidad de eigenvalores complejos distintos de cero contando multiplicidades algebraicas.

Problema. Determina todos los posibles rangos que pueden tener las matrices con entradas reales de la forma $$\begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix}.$$

Sugerencia pre-solución. Comienza haciendo casos pequeños. Para dar los ejemplos y mostrar que tienen el rango deseado, usa el teorema de equivalencia de rango para simplificar algunos argumentos.

Solución. El rango de una matriz de $4\times 4$ es un entero de $0$ a $4$. Debemos ver cuáles de estos valores se pueden alcanzar con matrices de la forma dada.

Tomando $a=b=c=d=0$, obtenemos la matriz $O_4$, que tiene rango $0$. Si $a=b=c=d=1$, obtenemos la matriz de puros unos, que tiene rango $1$. Además, si $a=1$ y $b=c=d=0$, obtenemos la matriz identidad, que tiene rango $4$.

Si $a=b=1$ y $c=d=0$, obtenemos la matriz $$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$ Esta matriz tiene sólo dos columnas diferentes, así que su rango es a lo más dos. Pero tiene como submatriz a la matriz $$I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$ que tiene rango $2$, entonces el rango de $A$ es al menos $2$. De esta forma, el rango de $A$ es $2$.

Veamos ahora que el rango puede ser $3$. Para ello, damos un argumento de determinantes. Llamemos $s=a+b+c+d$. Sumando las tres últimas filas a la primera y factorizando $s$, tenemos que
\begin{align*}
\begin{vmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}&=\begin{vmatrix} s & s & s & s \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}\\
&=s\begin{vmatrix} 1 & 1 & 1 & 1 \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}.
\end{align*}

Así, si tomamos $a=b=c=1$ y $d=-3$, entonces $s=0$ y por lo tanto la matriz $B$ que obtenemos no es invertible, así que su rango es a lo más tres. Pero además es de rango al menos tres pues $B$ tiene como submatriz a $$\begin{pmatrix} 1 & 1 & -3 \\ 1 & -3 & 1 \\ -3 & 1 & 1 \end{pmatrix},$$ que es invertible pues su determinante es $$-3-3-3-1-1+27=16\neq 0.$$

Concluimos que los posibles rangos que pueden tener las matrices de esa forma son $0,1,2,3,4$.

$\square$

El teorema de factorización $PJQ$

Existen diversos teoremas que nos permiten factorizar matrices en formas especiales. De acuerdo a lo que pida un problema, es posible que se requiera usar uno u otro resultado. El teorema de factorización más útil para cuando se están resolviendo problemas de rango es el siguiente.

Teorema (factorización $PJQ$). Sea $A$ una matriz de $m\times n$ y $r$ un entero en $\{0,\ldots,\min(m,n)\}$. El rango de $A$ es igual a $r$ si y sólo si existen matrices invertibles $P$ de $m\times m$ y $Q$ de $n\times n$ tales que $A=PJ_rQ$, en donde $J_r$ es la matriz de $m\times n$ cuyas primeras $r$ entradas de su diagonal principal son $1$ y todas las demás entradas son cero, es decir, en términos de matrices de bloque, $$J_r=\begin{pmatrix}
I_r & O_{r,n-r} \\
O_{m-r,r} & O_{m-r,n-r}
\end{pmatrix}.$$

Como evidencia de la utilidad de este teorema, sugerimos que intentes mostrar que el rango por columnas de una matriz es igual al rango por filas, usando únicamente la definición. Esto es relativamente difícil. Sin embargo, con el teorema $PJQ$ es inmediato. Si $A$ es de $m\times n$ y tiene rango $r$, entonces su factorización $PJQ$ es de la forma $$A=PJ_rQ.$$ Entonces al transponer obtenemos
\begin{align*}
^tA&= {^tQ} {^t J_r} {^tP}.
\end{align*}

Esto es de nuevo un factorización $PJQ$, con ${^t J_r}$ la matriz de $n\times m$ que indica que $^t A$ es de rango $r$.

Veamos ahora un problema clásico en el que se puede usar la factorización $PJQ$.

Problema. Sea $A$ una matriz de $m \times n$ y rango $r$. Muestra que:

  • $A$ puede ser escrita como la suma de $r$ matrices de rango $1$.
  • $A$ no puede ser escrita como la suma de $r-1$ o menos matrices de rango $1$.

Sugerencia pre-solución. Para la primer parte, usa el teorema $PJQ$. Para la segunda parte, usa desigualdades del rango.

Solución. Tomemos $A=PJ_rQ$ una factorización $PJQ$ de $A$.

Hagamos la primer parte. Para ello, para cada $i=1,\ldots,r$, consideremos la matriz $L_i$ de $m\times n$ tal que su $i$-ésima entrada en la diagonal principal es $1$ y el resto de sus entradas son iguales a $0$.

Por un lado, $L_i$ es de rango $1$, pues tiene sólo una columna distinta de cero. De este modo, $$\rank(PL_iQ)\leq \rank(PL_i) \leq \rank(L_i)=1,$$ y como $P$ y $Q$ son invertibles, $$\rank(PL_iQ)\geq \rank(L_i) \geq 1.$$ Así, para cada $i=1,\ldots, r$, se tiene que $L_i$ es de rango $1$.

Por otro lado, $$J_r = L_1 + L_2 + \ldots + L_r,$$ así que
\begin{align*}
A&=PJ_rQ\\
&=P(L_1 + L_2 + \ldots + L_r)Q\\
&=PL_1Q + PL_2Q + \ldots + PL_rQ.
\end{align*}

Esto expresa a $A$ como suma de $r$ matrices de rango $1$.

Para la segunda parte del problema, usamos repetidamente que el rango es subaditivo. Si tenemos matrices $B_1,\ldots,B_s$ matrices de $m\times n$, entonces
\begin{align*}
\rank(B_1&+B_2+\ldots+B_s) & \\
&\leq \rank(B_1) + \rank (B_2 + \ldots + B_s)\\
&\leq \rank(B_1) + \rank(B_2) + \rank(B_3+\ldots+B_s)\\
& vdots \\
&\leq \rank(B_1) + \rank(B_2) + \ldots + \rank(B_s).
\end{align*}

Si cada $B_i$ es de rango $1$, entonces su suma tiene rango a lo más $s$.

Así, la suma de $r-1$ o menos matrices de rango $1$ tiene rango a lo más $r-1$, y por lo tanto no puede ser igual a $A$.

$\square$

Más problemas

Puedes encontrar más problemas de rango de una matriz en la Sección 5.4 del libro Essential Linear Algebra de Titu Andreescu. El teorema $PJQ$, así como muchos problemas ejemplo, los puedes encontrar en el Capítulo 5 del libro Mathematical Bridges de Andreescu, Mortici y Tetiva.